™

WHAT IS IT?

So what is this little publica-
tion titled SCELBAL UPDATE
supposed to be? Well, first of all
it is just what its title denotes.
A means of keeping registered
SCELBAL owners up to date on
the status of the program in re-
gards to the correcting of “bugs”
that might appear, additional
operating information that may
be of interest to owners, clari-
fication of points raised by users
and so forth. More than that,
however, this publication is sort
of an experiment. It is an experi-
ment to determine just how
much our readers would like to
participate in the process of re-
fining the fundamental program
as it has been presented in the
SCELBAL manual, or partici-
pate in the creation and sharing
with others, of application pro-
grams written to run using the
SCELBAL interpreter.

The potential for tailoring a
package such as SCELBAL to a
wide variety of applications, of
adding additional features, of
improving its operating effi-
ciency, is virtually endless. Are
you, the users, interested in see-
ing this done? Do some of you
want to participate in the arena?
Would you like to have a vehicle
such as this through which you
could communicate with other
users? Would you like to join
with the program authors in im-
proving and adding to the pro-
gram’s capabilities? Would
groups of you like to work on
specific sections? Would you like
to have a medium for the
presentation of application pro-
grams that use the language. Do
you want to see application
programs for games, or would
you prefer programs that have
more practical applications
such as programs for handling
business, scientific and engi-
neering problems?

You, the individual readers,
are the ingredients in this experi-
ment. It is you who will deter-
mine in what direction(s) the
experiment goes and what con-
clusions may be arrived at!

Write us, tell us what you
think, send us you suggestions,
tell us what you are interested
in, remit your program ideas,
send us application programs
written in SCELBAL!

(To avoid any possible squab-
bles, lets have it understood that
submissions do become the pro-
perty of SCELBI C. C., INC..
However, we shall point out that
to sort of provide a little incen-
tive, submissions we find worthy
of publication will receive an

honorarium payment, which
will, we are sure, more than
cover the postage for such

submissions.)

How far could this thing go?
As has been said, that is up to
you. We are simply providing the
opportunity. We will be provid-
ing three or four issues during
the next six months or so as a
service to our SCELBAL cus-
tomers, If, at the end of that
time it appears there is a suffi-
cient base to support the con-
cept, we are prepared to imple-
ment it on a subscription basis.
If not, then, at least, we will
have learned something from the
SCELBAL UPDATE experi-
ment, and, we are sure, so will
have you!

You may address your com-
ments on this matter, along with
submissions to be considered for
publication, to:

SCELBAL UPDATE EDITOR
SCELBIC. C., INC.
1322 Rear - Boston Post Road
Milford, CT 06460

ELBAL
UPDATE

ISSUE 01 8/76
C Copyright 1976
SCELBI C. C,, INC.

SCELBALonP.T
Paper Tape Format2

Tips & Suggestions

IS OUR FACE RED!

[EST— v ————
N\)~

We pride ourselves at SCELBI
on accuracy. It is tough - prepar-
ing complex programs in the
form of books - making sure that
source listings and object listings
get transcribed from computer
print outs to type set without
errors. For instance, three sepa-
rate ‘‘proofers” spent countless
hours checking to ensure that
the critical object code listings
in chapters 12 and 13 of the
SCELBAL publications were ab-
solutely perfect. After that, the
typeset listing was used to verify
proper operation of the program
and to get an idea of how long it
might take readers to implement
the program on a computer
using a keyboard loader. (Six to
twelve hours for most, depend-
ing on how well they can handle
a-keyboard.) Even after all that
checking it is a long wait be-
tween sending the copy to the
printers and getting the first re-
ports in from readers!

At this time, a number of cus-
tomers have already reported
that they have SCELBAL up and
running fine - so we are finally
satisfied with the ‘‘proofing”’
part of the job. The printed
copy does agree with our origi-
nals.

Unfortunately, no matter how
good a job our clerical staff does
in preparing a program publica-
tion, the program authors can
blow it all when they goof!

Well, SCELBI has been pro-
ducing such publications long
enough to know that it is down-

right impossible to create a pro-
gram the size and nature of
SCELBAL and not find a few
“bugs’ or disagreeable features
down the road after publication.
That is the reason for providing
some blank pages at the back of
the book marked “NOTES.”
And, of course, a few bugs have
shown up in SCELBAL at this
point. These have been corrected
by PATCH1 and PATCH2 which
are pasted into the first edition
of SCELBAL on the NOTES
pages in the rear of the book
prior to shipping.

The problem that necessitated
PATCH2 did not show up until
just a few days before the first
lot of books were due to arrive
from the printer. This meant, in
order to ship promised books on
time, that PATCH2 had to be
created and rushed to print quite
hastily! The program authors, in
conference, quickly arrived at a
suitable solution to the problem
and created PATCH2. Author
Arnold suggested that the patch
be placed at the end of memory
page 32 where there was plenty
of room for such a patch.
Author Wadsworth, aiming to
‘‘save such a “large’’ unused area
for a REAL EMERGENCY??”
thought he saw another location
that the patch seemed to just
perfectly fit into starting at loca-
tion 224 on page 32 in memory!
Since author Wadsworth had
been designated as overall pro-
gram manager for SCELBAL,
the clerical staff hastily scurried
to have the patch printed up to
reside starting at that location
IN A HURRY! Thus, PATCH2
arrived from the printer the
same day that SCELBAL books
arrived and were duly pasted in
as books were packed for ship-
ment.

Alas, as a number of our ever
alert customers quickly noted,
(cont. pg. 3)

SCELBAL AVAILABLE
ON PAPER TAPE!

For several years now the
company has been producing
programs in the form of books -
leaving it up to individual users
to load programs into memory
using keyboard loaders. In the
past, with the majority of pro-
grams falling into the under 2K
category, most readers were con-
tent with the “book only” de-
livery method. Apparently, go-
ing to a 7K program has bent
a number of customers fingers
out of joint. We have had quite
a few request for paper tapes of
the object code, and a number
for the source listing.

We are going to start with
making the object code avail-
able. (The source listing may
be made available at a later
date?)

One of the reasons the
company has not been in any
great hurry to start providing
programs on paper tape was
because of the lack of standar-
dization of format. While there
are still many formats in use,
it 1s the consensus here at
SCELBI that the Hexidecimal
Paper Tape Format promul-
gated by Intel Corporation for

2

use in their INTELLEC MCS*
(*TM) is a suitable compro-
mise among the many possi-
bilities and one that is most
familiar to industry and uni-
versity users where the majority
of the requests for such tapes
appear to be coming from in
our analysis.

Several features that the
firm’s staff considered worthy
in this format include its fre-
quent testing for reader errors
and capability to recover from
an error condition by simply
backing up a few inches to the
last block read successfully (in-
stead of having to re-read an
entire tape); the header style
block format that allows diffe-
rent areas in memory to be
loaded, and the fact that, when
used with a typical ASCII tele-
type system, the tape itself can
generate a hexidecimal listing of
the data on the tape for checking
and reference purposes.

Thus, it is being announced
that the official standard at
SCELBI for core images pro-
duced on paper tape for the
firm’s products will be the
Hexidecimal format which is
detailed below.

SCELBA,

w $25.00 .

specify 8008 or 8080

HEXIDECIMAL FORMAT
for
PAPER TAPE

The hexidecimal paper tape
format that will be used by
SCELBI for core images consists
of the following.

A paper tape will contain one
or more blocks of information.
Each block will be a self-
contained wunit that includes
a header containing informa-
tion regarding the location of
the information in the core area
(an address), the amount of data
contained in a block (a data byte
count), a record type indicator,
the actual data in hexidecimal
notation, and a checksum. The
start of each block of informa-
tion will be indicated by a special
character. All of the information
within a block will be arranged in
the order illustrated next on a
row-by-row basis.

ROW 1 - Start of block mark
consisting of the ASCII charac-
ter code for the colon sign (:).

ROW 2,3 - Block length count
consisting of two hexidecimal

characters (MSD then LSD).
The block length count refers
to the number of actual data
bytes in a block. This value may
be in the range 00 to FF (0 to
255 decimal). However, a count
of zero (00) will indicate an END
OF FILE block.

ROW 4 - 7 - Address at where
data will begin to be loaded in
memory expressed as four hexi-
decimal ASCII encoded charac-
ters. (High address then low
address.)

ROW 8,9 - Type of block indi-
cator. For standard core images
this indicator will consist of the
two ASCII encoded characters
00. Other types of indicators
may be used in the {future.

ROW 10.....X - Data. Each byte
of data to be loaded into mem-
ory will be expressed as two
ASCII encoded hexidecimal
characters (MSD,LSD) requiring
two rows on the paper tape.

ROW X+1, X+2 - Checksum.
Expressed as the negative of the
sum of the value of all rows in
the block since the start of block
marker (neglecting carries).

NOTE: Paper tapes punched in
hexidecimal format will use the
convention of not using the
parity bit (eighth bit). This is
opposite to the convention es-
tablished for most SCELBI pro-
grams! The decision to follow
the convention for the paper
tape format was based on fos-
tering compatibility and in-
creased standardization, at least
in the area of program loading
capability!

PLEASE!!!

Do NOT write and ask us for
SCELBAL on magne ,
will not be supplying netic
tapes until such time .
satisfied that there is
stable agreement concerning
recording methods and formats.
At this time we are watching the
progress of the “K.C.” standard
closely. However, we feel it will
be at least six months to a year,
and possible longer, before
standardization has set in to the
degree that we will invest in the
necessary equipment, personnel,
etc., to start providing programs
on magnetic tape.

BUT - you may write and ask
for information concerning paper
tapes of other SCELBI programs.
We will soon be making paper
tapes available for most of the
programs presented in previous
SCELBI publications - such as
our Editors, Assemblers, Moni-
tors, Games, etc.

NOTE - paper tapes supplied
by SCELBI will be virtually use-
less if you do not have the cor-
responding publication! They are
being made available as an op-
tional supplement to the books -
not as a replacement. Users will
still have to provide I/O routines
etc., as described in the related
books and information regarding
the locations of such routines,
operating instructions, etc., will
NOT - repeat - NOT be supplied
with the paper tapes!

FEEL RESTRICTED BY BEING

FA? FA?

FA? FA?

THINKING OF ALTERING

(from pg. 1)

LIMITED TO 20 VARIABLES?

You shouldn’t........ when it is
so easy to essentially quadruple
this capacity by using a set of
elements in an array as indivi-
dual variables! For instance, in-
stead of using a group of vari-
able names such as N1, N2,...N9;
simply DIMension an array (in
this case having nine elements)
named N:

DIM N(9)

Then use the elements N(1),
N(2),....N(9) as different vari-
ables. Using this technigue you
can add up to 64 more variables
in a program for a total of 84.
A program utilizing 84 variables
will be a pretty ‘‘busy’ program!

Qops! We forgot to tell you
something. While it is not men-
tioned in chapter fourteen (see
the list on pages 19 and 20 in
that chapter), nor is it shown on
the handy pocket reference card
included with the book (bound
at the back with the registration
card); the symbol FA is a valid
SCELBAL error code! It means
that the interpreter has encoun-
tered a Function or Array error
condition.

Why not pencil in a little
note to that effect on your
pocket reference card? The
error code is especially likely
to come up if you do not have
the DIMension capability in-
cluded in your version of the
program (and have substituted
NQOPs in the indicated memory
locations) and then attempt to
perform an operation that speci-
fies an array element!

PORTIONS OF SCELBAL?

Individuals planning to mod-
ify small sections or subroutines
can probably do well enough
using hand assembly methods.
However, those who plan to
undertake extensive revisions -
such as, for example, compac-
ting the program by taking ad-
vantage of the 8080’s extra
instructions - would do well to
remember that SCELBI has
assembler programs suitable for
such tasks that operate in just
4K of memory (and can use
memory beyond that amount to
provide extensive symbol table
storage). The SCELBI 8080
ASSEMBLER program is de-
signed to process the mnemonics
as they appear in the SCELBAL
manual (original INTEL mne-
monics for the 8008) as well as
providing for the extended in-
struction set of the 8080 CPU.
See SCELBI advertising litera-
ture for-additional information.

author Wadsworth’s choice of
location for PATCH2 overlook-
ed the fact that locations 224
and 225 on page 32 were already
occupied by the address bytes of
the instruction JMP ERROR
that would be executed if a
SQuare Root error (negative
argument) condition was en-
countered. Author Wadsworth,
after mumbling something about
““it was just a test to see if the
readers were awake’’ agreed to
relocate the patch to start at
location 364 on page 32. A new
“PATCH2 - Revised” was print-
ed to replace the original patch
number two. The revised version
is included in books currently
being shipped. Early customers
who received the original patch
will find a copy of the revised
(simply relocated) PATCH2 en-
closed with this literature which
may be pasted over the original
version - to erase all evidence
....as though the whole thing
never occured!

\

MODIFIED SCELBAL

This is the beginning of a
section that we plan to have on a
regular basis in SCELBAL
UPDATE, The purpose of this
column will be to present modi-
fications to SCELBAL that will
provide some improved opera-
tion or desirable features to the
fundamental program. Users are
urged to contribute to this
column.

In order to maintain some
kind of overall organization of
the fundamental program as
various improvements are
thought of, and suggestions for
implementing those improve-
ments made and/or contributed,
it would be wise to lay out a few
rules for contributors to follow.
While these rules may not be
considered as hard and fast at
this point, they will at least serve
as an initial guide. More “‘rules
of the game’> may become
necessary as others join in the
fun,

In the example modification
to be described in this issue, the
following rules were adhered to.

1. The improvement was
made by altering the machine
code within an address range de-
limited by labels.

2. The modification is essen-
tially complete and self-con-
tained within the boundary es-
tablished in item number 1
above. That is, it was not
necessary to ‘‘patch’’ the pro-
gram by establishing subroutines
external to the area modified.

3. The improvement does not
rely on another improvement or
modification. Adherence to this
rule will insure that readers do
not end up with a problem of
having to refer to previous modi-
fications ad infinitum. Note that
this does not mean that a new
contributor cannot modify an

SCELBAL

ISSUE 02 - 9/76
© Copyright 1976
SCELBI C.C., INC.

Modified SCELBAL. . . .1

UPDATE

improvement. It simply means
that the presentation should in-
clude all modifications and
references to the original version
of SCELBAL, and not the modi-
fications. Of course, if in doing
so one wants to reference an
improved subroutine for- pur-
poses of discussion or to indicate
a point of inspiration, one
should certainly do so.

4. This column will relate
only to improvements that can
be implemented on an 8008
CPU based system, The optimi-
zation of SCELBAL for an 8080
is an entirely different matter
which will be discussed at a later
date.

5. The improvement does not
alter the starting address of any
label that is referred to by rou-
tines outside of the area being
modified. That is, it should not
be necessary to locate any re-
ferences in subroutines outside
of the improved area in order to
implement the modification.
Naturally, if the improvement or
alteration does not require as
many machine instructions as
the original version, then NOP
instructions may be inserted to
the next label point, or a jump
instruction may be used to con-
tinue operations to the next
label point. Of course, if the im-
provement relates to a subrou-
tine, then a RET instruction
would be used to conclude the
shortened program.

Following these initial guide-
lines should help to prevent
chaos as contributors with
various interests begin to point
out ways in which the program
may be improved, incorporate
additional features, or possibly
correct any potentially trouble-
some situations.

As pointed out in chapter 15
of the book, SCELBAL was
deliberately published, not as a
highly compacted, intricate,

Deepspace

Letters

ultra-sophisticated program that
would have been most difficult
to explain and quite difficult to
safely modify, but rather in a
format that was more conducive
to explanation and alteration.
The reader with a minimal
amount of machine language
programming capability will be
able to find all kinds of ways in
which various portions of
SCELBAL might be modified to
suit individual taste. The range
of modifications that one can
envision are virtually too
numerous to enumerate. Some
readers might be interested in
studying ways in which to speed
up the operation of various sec-
tions of the program. Other
users might be interested in
adding “bells and whistles” to
the program. Still other readers
might be interested in finding
ways in which to considerably
compact the amount of memory
the program utilizes. (Again,
reference here is made to the
8008 version. Obviously,
SCELBAL can be considerably
compacted if the 8080 instruc-
tion set is capitalized upon. As
pointed out earlier, however,
that matter will be handled
separately from this column.)

The modification to be dis-

cussed in this issue can be
classified as a “bells and
whistles’’ feature.

Have you ever created a

SCELBAL program and inad-
vertantly used more than 20
regular variable names? If so,
you probably did not discover
your error until you attempted
to run the program and received
a BG error message. After some
head scratching, when you
finally figured out thfat the prob-
lem was caused by too many
variable names, you attempted
an easy solution by combining
mathematical statement lines to
reduce the number of variable
names, Alas, however, you dis-
covered that after modifying the

program you were stuck in a
nasty situation. Every time you
tried to run the program that BG
error message came back again.
Why? Because eliminating a
variable name from a program
statement does not eliminate
that variable name from the
variables table. The variables
table remains filled. How does
one normally get out of that
situation? By use of the SCR
command. Unfortunately, while
this command does indeed clear
out the variables names table, it
also clears out the user program
buffer, making it necessary for
the programmer to re-enter the
revised program. This may not
be so difficult if the user has
high speed bulk storage facilities
and can utilize the LOAD com-
mand. Nor is it tough if the pro-
gram is relatively small. How-
ever, in most cases a program
overflowing from excessive
variable names will have been a
relatively large program and re-
entering it by keyboard may be
a little frustrating.

A user that has really studied
SCELBAL and that has a resi-
dent Monitor facility on their
computer system might discover
that a shortcut to getting out of
that type of situation would be
to use the Monitor program to
initialize the variables table to
the effectively empty condition.
This can be accomplished by
placing a zero byte at the start
of the regular variable symbol
table (which is at address PG 27
LOC 210), and, re-initializing
the value in the variables counter
at PG 27 LOC 077 to a value
of 001.

That action is one of several
that is performed when a SCR
command is issued. But, the
SCR command also results in the
user program buffer being
effectively erased. It might be
nice if one could have two types
of initializing commands. One
would be an all-inclusive

1

initializing command just like
the SCR command; the other
would be a special command
that only initialized the variables
symbol table.

The modification presented
herein provides that capability
by replacing the SCR command
with two single letter com-
mands. One single letter com-
mand signified by the letter S
for ‘“‘scratch’’ provides the all-in-
clusive initializing capability for
the interpreter. The second com-
mand signified by the letter E
for “erase’’ allows the program-
mer to effectively erase just the
variables symbol table while
leaving the user program buffer
intact.

This improved capability can
be provided by modifying the
section of SCELBAL that starts
at the label NOLIST and ends
with the label NOSCR. The
source listing for the original
version of this section is dis-
cussed in chapter 4 on pages 5
and 6. The area in the assembled
listing starts on PG 10 LOC 354
and ends at PG 11 LOC 066.

The source listing of the
modification that follows illus-
trates how the improvement was
affected by re-organizing the
order in which specific initiali-
zing actions were taken;splitting
the original SCR command in
the command look-up table into
two character strings, one con-
taining a S, the other an E; and
“tightening up’’ the program a
little bit by ascertaining the
possible contents of the D and
E and the H and L CPU registers
whenever the program returned
from the STRCP subroutine,

Assembled object code listings
of a modification for both the
8008 and 8080 processors are
presented on the following page.

To operate the modified ver-
sion, simply remember that the
SCR command has been re-
placed by the single letter com-
mand S, Additionally, a new
command, invoked by entering
an E followed by a carriage re-
turn when in the executive
mode, will cause the array and
regular variable symbol tables to
be effectively erased without dis-
turbing the contents of the user
program buffer.

2

-~

/
001
305
0ol
323
/

/

LHI
LEI
LDI
CAL
JTZ
LDI
LE!
LLI
LHI
CAL
JTZ
LEI
LLI
CAL
JFZ
LLI
M1
INL
XRA
LMa
DCL
LHM
LLA
LMA
/

LLI
XRA
LMA
LLI
LMA
LLI
LMa
LLI
LMI
LHI
LLA
/

OZ==l=" MmMOICOWn

INL

JMP

/

HLT
s V4

NOLIST,

HAVEE,

SCRLOP,

ORG @81 346

ORG @106 354

001
220
826
STRCP
RUN
826
200
346
oa!
STRCP
HAVEE
359
000
STRCP
NOSCR
364
833

275

120
210
277

0a1
857

JFZ SCRLOP

EXEC

LLI 342

LH! 827

LMA

/¢(CC) FOR 'E’
/E
/(CC) FOR °'S°*
/S

/SET H&L TO ADDRESS QOF °'RUN®
/%% IN COMMAND LOOK UP TABLLY
/SET D&E TO ADDRESS OF START
/*%0F LINE INPUT BUFFER
/COMPARE STRINGS

/G0 TO 'RUN' ROUTINE ON MATCH
/**RESET D&E TO START OF

/THE LINE INPUT BUFFER

/SET H&L TO ADDRESS OF 'E’

/%% IN COMMAND LOOK UP TABLE
/COMPARE STRINGS

/1F MATCH, HAVE 'ERASE®' CMND
/ELSE, SET PNTR TO ADDR QF 'S’
/SET PNTR TO START OF INPUT BF
/COMPARE STRINGS

/1F NO MATCH, CONTINUE PGM
/0N MATCH, POINT TO USER PGM
/tt LINE PNTR & INITIALIZE TO
/STARTING ADDRESS OF THE BUFF
/FIRST THE HA (PG 33) THEN THE
/LA (LOCATION 8P@) PORTION
/NOW SET H&L TO ADDR OF START
/0F USER PROGRAM BUFFER

/AND INITIALIZE THE BUFFER
/VITH A ZERO BYTE

/%% SET H&L TO ADDR QF THE
/NUMBER OF ARRAYS GCOUNTER
/CLEAR THE ACCUMULATOR AND
ZINITIALIZE THE COUNTER

/NOV POINT TO START OF ARRAY
/VARIABLES TABLE - INITIALIZE
/NOW POINT TO START OF REGULAR
/VARIABLES SYMBOL TABLE =~ INIT
/POINT TO VARIABLES COUNTER
ZINITIALIZE TO COUNT OF ONE
/0@ POINT TO START OF ARRAYS
/00 STORAGE PAGE

/0¢® FORM A LOOP TO

/8¢ CLEAR OUT ALL LOCATIONS
/00 IN THE ARRAYS STORAGE AREA
/BACK TO EXECUTIVE WHEN DONE

/SAFETY HALT FOR UNUSED BYTE

10
10
10
10
10
10
19
18
10
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

11
11
11
11
11
11
11

e us pen Omo
-t b b Pus

8008

346
347
350
351

354
356
360
362
364
367
372
374
376
200
292
285
el1e
g12
o14
o117
g22
024
826
827
230
231

p32
833
934

835
837
84l
ga2
243
94S
246
858
851
853
8sSs
as7

260
g6l
@62
@65

270

eel
385
221
323

866 342
856 801
246 000
836 826
186 332
150 070
236 826
846 000
966 346
856 201
186 332
158 835
246 350
666 000
186 332
118 871
866 364
976 833
260

151

271

@61

357

261

2171

256 827
8660875
151
2171
66 128
271
2662180
271
866077
276 601
256 857
261

2171
260
110 060

184 266 010

ga2
a13

ga2
g11

@s2
g1l

a11

o1
ol
o1l
ol

O Gmt Gms Gm P Pun e Pua P
CO0OO0O0OO0OOO0O0OO0O

- gun
= g

Gt Gut Putt Gun Gub Pui Pua Pun
e Pus Patt Put Gub Put Pus Puo

mt Gut Put Gun Gua Pus
us Gub Pun Pus Gub Puo

N
= Gun

St Gt Gt Pt Puo
Gut Gt Gut Gt Pus

o
- e Gun

G Pus
= pun

=
[

i1
i1

11

8080

346
347
350
351

354
356
360
362
364
367
3172
374
376
000
ooe
00S
010
oi2
014
017
022
024
026
027
030
031
032
033
034

035
037
04l
042
043
045
046
050
051
083
055
057

060
061
062
065

070

001
305
001
323

056
046
036
026
315
312
026
036
056
046
315
312
036
056
315
302
056
066

054

257
167
055
146
157
167

046
056
257
167
056
167
0s6
167
056
066
046
157

167
054
3082

303
166

342
o001
000
oeé
332
070
026
0Q0
346
ool
332
035
350
000
332
071
364
033

002
013

o11

co2
o011

027
075
120
210
077

001
087

060 011
266 010

t oBJECT]

ooz

REGISTER YOUR COPY OF SCELBAL NOW!

The first two issues of SCELBAL UPDATE were sent to all
purchasers at their purchase addresses. It cost a considerable amount
of money to send out copies of SCELBAL UPDATE., Future copies
will only be sent to those purchasers who have registered their copies
of the publication. The registration card may be found on the last
page of your SCELBAL book.

PLUG Now you can cook-up

hot programs on your
“8080”

A gourmet's delight of practical ““‘how to”
facts, including description of ‘‘8080"
instruction set. How to manipulate
"'8080" stack. Flow charts. Source
listings. Routines for multiple precision
operation. Programming time delays for
real time applications. Random number
generators. Completely assembled tfloat-
ing point math program. Input/output
processing for basic |/O programming
through interrupt processing. Code,
numeric conversion routines. Real time
programming. Search/sort routines.
Plus many more finger-lickin' goodies.

FOR
SCELBI

COMPUTER

Order your copy of Scelbi's “8080"
Software Gourmet Guide & Cook Book
today! Only $9.95 ppd. Bon appetite!

V' SCELBI COMPUTER
\ CONSULTING INC.

1322 Rear Boston Post Road
Milford, CT 06460 e

A PLUG FOR CREATIVE COMPUTING

The game presented on the next page is a slightly revised version
of a program that appeared in an excellent magazine that is appro-
priately named CREATIVE COMPUTING. The magazine is pub-
lished by an enthusiastic and creative organization headed by
David H. Ahl. In addition to games such as that shown in this issue,
the magazine regularly presents a variety of articles, book and
product reviews, educational material, and a good selection of
general information which we feel most of our customers would find
highly interesting. Recent issues of the magazine contained 88 pages
(8% x 11). Considering the fact that relatively little advertising
appears in those 88 pages, the amount of text and editorial material
per issue far exceeds any other computer-related publication that has
come to our attention to date. Individuals interested in subscribing
to the publication may do so at the following rates. 1 year - $8.00,
3 years - $21.00. If you have any doubts, you can get a sample copy
for $1.50. (The magazine is issued bimonthly.) Subsecription orders
should be forwarded directly to:

CREATIVE COMPUTING
P. O. Box 789-M
Morristown, NJ 07960

1788 GOTO 2768 (

308 DI D(a) D 1758 et THE PROGRAW wAS MODI 20 | "
20 DIM C(2) 1808 C(OI=16 FOR SCELBAL BY REPLACING
:o: DIM N(S) 1810 Posl SOME OF THE REGULAR VANT A ACTION CHART? ¥
8% PRINT 1828 GOTO 978 VARIABLE NAMES — WITH 1 FIRE PHASERS
618 PRINT °‘VANT AN ACTION CHART? 'J 1830 S@w=4 ARRAY ELEMENTS. A PRAC- 2 FIRE ANT1-MATTER MISSILE
615 INPUT M3 1848 C(@)=24 TICE SUGGESTED IN SCELBAL 3 FIRE HYPERSPACE LANCE
618 PRINT 1858 Po=2 UPDATE ISSUE NF. 1 4 FIRE PHOTON TORPEDO
620 IF Ma217 GOTO 668 1868 GOTO 979 s HYPERON NEUTRO FIELD
630 GOTO 770 1870 s@=2 BEEPSPACE 15 ANDTHER VE®S. 6 SELF-DESTRUCT
668 PRINT , ::g: ﬁ;f;'” SION OF A SPACE BATTLE YOU 7 CHANGE VELOCITY
670 PRINT ' 1 FIRE PHASERS BECOME THE COMMANDER OF 8 DISENGAGE
688 PRINT ' 2 FIRE ANTI-MATTER MISSILE' 1986 @oTo 970 SITHER A SCOUT SHIP, CRUIS 9 PROCEED
690 PRINT ' 3 FIRE HYPERSPACE LANCE' P 1918 Ccli=a12 SITHER A SCOU ; ", CROIS
788 PRINT ' 4 FIRE PHOTON TORPEDO' 1928 N=100 ER. OR BATTLESHIP. YOI gyrcm sysTey c1-3372
718 PRINT * 5 HYPERON NEUTRO FIELD' 1938 GOTO 10860 THEN PICK THE WEAPONS AND | gyycw sPaCECRAFT (1-3373
728 PRINT * 6 SELF-DESTRUCT® 1948 Pl=4 THE PLANETARY SYSTEM YOU | yoy HAVE 38.8 UNITS OF STORAGE
738 PRINT * 7 CHANGE VELOC1TY® S 1950 IF N(1)=8 THEN 2618 | DESIRE TO PATRO.L THENIT'S VEAPONT 1 ’
728 PRINT * 8 DISENGAGE 1968 NCL)aNC1) -1 TIME TG DO BATTLE, AMOUNT? |
750 PRINT ' 9 PROCEED® 1978 z=280 YOU MAVE 1B.0 UNITS OF STORAGE.
768 PRINT 1980 GOTJ 1430 THE CLOSER YOU GET TC THE VEAPON? 2
776 PRINT ‘*VHICH SYSTEM (i1-3)'s 1998 NCL)=NC1)+N ENEMY, THE BETTER YOUR AMOUNT?2
815 INPUT N 2088 GOTO 1130 CHANCE OF DESTROYING HIN. YOU HAVE 10.8 UN1TS OF STORAGE.
820 IF N=1 GOTO 2380 2018 C(1>=a UNFORTUNATELY, HIS CHANC VEAPONTI
830 [F Ns2 GOTO 2438 2020 GOTO 1060 ES OF DESTROYVING YU ALSC | AMOUNT?23
848 GOTO 2488 A :930 Pi=2e IMBROVE IF YOU GeT Too | YOU HAVE 6.3 UNITS OF STORAGE.
850 Dowa 840 IF N(2)=d GOTO 26a8 !)) VEAPONT? §
860 D(1)=0 2050 N(2)aN(2)=1 YOL CAN DAMAGE AMOUNT? 1
870 NC(i>md 2060 Zw508 YOURSELF. WHEN A VESSEL'S NOT FNOUGH SPACE. RESELECT
888 N(2)=9 2878 GOTO 1430 DAMAGE RATING EXCFEDS 99 | you MAVE 6.8 UNITS OF STORAGE.
898 N(1)a@ c 268@ N(2)=N(2)+N 1T 1S DESTROYED! VEAPON7 &
900 V(a)=@ 2098 GOTO 1130 AMOUNTT 3
918 Dap 2100 C(li=a THE REMARKS N TRE PRO
z:: r;‘:;ia,; ;\nucu SPACECRAFT (1-3)'s E ::;: g?:?ﬁ"“ GRAM HAVE BEEN REMOVED | RANGE TO TARGET: 537.2830
938 1F N=1 GOTO 1790 2130 1F N(3)=8 GOTO 2668 | "D ARE PRESENTID HERE TO :?1-_‘[\;'1‘_‘,’5 VELOCITY: 8.5989952
940 IF N=2 GOTO 1838 2140 N(3)aNC(3)-1 SAVE PROGRAM STORAGE | cyaNge To BE EFFECTEDS7+2
950 IF N=3 GOTO 1870 2158 zs550 SPACE. (PROGRAM WILL THUS | ayaygE BEYOND MAXIMUM POSSIBLE
968 GOTO 928 2168 GOTO 1430 FIT IN A 12K SYSTEM HUNNING INCREASING TO MAXIMUM. '
978 C=C(@) 2178 NCIISNCI) oN SCELBAL WITH DIMCNSION
98@ PRINT ‘YOU HAVE'IC} ' UNITS OF STORAGE. 2182 GoTO 1132 CAPABILITY INSTALLED.) RANGE TO TARGET: 520.6348
998 PRINT °*WVEAPON'; 2198 C(1)=2 RELATIVE VELOCITY: 2.8
992 INPUT V P ::?: g?‘l‘?alﬂw “THIS 1S DEEPSPACE. A TAC- | ACTION7a
995 PRINT °*AMOINT': - TICAL SIMULATION OF SHIP- SCANNERS REPORT Y .
998 INPUT N 2229 1F N(4)=@ GOTO 2680 TO-SMIP COMBAT IN DEE® YOUR \;'::ssn. MNA?};FJ.P’?:Q?E NOv: 5.37
1002 [F val GOTO 1910 2238 N(4d=NCa)-1 SPACF. YOL ARE ASSIGNZD
1010 1F wa2 GOTO 2818 2240 Z=480 0 PATROL A e RANGE TO TARGET: 53

O PATRGL A SECTION OF 3 584.0848
1820 IF w=3 GOTO 2100 2259 GOTO 1428 YOLF STAR EMPIRT'S BOR RELATIVE VELOCITY: 2.9
1038 1F Va4 GOTO 2199 2268 NC4)=NC4)+N YOLF STAR EMPIRC'S BOR- | erioNTe
1048 1F W=5 GOTO 2280 2279 GOTO 1130 BF% i 2(’{*"’:;’ 8 ”’\O(%T)'JLI\T
1058 GOTO 984 2280 C(1)%.1999998 LIENS AL JUR ENCOUN.
1068 LF nucCirsC GOTO 2578 o 2298 Ne10@ TERS WILL BE AGAINST HOS- mix.\rrg Bﬁggkfs;::aaa
1878 C=C~NsCC1) 2380 GOTO 1068 TILE VESSELS. YOL WI_L ACTION? |
1888 IF V=l THEN 1998 23108 Pl=6 FIAST BE KEQUIRED TO SE-
1898 IF Ws2 THEN 2088 2328 IF N(S)=3 THEN 270 LECT A VESSFL FROM ONE OF 33&"5‘;,;”’32;35"},2@';325 NOV: 6. 689633
1180 IF Ws3 THEN 2170 G 2330 N(S)=N(S5)~] THREE TYPLS, EACH WITH ITS
1118 1F Va4 THEN 2268 2340 Zx259 OWN CHARACTERISTICS [
1120 GOTO 2368 2356 GOTO 1430
1138 1F C>1 GOTO 989 2360 N(S5)=N(S)+N vp SHIELE
1140 REM R 2379 GOTO 1138 1T e ;S,PEED CARCO %H'ELQS .

SCOUT 0x 16 1w
115¢ S1=S@xRND(@) 2380 E(1)=150 2 CRUISER 4X Lo L]
1168 Re(3%RNDC@) +S5)#188 2390 E(2)=580 AT E G N
1178 Print 2408 E(3>=3 3 BATTLESHIP 10X 30 5J n
1188 PRINT 'RANGE TO TARGET:! ‘IR 2410 E(a)=4 . .
1198 PRINT 'RELATIVE VELOCITY: *JSI 2428 GOTO 850 SPEED iS GIVEN RELATIVE TO s
1288 PRINT 'ACTION ' 2430 E(1)=288 LOTHER SHIPS. CARGO SPACE i$
,2:5 ,NPU; “ ¢ 2440 E(2)=358 IN UNITS OF $2ACE ABOARD | RANGE TO TARGET: 203.2841l
1218 IF Ma{ GOTO 1940 2458 E(3)wa SHIP WHICH CAN BF FILLED | RELATIVE VELOCITY: 2.0
1220 IF M=2 GOTO 2030 2460 B3 WITH WEAPONS, PROTECTION gg;m"”
1238 IF M3 GOTO 2120 1S THE RELATIVE STRENGTH .
1248 IF M=4 GOTO 2218 g‘:: E:;"l:: CF THE SHIP'S ARMO® AND :cu;::g;_,:nomm COURSE OF ACTION.
1250 IF M=5 GOTO 2318 4 Jma SORCE WCE
1268 1F Me6 GOTO 1668] 2500 E(3)=5 i‘:s,ELDaEEt:ijmshELL&)‘ETE“A %lg SCANNERS REPORT ENEMY DAMAGE NOV: 96.17733
1276 IF M=7 GOTO 1398 . ::;g g;:)-: L =2 g YOUR VESSEL DAMAGE: 83.53137
1280 IF M=8 GOTO 2768 0 858
1298 IF R<S@@ GOTO 1580 2538 PRINT 'NOT ENOUGH SPACE. RESELECT.' RANGE TO TARGET: 188.684l
1318 ReRo(S]1eB.3)11.25 . 2522 GOTO 988 RELATIVE VELOCITY: 2.8
1348 I1F R>1588 GOTO 2590 255¢ PRINT 'CHANGE BEYOND MAXIMUM POSSIBLE. ° ACTION? |
1358 1F R>@ THEN 1370 2568 PRINT 'INCREASING TO MAXIMUM. SCANNERS REPORT ENEMY DAMAGE NOVi 99.95826
1368 Re-R 2578 S1=S@ ENEMY VESSEL DESTROYED.
1398 PRINT * 2580 G0TO 1318 YOUR VESSEL DAMAGE: 94.71887
1388 GOTO 1182 2590 PRINT ‘OUT OF RANGE. DISENGAGED.'
1398 PRINT 'CHANGE TO BE EFFECTED: '; 2688 GOTO 2768 VANT ANOTHER BATTLE? N
1395 INPUT S2 * 2618 PRINT 'PHASER BANKS DRAINED. * READY
1488 IF (S1+52)>$8 THEN 2558 2620 PRINT 'SELECT ANOTHER COURSE OF ACTION. '
1al@ St=S1+52 2638 GOTO 1200 ”
14280 GOTO 118@ * 2649 PRINT '0UT. ° W
1478 FPaPiIs(Z/R)r1.S 2658 GOTO 2620

® (2% F@+3» FOn) 2660 PRINT '0UT. '

I Dori2eFOedxrO=ND(B23/5 2670 GOTO 2628 Wi_L BE ALLOWED TG ARM IT GTHER BE
1a78 PRINT 'SCANNERS REPORT EMEMY DAMAGE NOW: 'iD 268@ PRINT 'OUT. ° Wit WEAPONZY FROM THE ONGE EACH ON BOA
1488 1F D>99 THEN 2720 2698 GOTO 2628 FOLLOWING LIST
1498 GOTO 1528 2708 PRINT ‘'OUT. ' RANGE 1S GIVEN N THOU-
1508 DO=8 2710 GOTO 2620 ryes NAME SANDS OF KILOVETERS
15280 KwEC1)+EC(2)®RND(@) 2720 PRINT ‘ENEMY VESSEL DESTROYED.' 1 PHASER BAN
1548 E=EC3)+ECA)*RND(B)+5/PE*RND(B) 273€ GOTO 1328 2 ANTI-MATTER MISSILE CAUTIONI FIRING ¢
1568 FI=Es(K/R)t1.85 2748 PRINT °YOUR VESSEL DESTROYED. ' 3 HYPERSPACE LANCE WEAPONS AT CLC
1570 DC2)=(3= FI+3aFI*RND(B)) /5.5 2760 PRINT 4 ®OTON TORF CAN BE FATAL 10 ¥(
1580 DC(1)=D(1)+D(2) 2772 PRINT 'WANT ANOTHER BATTLE? °: 5 HYPERON NELTAL:ZAT ION b
1598 IF (Z%DB)/(R»508)>2.2 GOTO 1628 2788 INPUT M3 WEAPON TYPES . “HERE ARE THHEE
1608 D(3)ebB=2/(R12sP2) 2798 IF Ma2]7 GOTO 685 COLLOWING N ,
1613 DCI)=DC1)+DC3) 2808 END FULLOWING ONE WA B4,
1628 PRINT 'YOUR VESSEL, DAMAGE: 'fDCI) STORAGE SPACE AND HAVLD ING D'FFERENT
1618 IF DC1>>99 G110 2748 3 THE FOLLOWING REIATIVE ISTICS
1640 IF D>99 GITO 2768 DEEPSPACE PROGRAM STRENGTHS
1658 GOTO 1313 SYSTEM NUMBER
1660 PRINT *SELF DESTRUCT FAILSAFE ACTIVATEDI!' ORIGINAL AUTHOR: UNKNOWN TYPE CARGO SPACE STRENGTH 1
1678 PRINT 'INPUT § TO RELEASE FAILSAFE.'; 1 12 a2
1675 INPUT U THE PROGRAM PRESENTED HERE IS AN ADAPTATION 2 4 Jc 3 AR
1688 IF U=l THEN 1730 FOR SCELBAL OF A PROGRAM THAT WAS MODIFIED 3 4 0%
1698 GOTO 1290 BY BILL COTTER OF PITTSFIELD, MASS., AND I8 : N 10 THE FIAST TIME YOU PiAY A
1708 PRINT 'SELF-DESTRUCT ACCOMPLISHED. °* REPRINTED HERE "WITH THE PERMISSION OF THE 5 20 & GAME ANSWER T—E .
1718 IF R> 6@ THEN 1748 COPYRIGHT OWNER - FOR WHICH WE EXTEND OUR < SUESION. WITH A “v* 10
:;g: :’;;';727‘6::"’" VESSEL ALSO DESTROYED. THANKS ON BEHALEF OF OUR READERS. WEAPON TYFES 1 AND 5 MAY YES. YOU WILL LEARN
1740 DCa>=3288/R COPYRIGHT 1976 BE FIRED 100 IIMES. AlL VITAL INFORMATION!”
1758 DaD+D(4)
1768 1F D>99 THEN 1720 CREATIVE COMPUTING
1778 PRINT 'ENEMY VESSEL SURVIVES VITH'3DJ ' DAMAGE.' - /

4

LETTERS

Mr. S. J. Toy is one of those
hearty souls who utilizes a
Baudot encoded teleprinter with
his computer system. These
machines are generally consid-
erably less expensive than the
sought after ASCII encoded de-
vices. We don’t know how many
other SCELBAL users may be
using the same type of machine
but we thought Mr. Toy’s com-
ments - relating to the use of
such a machine - and other mat-
ters, would be of interest to all,
(Users with Baudot machines
might be interested in commun-
icating directly with Mr. Toy on
mutual grounds.)

When Mr. Toy originally re-
ceived his copy of SCELBAL he
was apparently a little crest-
fallen when he discovered the
limitations on the use of CPU
registers specified in the book.
The recomendation that only
CPU registers A and B be used
for I/O routines met with the
following comments.
“Since the accumulator is loaded
with the data to be inputted or
outputted this really leaves only
register B. I normally need H
and L for the Baudot-ASCII con-
version. After casting about for
several days trying to decide
what hardware modifications
had to be made, I finally decided
to look into the possibility of
program modification. To my
surprise I found that the ECHO
routine leaves H and L free, so
there is no problem on output.
The input situation, however,
was not as easy. After consid-
erable study I concluded tenta-
tively that D and E were free.
So I went ahead and developed
some I/O routines on this basis.
The results so far indicate appa-
rent success. (But wait - read on
some more! Ed.) I have now
tried everything in the chapter
on operating SCELBAL up to
and including page 14-3 with the
correct results, with one excep-
tion. In addition, simple prob-
lems in addition, subtraction,
multiplication, and division yield
the correct answers.

The one exception mentioned
above was that the TAB func-
tion did not work properly. In-
stead of all spaces between
“HELLOS”, the first character
was a space as expected but the

rest were something else. A
study of this problem revealed
that at least for TAB the con-
tents of the accumulator must
also be saved on output. To
make a long story short, the sim-
plest solution was to change the
contents of 015 010 from 003
to 001. This reloads the accumu-
lator with a ‘“‘space’’ each time a
space is supposed to be sent.”
Don’t change your system yet -
read on! Ed.)

A few days later another let-
ter was received from Mr. Toy
and the discussion started above
was continued.
““On the matter of the TAB
function, my original guick fix
turned out to be for the comma
controlled routine only, PCOM1,
It is also necessary to similarly
modify TABLOP for the num-
erically controlled spacing, and
the BACKSP for backspacing.
The latter would require a
patch so I gave up on this tack,
modified my output routine to
save and restore A...........Inci-
dently, PCOM1 and TABLOP
are identical except for addres-
ses so one of them can be elimi-
nated if memory space is need-
ed.”

Mr. Toy then went on to a
newtopic.
“I have tried all the example
programs in the SCELBAL man-
ual except for the last one. They
all appear to operate properly
except the two programs invol-
ving the CHR function on pages
14-24 and 14-29. In the table
program the last character of the
octal number comes out as 3 let-
ter. In the line printing program
only the first character in the
line comes out correctly. Unless
my I/O routines are associated
with these problems, which
seems unlikely, it would appear
that registers B, D and E are free
on input, and B, H, and L are
free on output. In addition, on
output, A must be saved and re-
stored for the TAB function.”

Mr. Toy must really be work-
ing his system out because in a
few more days he added the fol-
lowing comments
“After several hours of hard
labor I finally found out why
the CHR program on page 14-29
is so complicated that it requires
about half a second for each
character to be processed before

the program looks for the next
character! This delay seems to
be unusual, so readers may well
be advised of this fact in con-
nection with this particular pro-
gram, especially if they are using
an B8008.” (True - the delay is
rather disconcerting on an 8008
based system. 8080 users, how-
ever, will find the delay barely
perceptible. Ed.)

“I still have not determined
why the octal numbers in the
CHR table program on page
14-24 do not come out cor-
rectly. However, I am now
reasonably satisfied that my I/O
routines work properly on all
functions, so I will not spend
much more time on this. For

message. This involved changing
only two bytes in SCELBAL;
001 352 is reloaded with 003
and 001 353 is reloaded with
265. The result is a single line
space for “READY” instead of
three. This uses up much less
paper, especially when opera-
ting in the “calculator’’ mode.”

Not one to give up. Mr. Toy

“I finally discovered why the
program on the Table of ASCII
characters would not work. An
“8 X in statement 130 was
missing, A printout of the cor-
rection and a RUN enclosed.
You may also be interested in
the substitution of characters to
use the model 15 TTY.”

THE EDITOR REPLIES

Communications of the type
Mr. Toy has submitted are exac-
tly why we established the sup-
port publication SCELBAL
UPDATE. It is through such
communications that SCELBAL
itself can be improved, or tailor-
ed to suit the requirements of
individual users or groups of
users. Mr. Toy’s letters are the
first of what we hope become a
flood ‘of similar such communi-
ques aimed at disseminating in-
formation about SCELBAL
amongst its users.

Now, to answer or explain a
few of the questions raised by
Mr. Toy.

Mr. Toy has apparently made
some very useful discoveries in
regards to the availability of cer-
tain CPU registers during 1/0O
operations. His observations
should be of considerable inter-
est to users with special I/O de-
vices who find they need more
CPU registers available. The
stipulation made in the publi-
cation regarding limiting the
use of CPU registers to just A
and B was given on the basis
of design guidelines that the pro-
gram authors established. In
other words, the program
authors, during the development
stages, reserved those two regis-
ters for use during I/O opera-
tions, so that they would have
the freedom of using all other
CPU registers if desired. They
did not, during the development
process, keep track of whether
every other possible register was
thus actually in use during 1/O
operations. Mr. Toy’s observa-
tions are as interesting to the
authors as they may be to others
and may be taken for what they
are worth. (Which is a lot if your
running a Baudot machine!)

Mr. Toy’s observation regard-
ing the saving of the accumula-
tor’s original status during an
output operation that utilizes a
TAB is correct. The users output
routine should exit with the
original character in the accumu-
lator still present.

Our thanks to Mr. Toy, (and
our apologies to all readers) for
discovering the clerical error on
line number 130 of the example
SCELBAL program on page 24
of chapter 14. The line should
read:

130 Q3=INT(N - 64*Q1 - 8*Q2)

The suggestion regarding the
use of a hyphen to shorten the
READY seems like a good one
for those that want to imple-
ment it.

Users who anticipate using a
Baudot coded device might be
interested in contacting Mr. Toy
directly to discuss I/O routines
ete.. His address is:

Mr. S. Joseph Toy
Route 3, Box 73
Chico, CA 95926

¢

STRING CAPABILITIES FOR SCELBAL

One of the most asked for ndditions to SCELBAL
is ility to ipul. h strings in the
manner permitted on most large computer systems
when running extended BASIC. Soon, a supplement
will be available for SCELBAL that will give it string
manipulating features capable of performing the
following types of operations:

1. Up to 64 stringy and/or string arrays,
each string up to 80 characiers in length,

2. Bubstring capabilities as follows:
A. The right part of a string.
B. The middle part of a string.
C. The left pari using B.
D. A string array can be sabstringed
in the same exprassion.

3. Two additional numeric functions:
A, LEN - will return the length
of & string.

B. ASC - will return the decimal
value of the first character in a
string.

4. One additional string function - CHR$ -
(will replace CHR).

5. String arrays do not require dimensions,

6. C ion of string ex
7. Input and output of sirings.

8. Cc

p of string ex:

The following discussion will amplify the capabi-
lities of the string handling routines that will be made
available in the new supplement.

STRING VARIABLES

A string variable may be any letter followed by a
dollar sign ($). For example, A$ would be a legal
string variable. A string variable may he subscripted
in the normal fashion: B$(3) would yield the third
element of the string array B$. The difference be.
tween numerie arrays and string arrays is that unsub-
scripted string variables are treated the pame as one
with a subscriot of one, 80 A$ and A$(1) reference
the same string. String axyays do not require (or
aliow) a dimension to be specified in a DIMension
stetement. This feature allows the full string. capa-
bility to be implemented in a system without the
array option installed.

SUBSTRINGS

It is often desirable to access certain characters
within a string by specifying the starting and stopping
positions in that siring. This capability is' know s
accessing a substring. To wecess J characters suarting
the N'th eharacter in a string A$ the format would
be: AS(:NJ), where N and J could be any expres.
sions. For example, if A$ conlained “ABCDE” then
A$(:1:4) would yield “ABCD.” A string array couid
aleo be substringed: B$(4:2;3) which weuld yield the
second through fourth characters of the fourth ele-
ment of B$. If the semicolon and cxpression follow-
ing it were omitted, the result would be all the char
acters to the right of (including) the N'th character.
Thus, A$(:3) will result in *“CDE.” Subscripted
swings are handled in a similar fashion: B$(5:3)
would result in all characters to the right of the
second character of the fifth element of B$ being
specified.

CHR$ FUNCTION

The CHRS function is used to generaie a single
character siring by converting the decimal value of its
argument to ASCII. For example, CHR$ (193) would
result in the string “A.” This string function replaces
the old CHR function,

STRING LITERALS

The string literal is just like the old text in a
PRINT statement: either single or double quotes en-
ciosing the characters that form the string. For
example, “THIS STRING or ‘ABCD $ 44.'

SCELBAL

UPDATE

STRING CONCATENATIONS

Strings can be concatenated uging the + operator,
C ion is the joining together of two or more
strings. For example, “AB”+‘CD’ forms “ABCD,”
and A$+BS (8:4) + ‘Q’ forms a string of A$ joined
with the fourth character through the end of the
eighth element of B$ and the literal ‘Q.’

ADDITIONAL FUNCTIONS

Two new numeric functions add additional power
to the language:

LEN{A$): This function rehirns the length of a
string or string array es a decimal number. For exam-
ple, if A$ has the value 88 in the above examples,
LEN(AS) returns 5.

ASC(A$): This function retumns the decimal value
of the first character of the eixing or string urray
specified in ASCIL. For example, ASC(A$) would
return 193, because AS(:1;1) has a value of “A.”

These functions can be used anywhere in a numeric
expression where a regular function js legal.

STRING EXPRESSION

A string expression is any string varisble, string
array, string literal, use of CHR$ function, or any
concatenation of these, For example: A$+THIS or
CHRS(N)+T'+WH(D+E:6,J). String expressions are
legal in PRINT satatements (where they replace the
old text strings) and on the right of an = in a LET.

STRING LET

The siring LET statement is similar to the regular
'LET, and may take two forms:

string = string expression
or
string array = string expression

For example. A$=‘EXAMPLE’ or C$(N)=A$+D$(:3)
or 30 LET A$=A$+CS§.

STRING OUTPUT

A string may be output in a PRINT statement
subject to the normal rules for spacing and tabbing
along with numeric data. For example: PRINT
‘AB+'CD' would print ABCD, or PRINT A$;2+2,BS
would print A$, then immediately print 4, then tab
10 the next column and print BS.

STRING INPUT

Strings or string amays can be input using the
INPUT statement in the normal fashion. For
example: INPUTAS,BS(3),N wouid print a ? and ask
for thc string value of A8, then when the CR was
cntered. would print another ? and ask for B$(3),
and then would finslly input N in the normal fashion.
Note that this feature repiaces the old automatic
conversion of ASCII input using the $.

STRING COMPARISON

Stnng expressions can be comparsd using the
normal comparison operators such as =, <, > > ==
or «>. If the condition is satisfied, a value of 1.0 is
returned es a numeric result, and O is retumed other-
wise. The comparison' goes character by character
until uriequal charncters are found, or until all of the
characters in the shortest string have been tested. In
the former cage, the test comparison ik made hetween
the two unequal characters, and in the latter, the
length is used s the deciding factor.

TRANSLATION FROM OTHER BASIC’S

Programs written for other BASIC's can prohably
be translated to SCELBAL with strings es follows:

RIGHT$(AS$,N) becomes AS(:N)
LEFT$(A$,N) becomes A$(:1;N)
MID$(A$NJ) bacomes AS(:Ny)

The reason thia format was chosen over the norinal
“function” format is that the SCELBAL notation is
more concise and requires less memory to implement.

ADDITIONAL FUNCTIONS

Three new functions add additional power to the
languege:

LEN{A$): This function returns the length of a
siring or string mrmy as a decimal number. For exam-
ple, if A$ has the value as in the sbove example,
LEN{AS$) returns b.

ASC(AS$): This function retums the decimal value
of the first character of the string or string array
specified in ABCIl. For example, ASC(A$) would
return 193, because A$(:1;1) has a value of “A."

VAL(A$): This fu converts the ch in
the string from an ASCII representation of a decimal
number w its numeric value. For exumple, VAL(‘2")
returns 2.

These functions should be used oniy at the
inning of an ex| i The of these
functions should be either a plain string, ruch as A$,
oraw array subscripted by a regular variable, i.e.,
B3(J). S50 LEN(AS) and ASC(C$(N6)) would be legal,
but LEN(C8(6)) and ASC(A$(:2)) would not be legal.
(The reason for this restriction is that on an BOOS sys-
tem using a8 function like LEN(A$(6)) pushes the PC
stack down more than 8 lavels. An BOBC system
would not have this problem.)

MEMORY USAGE

The string package is designed to supplement
SCELBA), configured. to run in systems with 12 K or
more of memory. The string package uses one page
for working pointers and registers, one page for a
string varjables symbol table, and as many pages as
the user assigns for storage of the actual sirings. The
siring operating routines require about 1.5 K of
memory.

The i tary string handli addition to
SCELBAL 1is in the checkout and documentation
stages. The suppiement is scheduled to be placed on
the market in a few montlis at a moderate price, It
is anticipated that paper tapes of the object code of
the string supplement will also be made available for
purchase.

PREMIUMS FOR YOUR PROGRAM

If you have developed your own original program
to perform tasks that may itw of interest to other
SCELBAL users, chances are you are in a position to
make some money. Original programis that we accept
for publication in SCELBAL UPDATE eam the
author an honorarium check and a handsome cer-
tificate, We are particularly interested in programs
that may be of value to scientists, engineers, and
businessimen. Programs that salve commonly enroun-
tered formulas in various disciplines for example.
Please send your submissions to:

SCELBAL UPDATE EDITOR
SCELBI C. C., INC.
1322 Rear - Boston Post Road
Milford, C'I' D6460

ISSUE 03 -

11/76
Copyright 1976
SCELBI C.C., INC.

STRINGS Coming.1
Payroll Program
Roadrace Game.2
Bug Exterminated3
More FOR your NEXT. .3

|

PROGRAM CALCULATES WEEKLY WAGES
ALONG WITH FWT AND FICA DEDUCTIONS

SCELBAL users that operate a small buginess might
find the following program quite a time saver. Type
in the number of regular and overtilne hours worked,
number of personal allowances claimed, and the
hourly pay rate. The program responds with gross
pay, deductions, and net pay. The calculations are

based on current government standards.

180 PRINT '1976 WEEKLY PAYROLL PROGRAM'
i8S PRINT

118 PRINT

115 PRINT

128 PRINT 'REGULAR HOURS VORKED: '}
125 INPUT RH

138 PRINT °OQVERTIME HOURS WORKED: '}
135 INPUT OH

148 PRINT "VWITH HOLDING ALLOWANCES:';
145 INPUT wH

158 PRINT 'SINGLE (@) OR MARRIED (1)';
155 INPUT SM

168 1IF SM = & GOTO 179

165 IF SM <> | GOTO 1%8

178 PRINT 'HOURLY WAGE:';

175 INPUT RV

180 PRINT

280 PRINT °'REGULAR PAY = '}RH=HW

218 PRINT 'OVERTIME PAY =';OH*].SsHW
215 GP = RHSHV+OR#*1.S5sHW

220 PRINT 'OROSS PAY =';GP

238 IF SM <> B GOTO 245

235 GOSUB 308

240 GOTO 258

245 GOSUB 4d8

258 PRINT 'FVT DEDUCTION =';TX

260 55 = @.05B8%5*GP

278 PRINT °FICA WITH HOLDING =';5$S
268 NP « GP-TX-SS

PRINT 'NET PAY =';NP

GOTO 118

TT = GP = (WH=xl14.4)

IF TT <= 8.8 GOTO 1S

IF TT => 25 GOTO 2328

™ = @

RETURN

IF TT => 67 GOTO 33@

TX = (@.16%(TT-25))

RETURN

IF TT => 115 GOTO 348

TX = 6.72 + (B.20%(TT=-67))
RETURN

IF TT => 183 GOTO 35¢

TX = 16+32 + (@.23=(TT-115))
RETURN

IF TT => 248 GOTO 2368

TX = 3196 + (@.21=(TT-183))
RETURN

IF TT => 279 GOTO 378

TX ® 43.93 + (P.26*(TT-248))
RETURN

IF TT => 346 GOTO 388

TX = 54.07 + (B.30*(TT-279))
RETURN

TX = 74.17 +
RETURN

TT = GP - (WVH=*14.4)

IF TT «= 9.9 GOTO 41S

IF TT => 48 GOTO 429

TX = @

RETURN

IF TT => 96 GOTO 43¢

TX = (P 17%(TT-48))

RETURN

IF TT =»> 173 GOTO 449

TX = 816 + (0.28%(TT=96))
RETURN

IF TT => 264 GOTO 458

TX = 23.56 + (B.17%(TT=173))
RETURN

IF TT => 346 GOTO 468

TX = 39.063 + (0.25%(TT-264))
RETURN

IF TT => 433 GOTO 478

TX ®» 59.53 + (B.28+(TT~346))
RETURN

1F 1T => 529 GOTO 48B@

TX » 83.89 ¢ (B.32x(TT-433))
RETURN

TX = 18533 ¢ (B.36%(TT-500))
RETURN

(B.36%(TT-346))

108 DIM C(2)
280 PRINT *WHICH CAR (1-a)';
238 INPUT CC1)

248 CIsINT(C(1))

258 1T C(1)>4 GOTO 28¢

268 IF CC1)<l GOTO 284

278 60TO 188

280 PRINT YINVALID CAR TYPE. NEV CAR';

299 QOTO 238

388 PRINT

358 PRINT 'VHICH COURSE (1-%5)';

368 INPUT C(2) R
378 CL2)=INT(C(2))

I88 IF Cc2)<1 GOTO ats

398 IF C<2)>S @OTO 418

498 BOTO SN

418 PRINT 'INVALID COURSE NUMBER. NEV CHOICE':
420 4G0TO 360

618 Q=8

620 PRINT 'PRESENT VELOCITY =*;VUs' NO. OF GALLONS ='3Al
TINE PASSED ='3T;' SECONDS.'

638 PRINT "NO. OF MILES =';M1f"
6a# IF Mi>=S GOTO 1468
658 PRINT °VHAT IS YOUR NEV RATE OF GAS';
668 INPUT G

678 IF G<-18 60TO TOP

638 IF 0>18 GOTO 780

699 GOTO T28

798 PRINT °*NOT VALID. NEV RATE';

718 GOTO 64

720 IF G<9 THEN T80

738 L=+l

748 IF 2>a THEN 768

788 GOTO 798

768 PRINT °"YOUR ENGINE BLEV. YOU GOT HIT BY A PISTON.'
1778 GOTO 1278

80 2=0

T98 U=INT(BeG~-Me+V)

8680 T=T+10

818 PRINT

820 PRINT "ROAD CONDITIONS:';

838 IF V>8 GOTO 858

840 V=8

850 MiaMI+V/468

862 IF Ge® GOTO 8958

878 AleAl-(G¥S)/3008

880 IF Al<@® B0TO 1388

899 IF Ri=1 GOTO 1958

968 IF QI1=1 QOTO 988

918 QmINTC((C(2)+1)»RND(B))

928 R=INT((3.75-C(2))#RND(#))

938 IF R>8 GOTO 1298

940 IF @>8 GOTO 1342

9530 PRINT ' CLEAR AND STRAIGHT.®

963 PRINT

978 GOTO 628

9130 H=INT(135+354RND(E))

9@ HmH+5#C(1)

1988 IF V>H 60TO 1308

1818 PHINT * THROUGH CURVE-*

1028 PRINT

1838 Ql=9

1949 60TO &20

1§58 EmE-(V-D)#3

1860 [F E<@® GQTO 1108

178 PRINT ° VENICLE®SES* FEE T AHEAD, '
1889 PRINT

1898 40TO 628

1188 [F U-D<3 THEN 1180

1118 PRINT ' VERICLE PASSED BY';

1120 D=vy-D

1138 PRINT D7 * MPH."

1158 PRINT

11 68 Ri=g

1178 GOTO 628

1188 PRINT °* VEHICLE BEING PASSED.®
1198 DaINT(25+48%RND(D))

1200 PRINT *GRAYHOUND BUS IN OTHER LANE DOING'JD' NPH.'
1248 D=v+D

1258 PRINT 'CRASH VELOCITY =';D3 ‘' MPH.'
1278 PRINT ‘WHERE 1S THE FUNERAL BEING HELD?'®
1280 GOTO 1568

1298 PRINT * VEHICLE AREAD 588 FEET.®
1382 PRINT

1318 D=INT(25+35«RND(S))

1328 Ri=1

1338 B0TD 628

1348 PRINT * VARNING! CURVE AMEAD!®
1358 @i=1

1368 PRINT

1370 GOTO 620

1388 PRINT ‘EXCELLENT! BUT VAIT YOU RAN OUT OF GAS."*

1418 GOTO 1558

1420 PRINT 'BUT SOME HOV YOU MADE IT!'

1438 PRINT

1448 Ri=@

1458 GOTO 628

1468 PRINT

1478 PRINT

1488 PRIMT *YOU MADE IT (LUCK) ttitf°*

1498 GOTO 1568

1588 PRINT ' ARE TERRIBLE.'

1518 ymH-5aCC1)

1520 PRINT H} * WAS THE SPEED THROUGH THE CURVE.'®
1530 PRINT V' V AS YOUR SPEEDe BY THE WAY sves’
1548 G0TO 1276

1558 PRINT °'YOU LEAD FOOTED IDIOTI1'

15628 PRINT 'YOU VANT TO TRY IT AGAIN? *J

tS78 INPUT Is

1572 PRINT

1373 PRINT

2

ISTS 1F I=217 GOTO 220
1589 =MD

1680 IF C{l)<>1 GOTO 1625
1685 B=as

1619 ¥=.5

1615 s=1§

1628 RETURN

1625 IF CC1)<>2 GOTO 1638
1838 B=60

1635 Mm. S

1648 S=13
D 1645 REFURN

1658 1F CC1)<>3 GOTO (675
1633 B= 70

1668 M=.al

1668 S=(5

1678 RETURN

1675 B=8s

1685 Ne.39

1699 SeI8

1695 RETURN

1708 END

(THIS PROGRAM WAS ADAPTED FOR\

12 K SCELBAL BY MAKING SEVERAL
MINOR CHANGES AND ELIMINATING A
FEW REMARKS STATEMENTS. THE
ESSENCE OF THOSE STATEMENTS 1S
PRESENTED HERE.

“ROADRACE” PUTS THE PLAYER IN
THE DRIVER'S SEAT OF A CAR OF
CHOICE SELLCTED FROM THE FOLLOW-
(NG POSSIBILITIES.

1- VW
2 - 283NOVA
3-2.28
4 . FERRARI

THE SELECTED CAR IS TO BE DRIVEN
ALONG A HIGHWAY CHQSEN BY THE
PLAYER WHICH IS RANKED IN DIFFI-
CULTY FROM 1 (EASY) TO 5 {QUITE
DIFFICULTY! THE DEGREE OF DIFFI
CULTY RELATES TO THE NUMBER OF
CURVES AND OTHER HAZARDS THAT
MAY BE ENCOUNTERED ON THE DRIVE

THE PLAYER MUST SUCCESSFULLY
NEGOTIATE FIVE MILES OF TREACH-
OROUS ROAD WHILE 8EING LIMITED
TO 1/2 A GALLON OF GAS. THE PLAYER
HAS CONTROL OF AN “ACCELORATOR™
TO SPEED UP OR SLOW DOWN THE PRO-
GRESS OF THE CAR. NATURALLY, A
FERRARI CAN GO FASTER {AND STICKS
TO THE ROAD BETTER} THAN A VW,
JUST AS NATURALLY, IT GUZZLES
MORE GAS!

ROAD CONDITIONS ARE CONSTANTLY
CHANGING AS THE RACE TAKES PLACE.
RACE? YELS, THE OBJECT IS NOT ONLY
TO COMPLETE THE COURSE (WHICH
CAN BE CHALLENGING [N ITSELF}, BUT
TO COMPLETE |T IN THE LEAST
AMOUNT OF TIME WITH THE MAXIMUM
AMOUNT OF FUEL! THUS, THERE 1S
ALWAYS ROOM FOR THE SUCCESSFUL
DRIVER TO IMPROVE

THE HAZARDS ALONG THE DRIVE
APPEAR RANDOMLY SO NO TWO GAMES
WiLL BE ALIKE FRANKLY, THIS GAME
APPEARS TO REMAIN FUN SOMEWHAT
LONGER THAN A LOT OF THE COM
PUTER GAMES ONE SEEMS TO ENCOUN-
TER THESE DAYS

HAVE FUN!

ROADRACE PROGRAM

ORIGINAL AUTHOR: UNKNOWN

THE PROGRAM PRESENTED HERE IS
AN ADAPTATION FOR SCELBAL OF A
PROGRAM THAT WAS MODIFIED BY
BILL COTTER OF PITTSFIELD, MASS.,
AND 1S REPRINTED HERE WITH THE
PERMISSION OF THE COPYRIGHT
OWNER - FOR WHICH WE EXTEND
OUR THANKS ON BEHALF OF QUR
READERS,

COPYRIGHT 1976

CREATIVE COMPUTING

VHICH CAR (1-a)T4

VHICH COURSE (l1-3)71

PRESENT VELOCITY = 8§ NO. OF GALLONS = 8.38
NO. OF MILES = § TIME PASSED = § SECONDS.
WAT IS YOUR NEW RATE OF BAS?6

ROAD CONDITIONS: CLEAR AND STRAIGHT.
PRESENT VELOCITY = 48.8 NO. OF GALLONS = #.4783999
NO. OF MILES = §.1840478 TINE PASSED = I8.8 SECONDS.
WAT IS YOUR NEW RATE OF GAS?T6

ROAD CONDITIONS: WARNING! CURVE AHEAD!

PRESENT VELOCITY = 77.8 NO. OF GALLONS = §.4367999
NOe OF MILES = §.,2717391 TIME PASSED = 28.8 SECONDS.
WHAT IS YOUR NEV RATE OF GAS?-2

ROAD CONDITIONS: THROUGR CURVE.

PRESENT VELOCITY = 39.8 NO. OF GALLONS = 8.4567999
NO+ OF MILES = §.3369565 TINE PASSED = 38.8 SECONDS-
WHAT IS YOUR NEV RATE OF GAS?6

ROAD CONDITIONS: VEHICLE AREAD 388 FEET.

PRESENT VELOCITY = 668 NO. OF GALLONS = #.43351999
NO. OF MILES = B.4864347 TIME PASSED = 4ag.8 SECONDS.
WHAT IS YOUR NEV RATE OF GAS?a

ROAD CONDITIONS: VEHICLE PASSED BY 31.8 MPH.

PRESENT VELOCITY = 72.8 NO. OF_GALLONS = #.4287999
NO. OF MILES = #.6369564 TINE PASSED = S@.9 SECONDS.
WHAT 1S YOUR NEV RATE OF GAS?T3

ROAD CONDITIONS: VEHICLE AHEAD S8 FEET.

PRESENT UVELOCITY = 67.8 NO. OF GALLONS = 8.4899999
NO. OF MILES = §.7826886 TIME PASSED = 68.8 SECONDS.
WHAT IS YOUR NEV RATE OF 0GASTA

ROAD CONDITIONS: VEHICLE PASSED BY 28.8 MPH.

PRESENT VELOCITY = 72.8 NO. OF GALLONS = #.3955999

NO. OF MILES = #.9391383 TIME PASSED = 78.8 SECONDS.
WHAT 1S YOUR NEV RATE OF GAS?3

PRESENT VELOCITY = 79.8 NO. OF GALLONS = 8.1831998
NO. OF MILES = 3.395648 TIME PASSED = 280.8 SECONDS.
WVHAT IS YOUR NEV RATE OF OAS?A

ROAD CONDITIONS: VEHICLE AHEAD 588 FEET.

PRESENT VELOCITY = 88.8 NO. OF GALLONS = 8.1637998
NO. OF MILES = 3.5893561 TIME PASSED = 298.8 SECONDS.
WHAT IS YOUR NEV RATE OF GAS?4

ROAD CONDITIONS: VEHICLE PASSED BY 26.8 NPH.

PRESENT VELOCITY = 89.8 KNO. OF ‘GALLONS = #.1543998
NO. OF MILES = 3.743475 TIME PASSED = 3§8.8 SECONDS.
WHAT IS YOUR NEV RATE OF GAS?TA

ROAD CONDITIONS: VERICLE AREAD 308 FEET.

PRESENT VELOCITY = 88.8 NO. OF GALLONS = 9.1399998
NO. OF MILES = 3.917387 TINE PASSED = 318.8 SECONDS.
WHAT IS YOUR NEV RATE OF BAS?a

ROAD CONDITIONS: VEMICLE PASSED BY 33.8 MPH.

PRESENT VILOCITY = 88.8 NO. OF GALLONS = @.1255998
NO. OF MILES = 4.8913 TIME PASSED = 320.8 SECONDS.
WHAT 1S YOUR NEV RATE OF GAS?T1@

ROAD CONDITIONS: CLEAR AND STRAIGHT.

PRESENT VELOCITY = 1R8.8 NO. QF GALLONS = 9.89599BE-81

NO+ . OF MILES = 4.3695560 TIME PASSED = 338.8 SECONDS.
VHAT IS YOUR NEV RATE OF GAS71:\@

ROAD CONDITIONS: VEHICLE AREAD 580 FEET.

PRESENT VELOCITY = [53.8 NO. OF GALLONS = @8.35359984E-81

NO. OF MILES = 4.713839 TIME PASSED = 340.8 SECONDS.
VHAT IS YOUR NEV RATE OF GAS?S

ROAD CONDITIONS: VERICLE PASSED BY 52.8 MPH.

PRESENT VELOCITY = 96.8 NO. OF GALLONS = 9.353599B4aE-81

NO. OF MILES = 4.92173a4 TIME PASSED = 358.8 SECONDS.
WHAT IS YOUR NEV RATE OF GAS?0

ROAD CONDITIONS: CLEAR AND STRAIGHT.

PRESEINT VELOCITY = 55.8 NO. OF GALLONS = J.3359984E-01

NO. OF MILES = 5.9047828 TIME PASSED @ 368.8 SECONDS.

YOU MADE IT CLUCK) 1111
YOU VANT TO TRY IT AGAIN? N

BUG FOUND & EXTERMINATED

A minor bug has been discovered and corrected by
the program authors. Since no complaints have been
received by SCELBAL users it is assumed that the
bug was in the latent stage! The bug would appesr
under the conditions illustrated here when an error
condition occured in a FOR/NEXT loop. Once an
error message was generated, the interpreter would
continue to display an eyror messuge even after the
error producing fault had been removed from the
high level program. This only occured when an array
variable was used in the loop. An example of the
problem is illustrated from an actual print-out pre.

10 DIM AC(S)
15 FOR X=1 TO 5
20 LET A(X)=S5QR(X)

25 PRINT X5 A(X)
30 NERT X
35 END
RUN
1.0 1.0
270 15414213
3.0 1732051
400 270
80 27236068
READY

15 FOR Xe=1 TU §

RUN

SQ AT LINE 20
READY

15 FOR X=0 T0 S5
RUN

58 AT LINE 20

The bug is caused by a failure to reset the ARRAY/
VARIABLES flag (PG 27 LOC 201) when an error
condition causes an abnormal exit. The problem is
easily corrected by adding a small patch to insure
that the ARRAY/VARIABLES flag is always reset
after an error message is displayed. A suitsble patch
may be installed beginning at PG 11 LOC 307 after
changing the instruction at PG 12 LOC 364 from:

PATCH3 simply consist of the following sequence:

PATCH3, LLI1201 Pntr to A/V storege
LHI 027 ** Pir to A/V page
LMI 000 Clear A/V flag
IMP EXEC Now go back to Exec

The object code for the patch for an 8008 would
appenr ax:

11 307 066 201 PATCH3, LLI 201
113811 066 027 - LHI 027

11 313 076 000 LMI000

11 316 104 286 010 JMP EXEC
12 364 104 307011 JMP PATCH3

While the object code for an 8080 would
BPPELY a5

11 307 066 201 PATCH3, LLI 201

11 311 046 027 b LHI 027
11313 066 000 LM1 000

11 316 303 266 010 JMP EXEC
12354 303 307 011 JMP PATCH3

Tha actual print-out below illustrates how the bug is
eliminated by the above patch. The first time the
program is executad after the patch ia installed the
error condition iz displayed because the A/V flag has
still not been reset. However, the execution of the

sented below. Note that even after the range of X

READY

LIST
10 DIH A(5)

I5 FOR X=0 TO 5
20 LET A(X)=SUR(X)
PRINT X5 A(X)

30 NEXT X

END

READY

RUN
$Q AT LINE 20

READY

14213
32081

0
1
i
1
2
2

nNOgp O

JeLes

Users may desire to paste this patch notice into one
of the NOTES pages at the back of their copies of
SCELBAL, or to copy this information into their
books for safekeeping.

is changed from an invalid wgument for a square JMP EXEC patch’ csuses the ARRAY/VARIABLES fiag to be &iﬁ&
root ovperation (-1) w & valid argument (0) that the properly reset and thereafter the program ezecutes
“SQ" error message continues to he generated. JMP PATCH3 properly.
Getting More FOR your NEXT! ADDR 8008 8080 MNEMONICS ADDR 8008 8080 MNEMONICS
o)) 030 013 066 las 056 l4a NEXT, LLI 144 030 174 036 026 026 026 LDl 026
Sometimes it is d;:nurablc to be able bol]umphwnnew level 030 015 076 000 066 000 LRI 000 ° 030 176 046 000 036 000 LEl 000
of a nested FOR/NEXT laop before a loop has been com- 030 017 066 202 056 208 LLl 202 030 800 106 046 012 315 046 012 CAL MOVEU
yle:%d- lntuhle orﬁ:nal version of SLLLBI‘Y; Lit:;::f:z‘ 030 021 317 106 LBE 030 203 066 385 056 325 LL1 325
0 dO 80 W res In an error n‘lﬂmé, p d D 030 022 0]0
SCELBAL is pressnted here that will allow the interpreter to 004 ius 030 205 o0se 00l 046 001 LI:AI ool
‘ b \ 030 023 061 0ss boL 030 207 106 012 013 315 O1R 013 GAL INSTR
jump to a niew level in a series of nested FOR/NEXT loops 030 024 371 160 LMB 030 212 304 173 LAE
without causing an error meseage. This is accomplished by 030 025 ’ 03
: ° o o 0 213 240 247 NDA
mserting & few instructions in the origioal NEXT statement 030 025 066 201 056 201 BEXTl, LLI 201
i " : ; 030 214 150 126 030 312 126 030 JTZ XT
routine, The instructions that are inserted °°“*l—)e‘he e 030 027 106 240 002 315 240 002 GAL GETCHR 030 217 004 002 306 002 ADI ggg“
?onte"" Pélme FOE/NE’SJ_"“W“EXST‘-““ to ”F“‘)‘ad 039 032 150 042 030 312 042 030 JTZ NEX¥2 030 221 066 276 056 276 LLl 276
or a varisble neme indicated in a NEXT stalement (inste: 030 035 066 144 036 las LL1 144 030 223 056 026 046 026 Lkl 026
of simply examining the top-most variable name as was the . . 2
case i e ovigins] version), Now. . et eondition (FI) 030 037 106 314 002 315 314 002 Cal comcrl 030 225 370 167 LRA
¢ ! : . €0 N 030 042 7 030 226 066 330 056 330 LLl 330
. e T v pomatle je 030 042 066 201 056 201 HEXT2, LL1 201 030 230 056 001 046 001 LK1 001
not Present anywhere in the FOR/NEXT stack, oY 030 044 106 003 003 315 003 003 CAL LOOP ° 030 232 106 012 013 315 012 013 GAL INSTR
it was displayed if the specified variable was not in the top
position of the FOR/NEXT stack.) This slight improvement 030 047 110 025 030 302 025 030 Jfz MEXTI 030 235 304 173 LAE
= 3 030 052 066 144 056 las LLI 1aa4 030 236 240 2417 N
n F?R’NEXT Staement executon ie f’“"c‘g”d‘?”‘f“;‘" 030 054 307 176 Laf 030 237 110 302 030 302 302 030 “'?z“ NEXTS
tion for lx:zfproved per! ?l;mnpce.h l(sldr::; iﬂ rl'tet::on‘t ; 030 055 074 001 376 001 cPl 001 030 242 066 004 056 004 LLI 004
lt{wgﬂ;f;-l Y:’:’ o *:;W“ e eatire, dont was 030 057 110 066 030 302 066 030 JFZ NEXT3 030 244 056 001 046 001 LKl 001
ime adding it to your version. 030 062 066 146 056 146 LLI la6 030 246 106 244 022 315 244 022 CAL FLOAD
030 064 076 000 066 000 Lnl ooo 030 251 066 304 056 304 LLl 304
-) 030 066 ’ 030 253 106 255 022 315 255 022 CAL FSTORE
_The upgrading may be accomplished using paiching tech- 030 066 066 205 056 205 BEXT3, LL1 205 030 256 361 180 CLB
niques by simply inserting the instructions bracketed by the
j 5 : . 030 070 056 027 046 027 LHl 027 030 257 056 026 046 026 LHl 026
asterisks n the accompanying listing between the instructions 030 072 307 176 Lan 030 261 317 °
JTZ NEXT4 and FORNXT, LAI 306 (lines 22 and 23) of the 030 073 002 009 e s 2 3l e ég: 217 th; .
source listing on page 36 in chapter six. Or, the entire block
of code from address PG 30 LOC 013 to PG 31 LOC 004 ggg g.’,; N2 a6 %01 136 2‘;}‘; 136 ggg g:; -;!;l; 224 003 :’fg 224 003 Lc:f o
may be aitered as' presented here, The latter method con- 030 071 360
: e B 157 LLA 030 270 066 310 056 310 L1 310
SCRLBAL whieh appeured m 5sue 03 of ths bulle. The 930 100 036 026 026 026 LDl 026 030 272 056 001 046 001 Lsl 00l
;q;.u‘eezingm of the instructions to conform to those g‘uide- ggg :gi g?: :)g: gg: é;: L:i (1)32 030 274 106 255 022 315 255 022 (AL FSTORE
. : ; " L 030 277 104 353 030 303 353 030 JMP MEXTe
lines was accomplished by removing several “LHI XXX" in-
stmgtlons after careful analysis of the oriajn.al coding and in- 838 :?? :‘;06 ?;g ggg g}: ?;’g ggg S':i' :1;5:(: ggg gg: oal 4 .
voking several other memuory saving mat;‘\:;t;un replacemerits 030 114 /esssinsssnsss 030 303 0:6 217 g:: 2717 :E;T:'.I’DLE
at points denated hy arrows in the modified listing. 030 114 066 205
056 205 LL1 205 030 305 056 026 046 026
030 lle 056 027 O46 027 030 307 374 163 ° I_L::_ oze
030 120 317 o6 :
A short example provided below illustraws the effect of 030 121 Ol :)05 ggg g:g ;2: gf; ooa g;: gf; oo3 Efll- ngL
the improved capability. Note that when statement line 20 030 122 374 160
; - . " 030 315 056 001 046 001 1 o0
is added o the progran, Lheb""g?“"‘i ":’“’;‘h"ff(f“l‘zgk 030 123 110 066 030 302 066 030 030 317 106 255 022 315 255 022 Lc:r. rgfom:
S:J]\.IE, an error message to be 1splayed. e ll’l.. . 030 126 YT Y TTY YTy 030 322 066 277 056 277 1
n]gst:he:dhow the program executes when the modification 030 126 006 306 076 306 FORNXT, LAl 306 030 324 056 026 046 0;6 LL:I 3272
is installed. 030 130 026 316 016 316 LCI 316 030 326 307 176 LAR
030 132 104 226 002 303 226 002 JAP ERROR 030 327 004 00S 306 005 abl 005
030 135 / 030 331 06l 055 ocl
05 PRINT 05 PRINT 030 135 066 360 056 360 NEXT4, LLI 360 030 332 370 167 LRA
10 FOR X=1 Tu 3 10 FOR X=1 10 3 030 137 056 026 046 026 LAl 026 030 333 066 000 056 000 L.t 000
i5 FOR Y=1 TO 3 15 FOR Y=l TO 3 030 141 337 126 Lod 030 335 317 106 LB#&
25 PRINT Xi 20 IF Y>2 GOTO 40 030 142 060 054 InL 030 336 066 277 056 277 LLI 277
30 PRINT TAB(E);Y 25 PRINT X 030 143 347 136 L 030 340 371 160 LmMb
35 NEXT Y 30 PRINT TAB(E)3Y 030 laa 060 054 INL 030 341 106 224 003 315 22a 003 CAL EVAL
40 NEXT X 35 NEXT Y 030 145 373 162 Cnp 030 344 066 304 056 304 LLI 304
45 END 40 NEXT X 030 146 060 054 1L 030 346 056 001 046 001 LHl 001
45 END 030 147 374 163 e 030 350 106 255 022 315 255 022 CAL FSTORE
READY 030 1%0 066 205 056 205 LLl 205 030 353 ¥
READY 030 152 050 044 INA 030 353 066 144 056 las NEXT6, LLI l44
RUN 030 153 307 176 Lan 030 355 056 026 046 026 LHl 026
RUN 030 154 002 007 RLC 030 357 371 160 LRE
1.0 1.0 030 155 002 007 RLC 030 360 066 034 056 03a Lil 034
1.0 2.0 1.6 1.0 030 156 004 134 306 134 QDI 134 030 362 050 044 INR
140 3.0 1.0 2.0 030 160 360 157 LLA 030 363 106 012 013 315 012 013 CAL INSTR
2.0 1.0 FN AT LINE 40 030 16l 337 126 LDM 030 366 304 173 CAE
2.0 2.0 030 le2 060 054 INL 030 367 240 247 NDA
2.0 3.0 RUN 030 163 3a7 136 CEn 030 370 066 202 056 202 LLi 202
3.0 1.0 030 164 066 360 056 360 LLI 360 030 372 036 026 046 026 il 026
3.0 2.0 1.0 1.0 030 166 051 045 DCR 030 374 370 167 LBA
3v0 3.0 1.0 2.0 030 167 373 162 Lap 030 375 130 126 030 312 126 030 JTZ FORNXT
2.0 170 030 170 060 054 i 031 000 004 003 306 003 aDl 003
READY 240 2.0 030 171 374 163 LnE 031 002 066 203 056 203 Ll 203
3.0 1.0 030 172 353 142 Lib
031 004 370 167 LMA
20 IF Y>2 GUTO 40 3.0 2.0 030 173 364 153 LLE

\{

SCELBAL 1I
UNDER DEVELOPMENT

As SCELBAL owners know,
SCELBAL was developed pri-
marily for 8008 system owners,
There were several reasons for
doing so. First, when SCELBI
COMPUTER CONSULTING,
INC., first went into business,
it produced a microcomputer
based on the 8008 CPU. A
number of those systems are
still out in the field and many
owners had indicated a desire
to have the capabilities of a
high level program available.
We no longer manufacture
microcomputer systems, but
we felt an obligation towards
those who had helped us pioneer
in the field of the personal
computer,

Second, in addition to those
8008 microcomputer systems
sold by SCELBI, there were
several thousand similar sys-
tems (8008 based) known to be
in existence produced by other

early microcomputer system
manufacturers along with
numerous personal systems

based on the MARK-8 article
that appeared in RADIO
ELECTRONICS magazine some
two years ago. Many of these
people had written to us indi-
cating that they felt the rapid
growth of the acceptance of the
8080 and other more advanced
CPUs, and the attention they
were getting, would leave the
early 8008 users high and dry
without ever having a high level
language developed for it.

Third, we felt that developing
such an interpreter for a micro
CPU as primitive as the 8008 is
now considered, instead of being
a waste of time (as apparently
everyone else thought it would),
would be a valuable experience.
After all, if it could be accom-
plished for such a primitive CPU,

UPDATE

upgrading the fundamental con-
cepts and routines from that
point to take advantage of the
increased power of instruction
sets available on more advanced
CPUs would be a pretty straight-
forward task.

Additionally, we of course
knew that an interpreter written
for an 8008 could be directly
assembled to operate on an 8080
even if it was not “efficient” in
making use of that CPU’s capa-
bilities. This meant though, that
many users who were planning
on eventually upgrading their
personal systems from an 8008
to an 8080, with the existence
of SCELBAL, could do so with-
out having to modify a single
one of their SCELBAL higher
level programs!

Finally, it was felt that pre-
senting SCELBAL in detail, with
complete source listings, flow
charts, etc., for the primitive
8008 CPU, in the manner in
which it was done (not using any
of page zero, not trying fancy
packing tricks, etc.) would result
in an information source which
users could have fun with! One
can pick almost any section one
might be interested in anhd find
ways to improve it by using
better coding techniques, etc.
8080 owners, as pointed out in
chapter fifteen, could go to
work with vigor on compacting
the program if they so desired.
(The key here is that those up-
grading from an 8008 to an
8080 do NOT have to modify
the interpreter to increase ‘its
efficiency if they are not interes-
ted in doing so!)

More than all those factors
combined, however, SCELBAL
was developed with the inten-
tion that it become an ever-evol-
ving program. As new machine
types became available, SCEL-
BAL could be adapted. As users

SCELBAL

ISSUE 04

1/77
Copyright 1977
SCELBI C.C., INC.

SCELBAL II

Twenty Variables
String Functions Now . .

Math Functions Soon. . .

became more sophisticated in
their demands for program per-
formance, SCELBAL could be
upgraded. Since the entire fun-
damental organization and logic
of the interpreter had been pre-
sented, users would not bhe
forced to wait for such advances
to come from SCELBI if they
had the desire and capabilities to
proceed on their own!

Naturally, many users of
SCELBAL do not wish to be-
come involved with the intimate
details of the interpreter’s opera-
tion. They just want to be able
to use the end result. Fine.
SCELBI intends to continue to
improve the program as well as
to provide the language for other
types of microcomputers when
it appears that there is a market
sufficient enough to justify the
expense. Il is hoped that by list-
ening to the thoughts of many
other users, and by providing an
opportunity for others to com-
municate their needs, the overall
quality and capability of SCEL-
BAL can be improved. Indeed,
there is no end in sight to the
potential. The limiting factor,
as in most endeavors, is time and
money.

Even as the first copy of
SCELBAL was published, work
was underway to produce a
revised version that would capi-
talize on the increased power of
the 8080 instruction set (over
that of the 8008). Work is pro-
ceeding smoothly. Feedback
from SCELBAL customers who
are 8080 system owners indicate
they are highly interested in
such a revised package.

Essentially, the revised version
titled SCELBAL II will simply
be a compressed version of the
original program. It will remain
organized in essentially the same
manner, using the same subrout-
ine names etc., so that the origi-

nal publication will initially re-
main as the prime reference.
Preliminary indications are that
the 8080 customized version,
with DIMension capability, will
reside in about 5K of memory
(without using page zero). A few
minor operating improvements
(such as increasing the number
of variable names allowed) are
planned. The possibilitiessior the
inclusion of other features re-
mains open at this point pending
feedback from users. (By 'this it
is meant operating improve-
ments. The addition of extended
functionsssuch as sines, cosines,
exponents, string handling capa-
bilities and so forth constitute
not merely improvements, but
actually the creation of addition-
al features. More has and will be
said about such matters in other
articles.)

How long before SCELBAL II
will be released? Probably
another five or six months. We
want to provide time for plenty
of feedback from users to try
and catch any gremlins vr add
needed improvements, Register-
ed SCELBAL owners will be
notified when SCELBAL II is
available. Chances are, you will
hear more about its development
in these pages as it progresses.

In the meantime, if your in-
terested (even anxious?) to work
on such a project yourself, the
following information may help
you get off to a smooth start.
Reversing the storage format for
three critical double-byte values
used in SCELBAL will enable
one to capitalize on using a num-
ber of the 8080 double-byte
manipulating instructions. These
storage locations are all on page
26 (octal). They are the loca-
tions used to hold the User
Program Line Pointer (360 &
361), the Auxiliary Program
Buffer Pointer (362 & 363) and
the End Of Buffer Pointer (364

1

and 365). Values placed in these
locations in the original SCEL-
BAL version are in the order of
PAGE ADDRESS followed by
LOW ADDRESS. Reversing the
order to LOW ADDRESS fol-
lowed by PAGE ADDRESS
makes it possible to use 8080 in-
structions such as “SHLD’’ when
manipulating data for those loca-
tions etc.

These locations are referred to
at numerous points throughout
SCELBAL. The following lists
all the points known to us at the
time of this writing and indicates
the new contents of those loca-
tions if one wants to set things
up so that the LOW ADDRESS
value is followed by the PAGE
ADDRESS in those storage loca-
tions. It is recommended that
these changes ONLY BE
INCORPORATED IF THE
USER INTENDS TO TINKER
WITH CUSTOMIZING THE
PROGRAM FOR AN 8080 SYS-
TEM, There is no other reason
for making the changes if such
is not the case! Conseguently,
the revisions are shown only
for the 8080 version with ap-
propriate 8080 codes.

CHANGES AFFECTING
USER PGM LINE POINTER
(PAGE 26 LOCS 360/361)

ADDR CONTS
11 132 000
11 135 033
11173 000
11 176 033
11 257 146
11 260 151
11 275 146
11 276 152
11 365 146
11 366 151
12 011 136
12 013 126
12 031 136
12 033 126
12 077 136
12101 126
12 115 163
12 117 162
12 130 136
12132 126
13107 000
13 112 033
13122 136
13124 126
13 140 163
13 142 162
13 164 146
13 165 151

CHANGES AFFECTING
USER PGM LINE POINTER
(PAGE 26 LOCS 360/361)

ADDR CONTS
15 255 000
15 260 033
15 330 146
15 331 151
15 362 136
15 364 126
16 000 163
16 002 162
16 252 136
16 254 126
16 341 163
16 343 162
17 211 136
17 213 126
30 134 136
30136 126
30 164 163
30 166 162
31153 162
31 155 163

CHANGES AFFECTING
AUX PGM BUFFER POINTER
(PAGE 26 LOCS 362/363)

ADDR CONTS
30 140 163
30 142 162
31 147 126
31 151 136
CHANGES AFFECTING

END OF BUFFER POINTER
(PAGE 26 LOCS 364/365)

ADDR CONTS
11 017 000
11 022 033
12 170 365
12174 055
12 201 054
12 206 365
12212 055
12 265 136
12 267 126
12273 162
12 275 163
16 004 365
16 012 055

LETTERS

I don’t know how many
people might be interested in the
following modification for
SCELBAL but it is very useful
to me and saves much time com-
pared with doing the same thing
without a computer.

From time to time I find it
desirable to rearrange a table of
data so that the lines are arrayed
in numerical order from top to
bottom. One way to do this is to
use the SCELBAL program
entry routines, entering the
other columns as statement text.
This works fine except when
two or more lines have the same
number. One way to overcome
this is to rearrange the routines
in NOTEND so that statements
with the same number are
entered without deleting the
earlier statement. The changes
still allow a statement to be
deleted, by entering only the
statement number. The re-
arranged list is obtained by
entering a LIST command. To

fool the syntax error-checking
routines, an ‘‘equal” sign or a
left hand parenthesis is entered
following the statement number.
The modified program can still
be used for its original purpose,
but it will be necessary to enter
a statement number by itself to
remove a line. The purist can
maintain two versions of this
portion of SCELBAL.

One advantage of this method
is the large buffer space avail-
able. Another advantage is that
the data is easily stored by using
the SAVE command.

Mr. S.J. Toy
Chico, CA

(A listing of the modification
for the 8008 version of SCEL-
BAL is provided below. A
sample of the modified program
in operation was submitted but
is not shown for space consid-
erations. It appeared to operate
as intended. Looks like a clever
way in which to utilize the pro-
gram’'s built-in editor as a sorting
routine! - Ed.)

11 354 006 203 LLI 203 See if line no. only
11 356 056 026 ** LHIO026

11 360 307 LAM

11 361 240 NDA

11 362 110005012 JFZ NOSAME Line no. only if zero
11 365 066 360 LLI 360 Remove line

11 367 056 026 ** LHI 026

11 371 327 LCM

11 372 060 INL

11 373 367 LLM

11 374 352 LHC

11 375 317 LBM

11 376 010 INB

11 377 106 144 012 CAL REMOVE

12 002 104 266 010 JMP EXEC

HEY! WE FORGOT TO TELL YOU......

The ROADRACE program presented in ISSUE 03 of SCELBAL
UPDATE was provided courtesy of CREATIVE COMPUTING! The
magazine CREATIVE COMPUTING is published by an enthusiastic
and creative organization headed by David H. Ahl, In addition to
games such as that presented in ISSUE 03, the magazine regularly
presents a variety of articles, book and product reviews, educational
material, and a good selection of general information which we feel
most of our customers would find highly interesting. Recent issues
of the magazine contained 88 pages or more in an 8 1/2 by 11 for-
mat. Considering the fact that there is relatively little advertising
space allotted in those 88 plus pages, the amount of text and edi-
torial material per issue far exceeds most other computer-related
publications that we have seen of late. Individuals interested in sub-
scribing to CREATIVE COMPUTING may do so at the following
rates. 1 year - $8.00, 3 years - $21.00. If you have any doubts, you
may obtain a sample copy of a recent issue for $1.50. (The maga-
zine is published bimonthly.) Subscription orders may be forwarded

directly to the publisher:

CREATIVE COMPUTING
P.O. Box 789-M
Morristown, NJ 07960

OOPS!

I believe I have found 2 errors
in SCELBAL which have not
been mentioned in your UP-
DATES.

1) 11 030 is 001 should be 000
2) 26 364 is 000 should be 033

In the first case, use of SCR
command causes the first regular
variable location to become un-
available. You are thereafter
limited to 19 regular variables.

In the second case, INSERT
picks up the 000 and uses it as a
high address with results which
vary but are generally disastrous.
Use of SCR replaces this 000
with 033 and that makes every-
thing fine.

String variables sound great.
I get the feeling that my poor
little 8008’s 16K limit is going
to be reached soon.

A suggestion: We need a cas-
sette data read data write capa-
bility. I've tried to use the arrays
values block as a means to do
this, but I was not happy with
my results. SCELBAL should be
able to analyse a checking ac-
count on tape as well as format
the data into records organized
into blocks for recording.

Thanks for SCELBAL. It is a
lot of fun.

James C. Tucker
Exeter, NH

(Thank you James! Looks like
you have found the bug that was
bugging several people in regards
to the disappearing variable
storage location. Seems if you
just loaded the program into
memory and started operating
you could have 20 variables.
Later, after using a SCR com-
mand you only had 19! Nice
piece of detective work.

We hadn’t received any com-
plaints regarding the second item
you noticed. Probably because
most people took the advice
given in chapter fourteen to use
the SCR command when starting
to use SCELBAL. But it could
certainly cause a problem asyou
pointed out and is likely to
occur if one, for instance,
uses the LOAD command
and proceeds to revise a user
program without having used
an SCR command.

We strongly recommend
that readers take James sug-
gestions and change the two
bytes indicated to avoid simi-
lar problems in their systems.
As for you James, your detec-
tive work has earned you an
hororarium check that should
buy quite a few stamps in case
you need to report any similar
discoveries - which we hope
you will not! - Ed)

STRINGS SUPPLEMENT

NOW AVAILABLE

The Strings Supplement
to SCELBAL is now avail-
able. The 68 page booklet
(8 1/2 X 11) may be obtain-
ed for $10.00 from the pub-
lisher at the address shown
below. The booklet pro-
vides the source code and
assembled object listings
for both 8008 and 8080
systems for routines that
will enable SCELBAL
users to add String Func-
tion capabilities to their
systems. Users intending
to add the Strings capa-
bilities should have a mini-
mum of 12K memory (read
and write) available in their
system.

Details of the Strings
Supplement capabilities

were provided in Issue 03
of SCELBAL UPDATE,

The $10.00 price for the
STRINGS SUPPLEMENT
includes postpaid delivery
by U.S. Mail service.
Address orders to:

ORDER DEPARTMENT
SCELBI C.C,, INC.
POBOX 133 - PP STN
MILFORD, CT 06460

COMING SOON!

EXTENDED MATHEMATICAL
FUNCTIONS FOR SCELBAL

Now in the final documenta-
tion stages are five extended
mathematical functions soon to

be made avaijlable for SCELBAL
users, The new functions, which
will be made available as a sup-
plemental publication, will pro-
vide users with the following
additional capabilities when in-
stalled: SIN, COS, EXP(e),
LOG(e), and ATN. The SIN and
LOG functions are calculated
using Chebyshev optimized Tay-
lor series. The EXP and ATN
are calculated using continued
fractions, The COS function is
calculated using the SIN funec-
tion. The argument of any func-
tion is reduced to an interval
where the Taylor series or con-
tinued fractions is reasonably
accurate. The argument range
for the functions will be as
follows:

SIN -4194303<X<4194303
COS -4194303<X<4194303
EXP -89<X<89
LOG X>0
ATN -1E37<X<1E37

The soon to be available
booklet will contain source and
object listings as in other publi-
cations related to SCELBAL.
Prospective String Function
users should note that assembied
object listings for the mathe-
matical functions will reside in
some of the same memory loca-
tions (pages 50 through 54
octal) as various string routines.
This overlapping was based on
the premise that from memory
space considerations (particu-
larly for 8008 based systems)
users would not find it practical
to have both string functions
and mathematical functions in-
stalled at the same time. (String
function users theoretically are
less likely to be concerned with
extended mathematical fune
tions it seems.) Users who might
desire to have both types of
capabilities installed simultan-
sously would need to relocate
one set of routines and would
probably want to have 16K or
more of read and write memory
available in the system.

It is anticipated that the
extended mathematical func
tion routines will be available
in the form of a supplemen-
tary booklet near the latter
part of February, 1977. Price
of the supplement has been
pegged initially at $5.00 in-
cluding postpaid delivery by
U.S. Mail.

PREMIUMS FOR YOUR
PROGRAMS
APPLICATION NOTES
ARTICLES
COMMENTS

If you have developed your
own original programs to per-
form tasks that may be of in-
terest to other SCELBAL users,
chances are you are in a position
to pick up a bit of cash! User
submitted programs accepted
for publijcation by SCELBI earn
an honorarium check and a nice

certificate attesting to the
author’s performance! We are
particularly interested in pro-

grams that may be of value to
scientists, engineers, and small
businessmen. However, games,
and general purpose routines
are frequently accepted.

But, you don’t have to be
a SCELBAL programmer to
earn some coins, We are also
interested in seeing articles of
general interest to SCELBAL
users, as well as application
notes, and even comments or
suggestions!

You may submit your efforts
to the address given below. Mat-
erial accepted for publication
earns the author an honorarium
check based on originality, use-
fullness to readers, length, com-
pleteness and quality of presen-
tation etc.. Submissions accept-
ed for publication become the
property of SCELBI C.C., Inc..
The act of submitting for pub-
lication is certification that the
material is original and that the
author agrees to the terms of
this announcement. While every
attempt will be made to return
rejected material accompanied
by a SASE (self-addressed,
stamped envelope) SCELBI
C.C., Inc. assumes no responsi-
bility for submitted material.

Material to be considered
for publication should be for-
warded to:

SCELBAL UPDATE EDITOR
SCELBI C.C., INC.
PO BOX 133 - PP STN
MILFORD, CT. 06460

4

UPDATE

UNLIMITED! (WELL - ALMOST) VARIABLE NAMES!

One of the improvements
most often suggested for SCEL-
BAL is to increase the number
of variable names allowed. The
original version allowed a total
of 20 regular variable names.
It was possible to increase the
effective number of variables
in a system having DIM capa-
bility installed, but even when
performing ‘‘tricks” such as
that, the number of variable
names was limited to a maxi-
mum of 84, A good many
users felt it would be nice to
substantually increase the num-
ber of variable names allowed in
a program - without having to
snitch from elements in an array.

0.K.! Here it is - a modifica-
tion to SCELBAL that will
theoretically allow you to have
as many variables as can be
defined by valid two charac-
ter symbolic names, provided
you have enough memory in
your system to store all the
variables desired!

Essentially, the modification
changes SCELBAL so that it
stores variable names and their
values starting at the top (high-
est allowable address value) of
the User's Program Buffer and
works downward toward the
source code in the buffer which
is stored in ascending address
values as new lines are entered.
The variable names table pre-
viously assigned to Page 27 start-
ing at Location 210 is no longer
used if the user elects to install
this modification.

Listings of the modification
for both 8008 and 8080 mach-
ines are included. The routines
shown may be simply “over-
laid” over the original routines.

Several notes of caution are in
order. First, the modification as
shown in the accompanying list-
ings is for the essentially un-
modified version of SCELBAL
as presented in the basic publi-
cation. If you have made modi-
fications to your version - be
careful. Same goes if you have
implemented any of the supple-
ments.

In particular, if you have been
playirg around with compacting
SCELBAL for an 8080 machine
and have changed the order of
the bytes stored in the End of
User Program Buffer Pointer
(Page 26, Locations 364, 365)
as mentioned in SCELBAL UP-
DATE Issue 04, you will have to
change things around a little bit
in the accompanying listing in
the vicinity of the LOOKU3
subroutine at Page 05 Location
157 ete.

If you have installed Strings
or Mathematical Supplements,
or if your User Program Buffer
storage area does not end at
Page 54 Location 377 in your
system, you will need to alter
the values in the accompanying
listing marked with a “$$” nota-
tion in the comments section
(such as Page 05 Location 54
and Page 11 Location 44) so
that the end of the User Pro-
gram Buffer storage area is
set up properly by the new

unlimited variables modifi-
cation routines.
It is assumed that those

who have otherwise modified
SCELBAL or relocated the
program, will know how to
proceed to adapt the modi-
fication.

SCELBAL

ISSUE 056 - 6/77

© Copyright 1977

SCELBI C.C., INC.

Unlimited Variables. . . .

Math Functions Here . . .
Corrections
High Level Functions. . .

Value of VAL.

Finally, a note of caution.
The modification checks to
see that variables do not run
into a user’s source listing.
However, no check is made
to see that the wuser buffer
does not run into the variables
table. It is thus theoretically
possible to ‘“bomb” the vari-
ables table if one was, for in-
stance, inserting new lines
into a source listing and alter-
nating with the RUN mode to

test the operation of the pro-
gram being developed. If it looks
like storage will be tight in a pro-
gram; load the source entirely
before executing a RUN com-
mand! Since variable names are
added to the variables table as a
program is executed, the modi-
fied program will indicate if
buffer space is exhausted.

Have fun with the new capa-
bility!

LISTING FOR AN 8008

080 200 /

220 o980 ORG @85 @33
885 @33 /

805 B33 106 845 @85 LOOK» CAL NEWVT

205 036 240 NDA
885 937 158 155 @18 JTZ LOJOKU4
@05 @42 184 135 @12 JMP LOOKJA

285 845 /

205 @45 266 120 NEWVT, LLI
@25 247 056 826 LH1 226
@85 251 @46 2377 LEl 377
@05 853 836 @54 LDl @54
@9s 855 387 LAM

0025 856 @74 001 CP1 @2l
@05 262 112 @67 B@S JFZ LOJOKUA
2025 063 @66 122 LLI 122
205 865 @76 020 LMI @@e
305 8367 353 LOOKUA, LHL
285 @78 364 LLE

gas 271 Jo7 LAM

225 972 240 NDA

805 @73 150 150 8865 JTZ LIOKU3I

@BsS 876 /

235 @76 066 121 LOOKUl, LLI
235 122 @56 826 LH1 @26
225 192 186 356 822 CAL SWITCH

825 185 307 LAM
235 186 861 DCL
285 187 217 LBM

805 112 186 164 283 CAL DEC
@25 113 186 356 222 CAL SWITCH

205 116 277 CPM

825 117 11@ 132 805 JFZ LOJKU2
205 122 Q60 1INL

225 123 301 LAB

eas 124 277 CrM

@05 125 118 132 @85S JFZ LOQKU2
205 139 259 XRA

225 131 o@e7 RET

%85 132 /

205 132 Q16 204 LOOKU2, LBI @84
@25 134 353 LHD

825 135 364 LLE

205 136 106 113 @883 CAL SUBHL
@25 141 327 LAM

285 142 335 LDH

805 143 346 LEL

Q05 144 240 NDA

@05 145 118 @76 @35 JFZ LOOKUI
@25 158 /

225 158 @16 Q06
2@5 152 106 113 @83

LOOKU3, LBI
CAL SUBHL

/CALL NEW VAR STORAGE RTN

/CHECK STATUS ON RETURN

/1F FOUND MATCH IN TBL - PROCESS
/1F HAVE EOT - ADD ENTRY TO VT

/POINTER TO SYMBOL
/*=*BUFFER STORAGE AREA
/POINTER TO START OF

/8% NEW VARS STORAGE AREA
/FETCH (CC) OF STRING IN EF®
/SEE IF 1T IS EQUAL TO ONE
/JUMP AHEAD 1F NJT EQUAL T3 ONE
/ELSE SET PNTF AND CLEAR 2ND
/BYTE OF NAME TJ ZERO

/SET POINTER TO

/FIPST LOCATION

/IN VARIAEBLES TABLE

/SEE IF EQUAL TJ ZERO

/IF S0, NOTHING IN TABLE

/SET POINTER T0 1ST CHARACTER
/*%*JF NAME IN THE SYMBOL BFR
/SAVE IN D&E AND FETCH
/POINTER TO VT, THEN FETCH
/FIRST ENTRY TO THE ACC

/AND 2ND ENTRY TO REG B
/DECREMENT VT PNTR ONCE MORE
/SAVE VT POINTEP AND GET SB
/POINTER. SEE 1F HAVE SAME
/NAME. TO NEXT ENTRY 1F

/NOT. BUT, IF¥ FIRST LETTEFR
/MATCHES - THEN TRY

/SECOND+. 1F FIND NAME
/MATCHES CAN STORE VALUE

/S0 CLEAP ACC TO INDICATE
/MATCH, THEN RETUPN TO CALLEPR

/PUT 4 INTO REGISTER B
/FETCH VARIABLES TABLE
/POINTER INTO PEGS HéL
/SUBTRACT 4 FROM PNTR VALUE
/FETCH FM ADDR POINTED TO
/SAVE VAPIABLES TABLE
/POINTER IN D&E

/TEST LAST BYTE FROM VT
/1F NOT EOT., CONT SEARCH

/1F FOUND EOT
/SUBTRACT 6 FROM PNTR AND

1

ees
ees
285
ees
ees
ees
895
2es
205
e8s
205
285
205
"1
2e5
2e5
2085
205
285
‘285
80s
8es
8es
8es
885
e8s
"I
800
218
a18
818
ele
elo
o010
o010
o1e
el10
o1
e1e
219
ate
210
21
g1e
"R Y]
el
2la
210
ale
210
210
810
2le
210
210
a1
210
218
ele
210
ele
g1e
210
210
el1a
gla
210
2le
e10
28]
218
a1t
211
211
811
811

@03
285
e2s
2es
@05
8as
285
285
ees
285
205
aes
205
285
2e5
a8s
(L]
805
205
8as
225
ees
@25
905

155
156
157
161
163
164
165
170
171
172
173
176
201
203
206
214
213
214
215
216
217
220
221
222
223
225
226
.11}
100
100
183
184
187
111
114
117
117
122
124
127
127
132
135
135
136
141
142
143
144
147
150
151
152
155
155
160
162
165
165
178
172
174
175
177
200
201
204
207
212
215
21s
24l
24l
843
245
046

165
833
833
836
@37
842
8as
84S
247
85l

@53
855
856
860
263
265
267
2732
2871

272
273
276
276
100

335
346
256
866
387
273
160
260
327
27a
100
g6
276
186
126
266
387
262
317
353
364
378
a6l

371

886
887

186
240
150
a16
1806
104

126
ale6
186

186
184

250
186
370
6l
370
106
370
261
378
184

186
816
106

126
266
256
307
eda
37¢
362
186
186
186
184

866
856
3ee

315
247
3t2
383

856
246
836
826
176
376
382
856
266
142
153
176
247
312

256
846

826
364

176

222
356
-1°1"]
174
356
121

377

84s

117
004
113
127

356
023
113

255
255

164

164

165

356
ee3
113

317
227
13

804

255
337
244
231

3717
854

845

155
135

120
226
377
854

gel
267
122
Qoo

121
826

e85

ee2
822

e0e3
@22

e85

e1e

883
e1e

822
ee3
@22
1" ¥

203

23

1@

222

203

222

922
222
822
28s

205

210
210

295

eas

LDH /SAVE VARIABLES TABLE eas
LEL /POINTER IN D&E 285
LHI 026 /*xSET POINTER TO END wexs ees
LL1 364 /OF USER PROGRAM BUFFER sexx ees
LAM /FETCH EOB PAGE VALUE ees
CcPD /COMPARE WITH VT PNTR VALUE 225
JTS OKDOK2 /1F POS HERE, NO CONFLICT 285
INL /1F NOT, FETCH LOW ADDR eas
LAM /OF END OF USER PGM BF PNTR ges
CPE /AND TEST FOR ROOM ON PAGE 235
JFC B1GERR /1F NOT, HAVE AN ERRORI 225
OKDOK2, CAL SWITCH/1F 0K, RESTORE VT PNTR 2es
LMl 200 /70 H&L AND MAKE EOT MARKER 235
CAL INDEXB /ADD 6 BACK TO VT PNTR 205
CAL SWITCH /SAVE VT PNTR IN D&E ees
LL1 121 /SET PNTR TO 1ST CHAR IN SB 205
LaM /FETCH 1ST CHARACTER TO ACC 205
INL /ADVANGCE BUFFER POINTER 205
LEM JFETCH 2ND CHAR TO REG B 005
LHD /GET VARIABLES TABLE ges
LLE /POINTER IN H4L 205
LMA /STORE SYMBOL NAME 285
DCL /1IN THE VARIABLES TABLE 205
LMB /- BOTH CHARACTERS - 2es
LAl 377 /SET ACC TO ALL ONES TO FLAG 2es
RET /J0B DONE, RETURN TO CALLER 285
’ 205
ORG 010 108 ees
’ 205
STOSY1. CAL NEWUT /CALL NEV VAR STORAGE RTN 205
NDA /CHECK STATUS ON RETURN ees
JTZ STOSYa /1F FOUND MATCH - PROCESS 205
LBl 204 /1F HAVE EOT THEN SET UP 205
CAL SUBHL /10 ADD ENTRY 205
JMP STOSYS /T0 THE VARIABLES TABLE 205
’ 205
STOSY4, CAL SWITCH/RESTORE VT POINTER TO HaL 205
LBl 283 /LOAD 3 INTO REG B 205
CAL SUBHL /SUBTRAGCT 3 FROM VT PNTR 205
’ 285
STOSYS, CAL FSTORE/FPACC INTO VT LOCATIONS 2e5s
JMP CLESYM /CLEAP SYMBOL BF & EXIT 205
/ 205
LOOKJA, XRA /CLEAR THE ACCUMULATOR 285
CAL DEC /AND PLACE 285
LMA /ZERQ] 28s
DCL /INTO 225
LMA /THE 205
CAL DEC /VARIABLES 885
LMA /TABLE aes
DCL /FOR THE ees
LMA /INITIAL VALUE ° ees
JMP LOOKUS /GO FINISH UP 285
/
LOOKU4, CAL SWITCH/POINTER TO VT INTO H&L
LBl 283 /COUNT OF 3 INTO REG B 822
CAL SUBHL /SUBTRACT 3 FROM VT PNTP :::
/
LOOKUS, CAL SAVEHL/SAVE UT POINTER ele
LL1 227 /SET UP PNTR TO ARITHMETIC 618
LHI @81 /+%STACK POINTER 210
LAM /FETCH POINTER VALUE ola
ADI @24 /ADD 4 FOP NEW ENTRY e1e
LMA /PESTOFE STACK POINTER 210
LLA /AND SET UP NEW AS VALUE 810
CAL FSTORE /PUT THE FPACC ON THE AS 210
CAL RESTHL /RESTOPE VT POINTER 210
CAL FLOAD /PUT THE VAR INTO FPACC a0
JMP PARSE /T0 THE PARSE ROUTINE g:g
/
210
9)?(; 211 o4l 212
LLI 377 /POINTEE TO START OF e
LHI 254 /$S NEV VAP'S STORAGE AREA oLo
LaA /REPLACE WITH NOP INSTRUC g:g
/ 218
21
LISTING FOR AN 8080 818
210
ORG 085 833 218
’ 218
LOOK, CAL NEWUT /CALL NEV VAR STORAGE RTN 210
NDA /CHECK STATUS ON RETURN 212
JTZ LOOKUA /1F FOUND MATCH IN TBL - PROCESS 210
JMP LOOK3A /1F HAVE EOT - ADD ENTRY TO VT @18
’ 210
NEWUT, LLI 120 /POINTER TO SYMBOL 210
LK1 826 /*=BUFFER STORAGE AREA 210
LEI 377 /POINTER TO START OF 218
LDl 854 /%% NEW VARS STORAGE AREA e1d
LAM JFETCH (CC) OF STRING IN BFR 210
crl el JSEE IF IT 1S EQUAL TO ONE 210
JFZ LOOKUA /JUMP AHEAD 1F NOT EQUAL TO ONE 210
LLI 122 JELSE SET PNTR aND CLEAR 2NT 210
LM1 200 /BYTE OF NAME TO ZERD ¢10
LOOKUAs LHE /SET POINTER TO 210
LLE /FIPST LOCATION 210
LaM /IN VARIABLES TABLE 210
NDA /SEE IF EQUAL TO ZERD 211
JTZ LOOKU3 /1F SO, NOTHING IN TABLE a1l
’ 211
LOJKUL, LLI 121 /SET POINTER TO 1ST CHARACTER @11
LHI 226 /«x0F NAME IN THE SYMBOL BFR 211

1e2
185
186
107
110
113
116
117
122
123
124
125
130
131
132
132
134
135
136
141
142
143
144
145
158
150
152
155
156
157
161
163
164
165
178
171
172
173
176
201
203
206
211
213
214
215
216
217
220
22]
222
223
228

223
120
100
183
104
187
111
1ia
117
117
122
124
127
127
132
135
135
136
lat

142
143
144
147
158
151

152
155
155
160
162
165
165
170
172
174
175
177
200
201

204
207
212
215
215
aq1

241l

@4l
245
246

315
176
255
126
315
315
276
302
@54
170
276
g2
257
311

ee6
142
153
315
176
124
135
247
g2

086
315
124
135
246
856
176
272
372
254
176
273
322
315
B66
315
315
956
176
254
186
142
153
167
@55
168
a7¢6
kBN

315
247
312
826
315
383

315
2086
315

315
383

257
315
167
855
167
318
167
255
167
303

21s
ee6
315

315
856
Q46
176
326
167
157
315
315
315
323

856
@46
177

356

164
356

ea4

ée6
113

226
364

222
356
229
174
356
121

377

245

117
884
1123
127

356
003
113

2S5
255

165

356
g3
113

317
227
201

aaa

255
337
244
231

377
854

@22

803
@22

205

@as

203

Bes

283

8es

@02
822

803
@22

805

o190

283
ele

ge2
203
@22
2e2

803

203

el

p22

203

Be2

222
B22
az2
825

CAL SWITCH /SAVE IN D&E AND FETCH

LAM /PJINTEP TO VT, THEN FETCH
DCL /FIPST ENTPY T3 THE ACC
LBM /AND 2ND ENTRY TO REG B
CAL DEC /DECREMENT VT PNTF ONCE MO!
CAL SWITCH /SAVE VT POINTER AND GET S!
CPM /POINTEP. SEE IF HAVE SAME
JFZ LOJKUZ2 /NAME» TO NEXT ENTRY [F
INL /NOT« BUT, 1F FIRST LETTER
LAB /MATCHES = THEN TPRY

CPM /SECOND. IF FIND NAME

JFZ LOOXKU2 /MATCHES CAN STORE VALUE
XRA /S0 CLEAR ACC TO INDICATE
RET /MATCH, THEN PETURN T3 CAL!
/

LOOKU2, LBl Q@4 /PUT 4 INTO REGISTER E
LHD /FETCH VARIABLES TABLE
LLE /POINTER INTO REGS Hé&L

CAL SUBHL / SUBRTRACT 4 FROM PNTR VALU
LAM /FETCH FM ADDP POINTED TO
LDH /SAVE VARIABLES TABLE

LEL /POINTER IN D4&E

NDA /TEST LAST EYTE FROM VT
JFZ LOJKUI /1F NOT EQT», CONT 3SEARCH

/

LOOKU3, LB1 @26 /1F FOUND EOT

CAL SUBHL /SUBTRACT 6 FROM PNTR AND
LDH /SAVE VARIABLES TABLE

LEL /POINTER IN Dé&E

LH1 826 /x«SET POINTEP TO END =
LLI 364 /0F USER PROGRAM BUFFER ==
LAM /FETCH EOB PAGE VALUE

CPD /COMPARE WITH VT PNTR VALU
JTS OKDOK2 /1F POS HERE, NO CONFLICT
INL /1F NOT, FETCH LOW ADDR
LAM /0F END OF USER PGM BF PNT
CPE /AND TEST FOR ROOM ON PAGE
JFC BIGERR /1F NOT, HAVE AN ERROR!
OKDOK2, CAL SWITCH/IF 0K, RESTORE VT PNTR
LMI 009 /TO H&L AND MAKE EOT MARKE
CAL INDEXB /ADD 6 BACK TO VT PNTR

CAL SVITCH /SAVE VT PNTR IN D&E

LLI 12] /SET PNTR TO 1ST CHAR IN S
LAM /FETCH 1ST CHARACTER TO AC
INL /ADVANCE BUFFER POINTER
LB /FETCH 2ND CHAR TO REG B
LHD /GET VARIABLES TABLE

LLE /POINTER IN H&L

LMA /STORE SYMBOL NAME

DCL /1IN THE VARIABLES TABLE
LMB /= BOTH CHARACTERS -

LAl 377 /SET ACC TO ALL ONES TO FL
RET /JOP DONE, RETURN TO CALLE
ORG @10 100

/

STOSY1, CAL NEWVT /CALL NEW VAP STORAGE RTN
NDA /CHECK STATUS ON RETURN
JTZ STOSYa4 /1F FOUND MATCH - PROCESS
LBI 204 /1F HAVE EOT THEN SET UP
CAL SUBHL /T3 ADD ENTRY

JMP STOSYS /T0 THE VAFIABLES TABLE

/

STOSY4, CAL SWITCH/RESTORE VT POINTER TO H&L
LBl @883 /LOAD 3 INTD REG B

CAL SUBHL / SUBTRACT 3 FPOM VT PNTR

/

STOSYS, CAL FSTORE/FPACC INTO VT LOCATIONS

JMP CLESYM /CLEAP SYMBOL BF & EXIT

/

LOOK3A, XRA /CLEAP THE ACCUMULATOPR
CAL DEC /AND PLACE

LMA /ZERQ

DcL /INTO

LMA /THE

CAL DEC /VARIAELES

LMA /TAELE

DCL /FOR THE

LMA /INITIAL VALUE

JMP LOOKUS /GO FINISH UP

/

LOOKU4, CAL SWITCH/POINTEF TO VT INTO Hé&L
LBI @e3 /COUNT OF 3 INTO PEG B
CAL SUBHL /SUBTRACT 3 FROM VT PNTR
/

LOOKUS, CAL SAVEHL/SAVE VT POINTEPR

LLI 227 /SET UP PNTF TO APITHMETIC
LHI @01 /=xSTACK POINTEFR

LaM /FETCH POINTER VALUL

ADl 0084 /ADD 4 FOFR NEW ENTRY

LMa /RESTORE STACK POINTER
LLA /AND SET UP NEW AS VALUE
CAL FSTORE /PUT THE FPACC ON THE AS
CAL RESTHL /RESTOFE VT POINTER

CAL FLOAD /PUT THE VAR INTO FPACC
JMP PARSE /Ty THE PARSE ROUTINE

/

OPG @11 @4l

/

LLI 377 /POINTEB TO START OF

LHI @54 /%3 NEW VAR'S STORAGE ARE#
LAA /REPLACE WITH NOP INSTRUC

/

EXTENDED MATHEMATICAL
FUNCTIONS AVAILABLE

Five extended mathematical
functions are now available for
SCELBAL. The new functions,
made available as a supplemen-
tal publication, provide users
with the following capabilities
when installed: SIN, COS,
EXP(e), LOG(e), and ATN.

The SIN and LOG functions
are calculated using Chebyshev
optimized Taylor series. The
EXP and ATN are calculated
using continued fractions. The
COS function is calculated using
the SIN function. The argument
of any function is reduced to an
interval where the Taylor series
or continued fractions is reason-
ably accurate. The argument
range for the functions are as
follows:

SIN -4194303<X<4194303
COS -4194303<X<4194303
EXP -89<X<89
LOG X>0
ATN -1E37<X<1E37

The supplemental booklet
contains source and object
listings as in other publications
related to SCELBAL. The
assembled object listings pro-
vided reside in locations on
pages 50 through 54. They may
be reassembled to reside else-
where by the user if desired.
String Function users should
note that those same pages are
used by sections of the String
Functions.

The price of the Mathemati-
cal Supplement to SCELBAL is
$5.00 in the U.S. including U.S.
mail delivery. Foreign purchasers
should include $2.00 for airmail
delivery of the supplement.

A FEW CORRECTIONS

C. A. Bannister of Richmond,
VA, was the first to report some
object code errors in the listing
for modified SCELBAL shown
on page 3 of SCELBAL UP-
DATE Issue 02. The object code
errors only occurred in the 8008
listing.

It seems that the object codes
for XRA, LMA and LLA direc-
tives got fouled up in the listing.
The code for XRA should be
250, for LMA it is 370 and for
LLA it is 360.

Alert Bannister also noted a
typographical error on the first
line of Mr. Toy’s routine shown

on page 2 of Issue 04: The code.

for LLI should be 066 not 006
as printed.

Thanks for the use of your
sharp eyes - and our apologies
to our readers for letting those
errors get by. — Ed.

STRINGS PATCH

Mr. H. J. Lewis of Canada has
spotted a glitch in the Strings
Supplement. The following
patch, (named in his honor!)
should be installed at Page 50
Location 327:

JFZ HJLFIX

It will replace the JFZ SSTRCL
instruction. The patch, which
may be placed on Page 54 at
Location 301, is just two in-
structions:

HJLFIX, CAL SWITCH

JMP SSTRCL

This patch will correct an anom-
aly in the string comparison rou-
tines that can effect string com-
parison operations.

Many thanks to Mr. Lewis
for his persistence in analyzing
and soluving this problem and
bringing it to our attention! —Ed.

MATHEMATICAL
FUNCTIONS
THE OTHER WAY!

One of your fellow SCELBAL
users, Robert Leonard, 3003
Driscoll Drive, San Diego, CA.
92117, sent in a nice set of sub-
routines to calculate the sine,
cosine, tangent, arc tangent,
log and exponent. The LOG and
EXP functions he provided are
natural base. The trig functions
expect the angles to be given in
radians. The variable names

assigned and line numbers of

the various routines he provides

are summarized as follows:
SIN(X)=SN GOSUB 10
COS(X)=CS GOSUB 20
TAN(X)=TN GOSUB 30
ATN(X) = AT GOSUB 40
LOG(X)=LG GOSUB 80
EXP(X)=EX GOSUB 100

The subroutines making up
the high level package are shown
alongside this column.

Robert also mentioned that
he likes to use a patch to elimi-
nate the decimal point and zero
after whole numbers. Says he
likes the format for its neat-
ness in games, etc. If you want

to take a look at it, the patch
he uses is presented here:
025 147 JMP PATCH
PATCH, LLI 166
LAM
NDI 370
RTZ
LAI 256
CAL ECHO
JMP NODECP
Thanks for the very nice

high level math package Robert.
Hope you enjoy the check we
have sent you for your efforts!
- Ed.

LISTING OF
HIGH LEVEL
MATHEMATICAL
FUNCTIONS

10 Z=X
11 =X

12 N2
13 Z==2%(X12)/ (N*(N+1))
14 N=SNZ

15 NeN+2

16 IF ABS(Z)). p0B1 THEN 13
17 RETURN

26 2=1

21 (5=t

22 Net
23 Ze-ZR(XT2)/ (N (NHL))
24 (CS=CS+2

25 b+
26 IF ABS(2)). 8081 THEN 23
27 RETURN

39 GOSUB 10

31 GOSUB 20

32 TN=SN/CS

33 RETURN

48 IF X(. 7 THEN 60

41 IF X>1. 4 THEN 78

42 YaX/SQR(1+(X12))

43 2=Y

44 AT=Y

45 N=1

46 2525 (V2% (Nt2)/ ((N+1)*(N+2))
47 AT=AT+2

48 Neh+2

49 IF RBS(2)). 800081 THEN 46
50 RETURN

68 2=X

61 AT=X

62 N=3

63 Z=5GN(2)* (- (XY /N)

64 RT=RT+2

65 N=N+2

66 IF ABS(Z)). 0980861 THEN &
67 RETURN

70 Z=1. 576796

71 AT=Z

72 N1

73 2=SBN(2)*(-1/ (W (X))
74 AT=AT+Z

75 NEN+2

76 IF ABS(Z)). BBBAGL THEN 73
77 RETURN

88 Y¥=d

51 IF X{1 THEN 85

82 X=X/2

83 ¥=¥+1

84 GOTO 81

85 IF X>.5 THEN 89

86 X=2%X

87 ¥=vY-1

88 GOTO 85

B9 X=(X-. 707107)/(X+. 787107)
98 LG=2%((X)+((X$3)/3)+((X5)/5)+((X$?)/
7)), 346573

91 LG=LG+(Y*. 693147)

92 RETURN

186 IF ABS(Z)). B0GeL THEN 163
107 RETURN

What is the VALUE of VAL?

String functions are designed
to allow the user to manipulate
“‘strings” of alphanumeric
characters instead of mathe-
matical quantities.

However, there may be times
when it is desirable to manipu-
late information in essentially
two forms - as a string of charac-
ters, and as a numerical value.

Suppose, for instance, one
wanted to have the computer
make a list of groceries show-
ing the price for each item, and
then also mathematically sum

the prices to obtain a total?

TOMATOES 24
LETTUCE 79
CARROTS 38
ORANGES 98

One could use string capabili-
ties to list the items and their
prices. But the character strings
themselves are useless for cal-
culating mathematical informa-
tion unless one has the special
capability to convert between
one mode and the other. That
is what the VAL function in
the SCELBAL String Supple-
ment provides!

The VAL function converts
characters in a string from an
ASCII representation of a deci-
mal number to its numeric
value. In other words, the prices
in the example can be converted
from character string format to
actual numeric values that can
be mathematically manipulated
by SCELBAL!

Assume the lines in the above
example are each composed of
two strings ‘A$’ (item) and ‘B$’
(price). The ‘price’ strings in the
example would be elements in
string arrays BS$(1l) through
B$(4). One could obtain a

numerical value for the total of
all the prices in the list with a
routine such as:

FOR X=1 TO 4

LET T=VAL(B$X))+ T

NEXT X

PRINT T

This is because the VAL func-
tion would convert the numeri-
cal character strings to mathe-
matical VALUES!

If reader interest warrants, we
will discuss capabilities of the
String Supplement for SCEL-
BAL some more in the next
issue of this publication

\d

SCELBAL—II
READY FOR RELEASE

For sometime there has been
a question as to whether or not
SCELBAL-Il would ever be re-
leased in source format. In
appreciation of our early cus-
tomers, a compromise has been
reached. As detailed in a sepa-
rate flyer that will accompany
this edition of SCELBAL UP-
DATE, the revised edition de-
veloped specifically for 8080/
Z-80 systems will be made
available to registered SCELBAL
owners for a modest fee as an
uncommented assembled source
listing. Since SCELBAL-II essen-
tially follows the general struc-
ture of the original version,
SCELBAL owners with 8080 or
Z-80 systems should find the im-
proved version attractive and
understandable. Those not hav-
ing the original SCELBAL docu-
mentation would likely find it
somewhat discouraging to
attempt to decipher the uncom-
mented listing of SCELBAL-II,
In any event, SCELBAL-II will
only be made available to pur-
chasers of the original SCELBAL
documentation.

THIS TO BE LAST ISSUE
OF SCELBAL UPDATE

As we indicated when we be-
gan publication of this journal,

SCELBAL

UPDATE

the objectives of this supple-
mentary publication were
multiple-purpose. First, it would
provide a vehicle for informing
SCELBAL customers of program
corrections that were liable to
be required in a program the
size and scope of an interpreter.
Second, it would be an experi-
mental publication to determine
if users wanted to work through
the publication to amplify the
package in any way. We said we
would provide this publication,
free for alimited period of time,
and possibly on a subscription
basis thereafter, if users showed
this is what they wanted.

Well, the free period is over,
and support for such a publica-
tion on a subscription basis has
not been demonstrated. Only a
handful of readers have sub-
mitted material for publication
even though an honorarium is
presented for published mater-
ial. Only a fraction of a percent
or readers have expressed any
interest in having this publica-
tion continue on a subscription
basis.

The journal has lived up to
its task of informing SCELBAL
users of program bugs discovered
by users over a more than suffi-
cient time span. SCELBAL, with
minor alterations pointed out in
this journal, is a proven inter-
pretive language.

Best wishes to all its users!

BOWLING HANDICAPPER IN ONLY 512 BYTES!

Harold F. Bower has been
running SCELBAL in an eight K

8008 system for some time so he
had a limited 512 bytes of user

ISSUE 06

3/78
Copyright 1978

SCELBI C.C., INC.

SCELBAL-II Release . . .

Bowling Handicapper. . .
Baudot User’s Tips
TC & Trace Capability . .

F—N Variables Patch . . .

program storage room. That
didn’t stop him though. He sent
in the following program that

10 INPUT A
20 PRINT “INPUT SCORES";
30 INPUT B,C,D

40 PRINT “SCR TOT";

50 INPUT F

60 PRINT “HDCP TOT”;

70 INPUT G

80 PRINT “TOT”;

90 INPUT H

100 PRINT “HDCP"’;
110 INPUT I
115 PRINT

has been helping him calcu-
late information used by bowl-
ing leagues

Input total games to date
Input scratch scores

Input previous scratch total

Input previous total pins -
keeping this list eases problems
with changing players in singles
leagues

Input player’s previous
handicap

120 PRINT B+C+D;TAB(12);3*I;TAB(24);3*I+B+C+D
130 PRINT *----";TAB(12);*----";TAB(24);‘----"
140 PRINT F+B+C+D;TAB(12);G+3*I;TAB(24);H+B+C+D+3*I

The above three lines give
formatted output of scratch
total, handicap total, and
cumulative total suitable for
a 32 column TV display

150 PRINT (F+B+C+D)/ATAB(12);66667*(190 - (F+B+C+D)/A)

160 GOTO 20

170 END

Harold says that while the
above program requires quite a
few more manual entries than
would be required if master
files were maintained in string
variable format, and could be
saved then later loaded and
modified with the new results
being saved for the next time,
the program does save a con-

The above line prints the new

average and handicap

If next player has bowled the

same number of games change
this to go to line 10

siderable amount of work and
can be run on a minimal system.

Howard is stationed in Ger-
many at HQ 5th SIG CMD,
DCSQPS—TD, APO New York,
NY 09056. He has recently up-
graded his system to a 12K Z-80
so he should really be cranking
out handicaps by this time!

1

MORE FOR BAUDOT MACHINE USERS

Mr. 8. J. Toy, a frequent con-
tributor to this publication, still
runs a SCELBI 8008 system
with a baudot teletype machine
for basic I/O. He recently sent in
some more information on his
modifications of SCELBAL to
facilitate its use with a baudot
device.

“A while back I described
some modifications I made to
the INPUT portion of SCEL-
BAL. [See Update Issue 02 —
Ed.] Since that time I have dis-
covered that it would not work
with the CHR function, mainly
because the latter follows a dif-
ferent route through SCELBAL.
To overcome this I have made
several changes that now make
INPUT even more useful.

To allow more than one item
of data to be input on the same
line, the CR key obviously can-

003 046 ***

003 050 105 003

003 102 106 141 003 STRINF,
003 105 312

003 106 106 113 003

003 111 372

If one wishes to retain Con-
trol/C the test for Line Feed can
be sacrificed instead, since LF is
not normally used during input
of data.

To input data into the same
line as data being printed out
from memory under TAB con-
trol, it is necessary to increment
the COLUMN COUNTER each
time a digit is input. This is ac-
complished by inserting a col-
umn counter incrementing rou-
tine into CINPUT, which is pro-
vided by the user for his own

074 ~— CPI -
150 — —— JTZ - —-
074 — CPI
150 —— —— JTZ —— -~
066 043 LLI 043
056 001 LHI 001
3117 LBM

010 INB

371 LMB

The code for the Blank key
or the Delete key is in the ac-
cumulator when the routine is

2

not be used to terminate the
entry. Instead, I use another
key, which in my case is the
Blank key on my model 15
TTY. The STRINF routine is re-
arranged so that CRLF is skip-
ped when the blank key is used.
My previous changes on page
017 that substitute a semicolon
for the comma have been re-
moved, and all routines there are
restored to their original form.
While this allows more than one
input per line on the TTY, it
also requires that the end of the
line be terminated by a follow-
ing PRINT statement. This
seems to be a good tradeoff. The
CR key can be used at the end
of the line but it is probably
better to use a PRINT state-
ment, which makes the carriage
return automatic. My modifi-
cations to INPUT now consist
only of the following:

Code for Blank key which re-
places code for Control/C.

Address in re-arranged STRINF
routine to skip CRLF op.

CAL CRLF
LBC

CAL SUBHL
LMC

particular = input device......By
adding a test for the Blank key
and the Delete key, which are
both non-printing, the column
counter incrementing routine
can be skipped. If this is not
done, the position of the column
will be displaced by one charac-
ter, although this can be com-
pensated for by changing the
TAB value. Skipping the column
counter incrementer, however, is
better, as it simplifies program-
ming. The complete routine to
be inserted into CINPUT... .that
I use.....is as follows:

Test for Blank key.

Skip col ent increment if Blank.
Test for Delete key.

Skip col ent increment if Delete.
Point to Column Counter.

Load column entr into B.
Increment column counter.
Restore column cntr to memory.

entered. If either JTZ is true, the
jump is to the byte immediately
following the end of the routine,

which effectively bypasses the
column counter incrementer. In-
cidently, the Delete key, in my
case is the BELL key of the
model 15 TTY.....

One needs to be careful that
registers B, H, and L are free
when the routine is used. Loca-
ting the routine here covers both
numerical and CHR inputs. This
addition is useful only if the pre-
ceeding modification to INPUT
is made.

Another improvement I have
made to SCELBAL is to add a
function to limit the number of
digits printed out. This has been
a problem in printing tables of
data where either allowance
must be made for printing out
the full 7 digits or accept an
occasional overlap between col-
umns. The INTEGER function
does not seem to work for num-
bers with more than 4 digits [a
result of binary rounding opera-
tions that start to show their
affect when numbers exceed 4
digits — Ed.], and in any case

007 360 106 000 020 DIGX,
007 363 066 124

007 365 307

007 366 066 035

007 370 056 025

007 372 370

007 373 104 010 010

026 305 304

026 306 311

026 307 307

[Thanks for all the new infor-
mation. We have had a number
of people ask about a modifica-
tion to restrict the number of

can be used only with whole
numbers. Even a number-roun-
ding routine does not always
work because the last stage of
division frequently results in
the value extending back out
to 7 digits.

My new function changes the
value at location 025 035 which
specifies the number of digits to
be printed. It replaces the SGN
function, which I have never
used, and occupies the same
space with one byte left over.
The Function Names Table is
also changed to DIG. The sub-
script of DIG is the number of
digits to be printed. A user pro-
gram statement would take the
form of:

100 PRINT DIG(3)

This will limit all values to three
significant digits, until a subse-
quent statement changes the
limit. Besides the 3 digits, allow-
ance must be made, of course,
for a possible minus sign and a
decimal point. A listing for the
Digits Function follows®™

CAL FPFIX Cvrt FP to fixed.

LLI 124 Point to LSW.

LAM Load to Ace.

LLI 035 Point to digits

LHI 025 Number storage.

LMA Load new nmbr.

JMP 010 010 Jump to suppress
printout of nmbr
and to return.

304 ASCII “D”

311 ASCII “1”

307 ASCII “G”

digits outputted. Your’s looks
like a real straightforward tech-
nique to use! — Ed.]

TEXT CONTROL & TRACE CAPABILITY
SUBMITTED BY SCELBAL USER

Robert Pearce of 504 McCoys
Fork Rd, Walton, KY 41094,
says he is not a technical writer
but he took the time to send in
some pretty clear explanations
of how he added some ‘‘extra”
capabilities to SCELBAL. We
think his additions will be of

interest to many SCELBAL
users.
The first improvement he

discusses is a modification to

the TEXTC routine that he has
named TEXTCM. The modifi-
cation provides the user with
the capability of halting a listing
of a program at any time by de-
pressing any character on the in-
put keyboard (except C/R or
CTRL/C). Doing so places the
program in an “input loop”
effectively halting operations
while the user inspects the
system’s display. To continue
the display the user may type

a C/R (carriage return). Or, to
end the listing and return to the
EXECutive routine the user can
enter CTRL/C.

Naturally, this capability will
be super for those using a CRT
display who need capability for
displaying a section of the user
program buffer at a time. And,
it is valuable for any user in that
it allows the termination of a
long listing when a point of in-
terest has been reached.

The second improvement he
presents provides program trace
capability. It requires the inser-
tion of a patch at the routine
labeled SYNTX3. When trace is
activated SCELBAL will display

the line number of each line exe-
cuted in a user’s program. Trace
capability is controlled using a
switch activated via a UDF func-
tion.

Robert notes that coupling
the trace capability with the
TEXTCM modification provides
a powerful debugging combi-
nation.

He also mentions that his ver-
sion of SCELBAL has been im-
plemented in a MIKE-2 system.

A commented source listing
of the modifications required to
implement his improvements is
shown below.

TEXTCM, LCM Fetch (cc) from the first location in
LAM The buffer (H&L pnting there)
NDA Into Reg C & A. Test the (cc) value.
RTZ No display if (cc) is zero.

TEXTCL, CAL ADV Advance pointer to next location.
LAM Get character from buffer.
CAL ECHO Display character.
IN * Get input from keyboard.
CPI 000 Test for 0.
JTZ END If yes, continue with TEXTC rtn.

INLOOP, CAL INPUT (User subrtn without echo) stop here.
CPIc/r And wait for a C/R or a CTL/C.
JTZ END If get C/R, continue with display.
CPI ctl/c If get CTL/C exit to
JTZ EXEC Start over.
JMP INLOOP Else cycle.

END, DCC Decrement (cc).

JFZ TEXTCL If (cc) is not zero continue display.

RET

Exit to calling routine.

[AT PAGE 02 LOCATION 061 CHANGE:]

SYNTX3,

CAL TRACE Insert TRACE patch call.

[AT A SUITABLE PATCH AREA ADD:]

TRACE, LLI 201
LBM

SWITCH, RET/NOP

Replace SYNTX3 instructions.

RET = NO Trace, NOP = Trace

(Editors note: be careful here, the
label SWITCH has been used else-

LLI 340
CAL TEXTC
LAI 001
CAL TABC
LLI 201
LBM

RET

where in SCELBAL!)

Point to line number buffer.
Display line number.

Set up number of blanks.
Display blank.

Replace SYNTXS3 instructions.

Return to SYNTX3.

[AT PAGE 07 LOCATION 074 SET UP:)
JTZ UDF(*) Jump to UDF function.

[AT A SUITABLE PATCH AREA ADD:)

LLI126
LHI 001
LAM
CPI 100
LLI **x
LHI *%x*
JTZ TRAC
LMI 007
RET
LMI 300
RET

UDF(*),

TRAC,

Point to MSB of FPACC.

Get MSB.

Compare for a FPFIX *‘1.”
Address of SWITCH point

For TRACE switch.

If comparison = 0 move a NOP
To the switch, else move a RET
to the switch. Then exit.

Set up a NOP for the switch.
Exit.

ONE MORE TIME

In SCELBAL UPDATE Issue
04 of 1/77 on page 03 Mr. James
Tucker of 3 Grove Street,
Exeter, NH 03833 discussed a
problem with storage of the
first variable in the wvariables
symbol table. He recently wrote
to notify us of a related problem
and a proposed correction:

“The program as it now func-
tions skips the first storage cell
when the first variable encoun-
tered is a “FOR—NEXT” vari-

Present program:

010 132 106 356 022
Change to:

010132 104 052 075 "k
And put in the following patch:
075 052 106 356 022

075 055 307

075056 074 000

075 060 110135010

075 063 106 356 022

075 066 104 201 010

Present program:

005 065 106 356 022
Change to:

005 065 104 017075

And put in the following patch:
075 017 106 356 022
075022 307

075023 074 000

075025 110 070 005

075 030 106 356 022
075033 104134 005

able. The search for this variable
counts through the variables
symbol table and gets part way
through the page (on which the
variables are stored — Ed.) again
before finally finding the vari-
able it seeks in the FOR—NEXT
stack.”

Mr. Tucker submitted two
patches shown here ‘“that look
for an empty variables symbol
table. If empty, a jump avoids
advancing the pointer.”

CAL SWITCH

JMP PATCH (or suitable loc)

CAL SWITCH

LAM

CPI1 000

JFZ 010 135 (return)
CAL SWITCH

JMP STOSY3A

CAL SWITCH

JMP PATCH (or suitable loc)

CAL SWITCH

LAM

CPI 000

JFZ 005 070 (return)
CAL SWITCH

JMP LOOKU2A

