INTERSIL . eso

INTERCEPT® JR.
MICROCOMPUTER
TUTORIAL SYSTEM

USER'S MANUAL

2+ SMTERCER TS SUMICGR

Rev. B-August, 1979

CHAPTER

TABLE OF CONTENTS

1 INTRODUCTION

2 WORKING WITH THE INTERCEPT JR. MODULE
INTERCEPT JR. START-UP

RESET

SWITCH

ENTERING THE CONTROL MODE
SELECTING A FUNCTION

INSPECT ACCUMULATOR

SETPC

DECREMENT PC, DECPC

DEPOSIT DATA INTO MEMORY, MEM

RUN

HALT

RESET

SIN
DIS
BIN

LOADER

MICRO
MICROINTERPRETER FUNCTIONS
MEMORY REFERENCE INSTRUCTIONS
INPUT/OUTPUT TRANSFER (I0T) INSTRUCTIONS
OPERATE INSTRUCTIONS
LEAVING MICRO MODE
PROGRAM EDITING AND CORRECTION
KEYPAD OPERATION

TABLE

3 INTERCEPT
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE

EXAMPLE

EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE

EXAMPLE

OF INSTRUCTION CODES

JR. PROGRAMMING EXAMPLES

1 - INCREMENTING MEMORY DATA

2 - ,DECREMENTING MEMORY DATA

3 -2PROGRAMMING TIME DELAYS

4 - ADDRESSING MODES

5 - INDIRECT ADDRESSING USED IN TABLE

MANIPULATION

THE JMS INSTRUCTION AND INDIRECT

ADDRESSING

AUTOINDEXING

8 - ADDRESS FIELD MODIFICATION

9 - USING CONDITIONAL SKIPS

10 - FLOWCHARTING A PROGRAM

11 - BIT MANIPULATION

12 - LOGICAL OPERATIONS

13 - I1/0 PROGRAMMING

14 - TELETYPE I/0 USING MONITOR CALLS

15 - PRINTING UNDER KEYPAD CONTROL

16 - PROGRAM TO DEMONSTRATE 1/0 TO THE
6957 AUDVIS MODULE

17 - REAL-TIME PROGRAMMING

6

~
1

PAGE

—
]
Pt

| I I R |

1
—O~NSNOTOOCTTONOTOTRPPHBWWWWNRIN NN

4
o

NNI\)NI\)NI})NI\)I\)I\)N

LI R T |

I\JI\)NNNI\)II\)NI\)T\)NN

1

PPN =

PP OPPLPPLLLLY ¢
I]

N — —_— e d —d = O OY N w
OO

CHAPTER

4 INTERCEPT JR. MODULE
INTRODUCTION
TYING ON TO THE DX BUS
ADDRESS DEMULTIPLEXING
DATA DEMULTIPLEXING
KEYBOARD INPUT
DIGITAL DISPLAY OUT
IOT PROCESSING
OPTIONS
SCHEMATIC

5 JR. RAM MODULE
INTRODUCTION
DISCUSSION
SCHEMATIC

6 JR. P/ROM MODULE
INTRODUCTION
DISCUSSION
SCHEMATIC

7 JR. PIEART SERIAL I/0 MODULE
INTRODUCTION
DISCUSSION
SCHEMATIC

8 INTERCEPT JR. TUTORIAL SYSTEM MONITOR PROGRAM

_INTERCEPT JR. MAIN FLOWCHART
MONITOR STACK
REFSH - DISPLAY REFRESH
SEDB - SWITCH DEBOUNCE
CLKPD - CLEAR KEYPAD
HEX
EXIT
CONTROL STATE SERVICE ROUTINES
INCAC - INCREMENT ACCUMULATOR

DECPC - DECREMENT PROGRAM COUNTER

HALT

RUN

RESET

DEPOSIT INTO MEMORY

BLANK FLAG TOGGLE

SETPC - SET PROGRAM COUNTER
MICRO - MICROINTERPRETER

SIN - SINGLE INSTRUCTION EXECUTE

INPIE - INITIALIZE PIE
BIN - BINARY LOADER
DUMP - MEMORY DUMP
MONITOR PROGRAM LISTING

9 INTERCEPT JR. AUDIO CARD
INTRODUCTION
DISCUSSION
SCHEMATIC

I1

o
P
o
m

1 (]
CONPWWNN = =

-b-b-b-b-b-?-h-h-&-b

TP
el

A O
[[
B~ -

NN
1
O = =

| I S B D R D R B | 1

ooooooooooooooooooooooqooooooooooooooooooooooo
CLWORNOMNMNOOMNMNANMNDMPPNDMNDMNONMNMNONMND NN - N -
=R OO OSNDBWWNNNEHRPRP PRSP0

xot:oxouo
LW N = =

CHAPTER
10

APPENDIX

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

—r X & = T & T m oo O W

INTERCEPT JR. CASSETTE INTERFACE CARD

INTRODUCTION

THE RECORDER

SOURCES OF NOISE INTERFERENCE

6954 ACI BOARD

WRITING PROGRAMS FOR DATA TRANSFERS - USING TTY
ADDRESSES

USER ASSIGNED ADDRESS

WRITING A MEMORY WORD TO THE CASSETTE

READING A MEMORY WORD FROM THE CASSETTE

INITIALIZING THE PIE

THEORY OF RECEIVER SECTION OPERATION

THEORY OF TRANSMITTER SECTION OPERATION

D.C.-D.C. CONVERTER

CIRCUIT OPTIONS

SCHEMATIC

APPENDICES

INTERCEPT JR. PROGRAMMING FUNDAMENTALS
NUMBERING SYSTEMS
ARITHMETIC PROGRAMMING EXAMPLE #1
ARITHMETIC PROGRAMMING EXAMPLE #2
ARITHMETIC PROGRAMMING EXAMPLE #3
BINARY & OCTAL ADDITION & MULTIPLICATION TABLES

INTRODUCTION TO LOGIC

OCTAL-DECIMAL INTEGER CONVERSION TABLE
INSTRUCTION SUMMARY AND BIT ASSIGNMENTS
GLOSSARY

ASCII CHARACTER CODES

LOADING CONSTANTS INTO THE ACCUMULATOR
OPERATION OF THE PHASELOCK LOOP

IM6100 CMOS MICROPROCESSOR REMOTE DATA STATION
KEYBOARD TENNIS PROGRAM WITH INTERCEPT JR.
OCTAL DEBUGGING TECHNIQUE ROM

INTERSIL ODT LISTING

IT1

FIGURE

1-1
1-2
2-1
2-2
2-3
2-4
2-5
2-6
3-1
5-1
6-1
7-1
8-1
8-2
8-3A
8-38
8-3C
8-3D
8-4
8-5
9-1
10-1

2-1

5-1
6-1

7-2
7-3

7-5
7-6

FIGURES

INTERCEPT JR. TUTORIAL SYSTEM
INTERCEPT JR. SYSTEM BLOCK DIAGRAM
INTERCEPT JR. MODULE

MEMORY REFERENCE INSTRUCTION FORMAT
IOT INSTRUCTION FORMAT

GROUP 1 MICROINSTRUCTION FORMAT
GROUP 2 MICROINSTRUCTION FORMAT
GROUP 3 MICROINSTRUCTION FORMAT
PROGRAM FLOWCHART

JR. RAM MODULE

JR. P/ROM MODULE

JR. SERIAL I/0 MODULE

MEMORY ALLOCATION MAP

INTERCEPT JR. MAIN FLOWCHART

STATUS WORD LOCATION 0143

SWITCH WORD LOCATION 0133

ACTIVE DISPLAY OPTIONS

DISPLAY FORMATTING

CONTROL STATE KEY SELECTION/CONNECTIONS KEY - DX BUS
MONITOR PROGRAM LISTING

INTERCEPT JR. AUDIO CARD

INTERCEPT JR. CASSETTE INTERFACE CARD

TABLES

TABLE OF INSTRUCTION CODES

PAGE VS. MEMORY LOCATIONS

JUMPER CONNECTIONS FOR MAPPING

ADDRESS RANGE IN OCTAL IM5623/1M5624
CONTROL REGISTER A CONSTANTS

CONTROL REGISTER B CONSTANTS

VECTOR REGISTER

UART CONTROL REGISTER BIT

20 mA LOOP/EIA RS232-C CONNECTOR PINOUTS
PIE-UART INSTRUCTIONS

IV

PAGE

1-2
1-4

2-11
2-12
2-15
2-17
2-18
3-11

6-1
7-1

8-2

8-18
8-19
8-19
8-20
8-17
8-31
9-1

10-1

2-10
3-5
5-2

7-2
7-3
7-3

7-6
7-7

CHAPTER 1
INTRODUCTION

The theoretical principles underlying digital computers were first
enunciated by Charles Babbage in 1833, but the technology available
at the time was not equal to the task of actually building a working
machine. John Von Neumann developed the stored program concept at
the Institute for Advanced Studies at Princeton University and, since
then, electronic computers have undergone several iterations from
the early vaccum tube machines to transistorization to integrated
circuit systems, and now the age of LSI is evident. Architectural
advances from the first use of hardware index registers, micro-
programmed control, interrupt processing, direct memory access
channels, and distributed processing have been numerous, but the
history of digital computers has yet to be fully written.

In the Tast 1930's and early 1940's, wartime requirements and the
development of vacuum tubes led to the construction of extremely
expensive and complex digital computers used mainly to speed up
numerical calculations. As the technology progressed, computers
became faster, smaller and less expensive. Advances in hardware
architecture and programming languages evolved rapidly. As a result,
the 1960's saw significant increases in the application of business
and data processing computers.

The first minicomputer, the PDP-8*, was introduced by Digital
Equipment Corporation in 1965 and made dedicated applications for
digital computers possible. This first minicomputer, costing
approximately $50,000, was considered so inexpensive that it found
itself being used in universities, laboratories, and in numerous
process control applications. Many versions of this machine were
brought out in succeeding years.

Computers, big and small, must all have a processor, main memory and
input/output. Decreasing hardware costs and increasing sophistication
of processing technology led to multiplicity of computer architecture.
The early 1970's saw the microprocessor, the heart of a computer,

enter the scene. Its function is to accept data from the user,

process it according to instructions provided by the user, and stored in
memory, and return usable results to the user in some convenient
fashion.

LSI techniques, with their high density capability, have enabled
semiconductor manufacturers to produce processing units and memory
devices on single monolithic silicon chips. Input and output devices
which constitute the man/machine interface, have remained relatively
bulky.

* Trademark of Digital Equipment Corporation, Maynard, Mass.

1-1

FIGURE 1-1

1-2

The INTERCEPT JR. TUTORIAL SYSTEM, pictured in Figure 1-1, recognizes
the instruction set of Digital Equipment Corporation's PDP-8/E and is
designed with a modular concept to enable the user to purchase only
those modules which meet his requirements. The design permits the user
to participate in the future of digital computers by yielding an
understanding of the microprocessor and related component functions as
well as programming fundamentals.

Large Scale Integration (LSI) of Intersil's digital CMOS components
results in the system being battery operable and, thereby, yields
the flexibility of a portable system. Experience can be gained with
the components required for a classical computer architecture--a
processor, or central processing unit (CPU), memory and input/output.
The IM6100 microprocessor serves as the CPU and memory is available
in the form of CMOS RAM, ROM and bipolar P/ROM. Input/output can be
experienced in its simplest form via the keyboard and LED displays
or can be studied in greater detail by utilizing the JR. SERIAL I/0
MODULE.

This Owner's Handbook presents a step-by-step learning experience

for the INTERCEPT JR. TUTORIAL SYSTEM. Chapter 2 entitled "Working
With the Intercept Jr. Module" instructs the user in the fundamentals
of the basic module--the start-up and the selection of a function.
The console control, or keyboard, is discussed in detail. Chapter 3,
"Programming Fundamentals", presents the user with simple programming
examples and the ability to progress to more complex problems.
Chapter 4, 5, 6, 7, 9 and 10 explain the hardware aspects of the six
modules via pictorial representation, text and the corresponding
schematics. Chapter 8 discusses the monitor ROM program, presents
the flow chart and listing, and, thereby, gives the user a greater
degree of programming insight. The Appendices contain fundamental
information on number systems, two's complement arithmetic, an intro-
duction to logic, and other miscellaneous information that will be of
interest to the user. Figure 1-2 presents a block diagram of the
total system configuration.

It is Intersil Incorporated's opinion that the INTERCEPT JR. TUTORIAL
SYSTEM will enable you to embark upon a truly rewarding educational
experience. The microprocessor has resulted in a natural evolutionary
step in electronic circuitry design. This is only the beginning.

We sincerely wish that your participation in this evolution will be
rewarding to you.

1-3

6950

SYSTEM BLOCK DIAGRAM

INTERSIL

6950 - INTERCEPT JR. 6951 - M1KX12 6952 - P2KX12 6957 - AUDVIS
RAM
256 x 12 | sEL IM6312 1K CMOS RAM 256 - 2048 x 12
CMOS 1K CMOS WITH BATTERY POWER STROBED "> SPEAKER
RAM ROM BACKUP IM5623/24
MONITOR PROM SOCKETS
IM6100 ’ﬁ ﬁ j CONTROL BUS
cMmoS 12 BIT
MICRO- MANUAL
rpnocssson DATA BUS DX0-DX11 BINARY <a
< INPUT
SW
SEL 1] 6953 - PIEART 6954 - ACI L
10T L muLtiece
DECODE & FUNCTION |,
CONTROL KEYBOARD AV
IM6101 IM6403 IM6402 IM6101 4 DIGIT
ENABLE 2 [[CMOS CMOS cmos Il cwmos OCTAL
o PIE UART UART PIE
s DISPLAY
MONITOR ADDRESS l f 1 I | I
DISPLAY] l
READER SERIAL PLL-
1 l RUN INTERFACE cLockK _L:>
DRIVER DRIVERS RECOVERY 12 BIT
e
1 oispLay f ::)
PLL- DIGITAL
DATA SINEWAVE
RECOVERY | JGENERATOR|
B B
12 OUTPUT 12 INPUT
BITS BITS
N —] — \ v)
RS-232 OR 20mA AUDIO TAPE EXTERNAL 1/0
SERIAL DEVICE RECORDER CONNECTOR

Figure 1-2

1-4

CHAPTER 2
WORKING WITH THE INTERCEPT JR. MODULE

IM6100 MONITOR ROM AND FOUR D-CELL
MICROPROCESSOR EXTRA ROM SOCKET BATTERIES

ON-OFF
_ POWER SWITCH
MODULE
SOCKETS 256 x 12 RAM
.
L, ADDRESS
- AND
:‘ H DATA
R DISPLAYS
R
- TR
» At .
el
':....'”E L
o M e
fiE.]
KEYBOARD b s
AND !) 0 CONSOLE
DISPLAY ‘ 6950~ INTERCEPT® JUNIOR : CONTROL
INTERFACE

RESET SWITCH

Figure 2-1 provides a pictorial representation of the INTERCEPT JR.
MODULE with the pertinent components discussed in this chapter
highlighted.

INTERCEPT JR. START-UP

Turn the module "ON" with the "ON-OFF" power switch. Power is

provided by the four (4) D-Cell batteries which must be inserted,
with the sleeve, in the module. When facing the module, with the
keyboard in front and connectors on the left side, the left hand

2-1

battery clip is negative and the right hand battery clip is positive.
BATTERY REVERSAL WILL DAMAGE THE SYSTEM. The module does a power-
up RESET so that it will always come up halted with the Program
Counter, PC (ADDRESS) equal to 7777. the CONSOLE CONTROL timer will
be active so that the ADDRESS and MEMORY displays will be valid
provided a "BLANK DISPLAY" is not in effect. The information displayed
will be PC = 7777 in the ADDRESS and the MEMORY data in that location
will be 5776. This instruction branches the microprocessor to
routines which save registers, initialize the RAM stack and search
for keyboard depressions. If the display does not illuminate, press
to turn it on. The 256 words of RAM are always provided
. power, as long as the batteries are installed, regardless
of the position of the "ON-OFF" power switch.
RESET SWITCH

The RESET SWITCH does a complete hardware reset of the micro-
processor and can be used at any time for this purpose.
Therefore, it is not necessary to turn power off to reset
the microprocessor. When switching the module OFF it is
recommended that the RESET SWITCH be s1id down while the
power is turned off. This keeps the microprocessor from
running during the power down process thereby eliminating
the possibility of writing bad data into the RAM as the
voltage level goes Tower than the minimum specified. If
the RAM data is not required to be preserved, use of the
RESET SWITCH is not required during power-off.

ENTERING THE CONTROL MODE

The operator will now enter the control mode by
pressing the red control key, CNTRL, on the KEYBOARD.
This key will cause the module to enter what is
referred to as an undefined control mode or SHELL
mode when the CONSOLE CONTROL timer is enabled, or at
any point during the execution of a control function.
This state is referred to as undefined as we
have not yet chosen a CONSOLE CONTROL function to
be performed. The other mode is the user mode in
which the module is either waiting for or executing
user programs.

SELECTING A FUNCTION

After pressing the CNTRL key, we are now ready to choose
a function to be performed. This is accomplished by
pressing any of the function keys which are described next.

2-2

INSPECT ACCUMULATOR

SETPC

SETPC
CLA OP2
7

Pressing CNTRL IAC will change the mode of the right
hand display from memory data to accumulator contents

or vice versa. If bit 7 of the SWITCH word has been
zeroed (see chapter 8), instead of the AC, the contents
of any location may be continuously displayed during
program execution. This key also has special meaning
for certain functions and its use is described with each
of those functions. This key is color-coded yellow.

This function allows the user to control the Program
Counter, PC, in the module for purposes of depositing
words, or examining words or conditions. Following the
activation of this key, the user will load an octa%
number into the PC by entering the digits on keys 0-7.
The digits will be displayed in ADDRESS and will be
entered from the right, shifting the previously

entered digits to the left. Any number of digits may
be entered until the display contains the value desired.
A CNTRL key depression will enter the value displayed
into the PC and will return the state to SHELL mode.
Note that leading zeros may be needed to clear the
display before entering the desired octal numbers.

DECREMENT PC, DECPC

DECPC

SZA-QL

This function will decrement the value of the PC
by one and return the module to SHELL mode. This
function is useful when examining sequences of
memory locations.

DEPOSIT DATA INTO MEMORY, MEM

SMA-QA

This function allows the user to enter instructions
and data in the RAM (see Figure 8-1) as well as set
the values of the internal registers of the module
by depositing the data into memory locations used

by the monitor program to save and update the data
in these registers. After a closure of the MEM key,
the user will proceed to enter digits into MEMORY
with keys 0-7 as he did for SETPC. The new digits will
be displayed on MEMORY, entering from the right and
shifting to the left. When the MEMORY display
contains the desired value, the user will deposit

it in the RAM by pressing either DECPC, or MEM. If

2-3

RUN

RUN
CML JMS
4

HALT

HALT
CMASJMP

RESET

RESET
CLLIOT
]

DECPC is pressed, the MEMORY display will be
deposited into RAM in the memory location addressed
by the ADDRESS display. The ADDRESS display will

be decremented and the RAM information in the
decremented address will be displayed in MEMORY.

If MEM is pressed, the value shown in the MEMORY
display will be deposited into the RAM in the

memory location addressed by the ADDRESS display,
the ADDRESS display will be incremented and the next
word in RAM will be displayed in MEMORY. Successive
depressions of MEM will increment the memory ADDRESS.
Digits can now be entered from the right, as before.
If the user wishes to skip a location, he presses
MEM again. This will retain the value of that
location in RAM and the ADDRESS will move to the
next location. By pressing the yellow key, the user
will deposit the value of MEMORY into the location
specified by ADDRESS, the module will exit the
control mode and enter the user mode. If the

user presses CNTRL, the value shown in MEMORY will
be deposited and the module will enter the SHELL
mode. RAM locations 0000 and 0143-0177, reserved
for the MONITOR cannot be modified. Locations
0140-0142, also used by the MONITOR, should not be
modified ordinarily.

This function will set the microprocessor Run

flip flop to RUN and will exit the control mode.
The module will come out in the user mode at the
PC point specified during control mode, running.

This function will clear the RUN flip flop in the
microprocessor so that the module will come out of
the control mode halted.

This function will be a complete software RESET

of the module. A1l internal microprocessor flags
are initialized, the accumulator and 1ink are
cleared, the PC is set to 0200 and its contents

are displayed. It will also remove a BLANK DISPLAY
status.

SIN

This function, referred to as Single Instruction, will

cause the module to perform, in the user mode, a

’ single instruction. Following this, the possible

changes of state can be observed by inspecting the
contents of the appropriate memory locations. Due to
the MONITOR program structure, the user cannot single
step through ROM-P/ROM locations. JMP*-1, JMS*-1 and
JMS*-2 instructions can be single stepped properly; but
TAD, ISZ and DCA instructions which refer to a *+1 or
*+2 location cannot be single stepped properly (see
Chapter 8). SIN may be successively depressed to
single step through a program.

DIS

MEMORY display thereby conserving power. The
BLANK/RESTORE function is achieved by depressing CNTRL
followed by DIS to BLANK the display and then CNTRL
followed by DIS to RESTORE the display. A blanked
display will carry over from a power-down but will be
cleared by a software RESET (depression of CNTRL and
RESET). The RESET switch does not affect display
status.

. This function will BLANK and RESTORE the ADDRESS and

BIN LOADER

This function will activate the firmware loader which
will load BINary tapes using the 6953-PIEART, JR.
SERIAL I/0 MODULE. This loader will return to the
halted user mode when data has finished loading. The
BIN Toader will ignore data for Tocations 0000g and
0143g8-0177g and will Toad all BIN formatted tapes
generated by the MONITOR or by PDP-8/E or IM6100
assemblers. The loader will ignore ail change field
instructions on those tapes. It will also echo all
characters enclosed by rubouts on those tapes.

MICRO

control of the MICROINTERPRETER in the MONITOR ROM.
The MICROINTERPRETER functions are elaborated on
in the next section.

This function will place the CONSOLE CONTROL at the

MICROINTERPRETER FUNCTIONS

Pressing CNTRL followed by MICRO causes INTERCEPT JR. to execute
the microinterpreter routines which are resident in the MONITOR

2-5

ROM. These routines will interpret key closures as opcode bits,
relative address bits, page bits, address mode bits, and micro-
instruction bits according to the specific sequence in which the
keys are depressed. This enables the user to rapidly enter programs
via the keyboard without constantly referring to the instruction
format listings. The user should be familiar with the use of the
instructions in order to make the most efficient use of the
microinterpreter.

MEMORY REFERENCE INSTRUCTIONS

In the MICRO mode, if any of the keys marked AND, TAD, ISZ,
DCA, JMS, or JMP are pressed, the MEMORY display at the current
memory ADDRESS will show 0000, 1000, 2000, 3000, 4000, or

5000, respectively.

ATl the following key closures are interpreted as address bits.
The numerical keys may be depressed as many times as desired,
entering octal address digits from right to left. While
address digits are being entered, the opcode will be displayed
on the left hand display.

At any time after the opcode is entered, depression of the

ﬁ yellow IAC key will set the indirect bit (note IND legend
on this key) of the instruction (add 4 to the next-to-most
significant octal digit). After entering the address,
depressing CNTRL will display the ADDRESS counter and the
fully assembled instruction. Releasing CNTRL will advance
the ADDRESS counter. The yellow IAC key may be pressed
repeatedly to advance the ADDRESS counter.

INPUT/OUTPUT TRANSFER (IOT) INSTRUCTIONS

6000 to be entered into the currently addressed memory
location. Subsequent numeric key depressions are performed
to enter the required device address and control bits into
the IOT instruction.

In the MICRO mode, depression of the IOT key will cause

Depressing CNTRL will advance the ADDRESS counter to the next
location. Depressing SHIFT will cause the ADDRESS counter to
step.

OPERATE INSTRUCTIONS

Operator instructions are divided into three groups of operate
microinstructions. Thus, in the MICRO mode, the desired
microinstruction group is selected by depressing the

keys marked OPR1, OPR2 or OPR3. This will enter 7000,

7400 or 7401, respectively, into the MEMORY display.

2-6

If no additional keys are depressed and the address
counter is advanced, these instructions, which are

all NO OPERATION, NOP, will be entered. Further key
depressions will set various bits in the instruction
enabling the user to select valid microinstruction
combinations. The microinterpreter does not check for
illegal microinstruction combinations so the user must
be careful about the combinations being selected. Table
2-1 shows the more useful combinations. The user should
become familiar with the rules of combinations and
logical execution sequence in order to create micro-
instructions not shown in the tables.

On the CONSOLE CONTROL, in general, the designations in
o 0 red are associated with OPR1 microinstructions, and the
designations in green, except for -QA and -QL, are
associated with OPR2 microinstructions. The -QA and

o | -QL designations stand for MQA and MQL which are OPR3
microinstructions.

Conditional skip microinstructions in the OPRZ group may
have their skip condition inverted by pressing the REV
key while setting the microinstruction bits.

from a single bit rotate to a two bit rotate by pressing
the key with T/BSW designation on it. (This key is
used for both two bit rotates as well as Byte SWap.)

Rotate instructions in the OPR1 group may be changed

LEAVING MICRO MODE

Depressing the CNTRL key twice puts the user back into
SHELL, the undefined control state, and free to choose
the next function.

PROGRAM EDITING AND CORRECTION

If an instruction is entered incorrectly, the user must
exit MICRO by depressing CNTRL twice. This will

result in advancing the ADDRESS counter by one. Decre-
menting the ADDRESS counter by one is achieved by pressing
DECPC. The user must then reenter the MICRO mode by
pressing CNTRL and MICRO. Now the correct instruction

may be reentered in full.

2-7

The program may be examined location by location by
successively pressing DECPC or MEM from the undefined
control state. DECPC results in stepping backward
through memory, and MEM results in stepping forward.
These two keys may be pressed without going through the
undefined control state in order to go backwards and
forwards through the program in any sequence.

Memory data may be changed at will while stepping back
and forth through the program simply by depressing the
numeric keys in any desired fashion.

When editing in the MICRO mode, an instruction may be
changed by entering a new sequence of keys. If an
instruction is correct, the address counter may be
stepped simply by pressing the yellow IAC key
(immediately after CNTRL has been pressed to step the
address) as many times as desired.

KEYPAD OPERATION

We shall illustrate keypard operations in MICRO mode with
this example:

Enter instruction JMP START in location 0357g.
Label START represents location 0200g. Enter
instruction SZL in location 0362g.

1} To set program counter to 0357g, press CNTRL SETPC
0 3 5 7

Comments: Note that the same key has the digit 7
and the legend SETPC on it. Thus, the MONITOR
routines assigned different meanings to the keys
at different times. The address is shifted from
right to left into the left hand display.

2) MICROINTERPRETER mode, press CNTRL MICRO

Comments: When CNTRL is pressed, the SETPC mode
is terminated and when MICRO is pressed, the MICRO
mode is entered.

3) OPCODE entry, press JMP

Comments: The digit 5 appears in the most significant
position of the right display and the other positions
are clear. 0357 5000

4) ADDRESS entry, press 0 2 0 0

Comments: As soon as key O is pressed, the display
switches to 5000 0000 and any string of octal digits
may be entered into the right display from right to
left.

2-8

5)

7)

ASSEMBLE complete instruction, place in memory and
increment program counter, press CNTRL.

Comments: Note that if the yellow key is pressed
at this point, the MICROINTERPRETER will set the
indirect bit, that is, add 0400 to the opcode and
the location referenced by the instruction will be
used as a pointer to the effective address.

As CNTRL is pressed and held down, the displays
will show the PC and assembled instruction

0357 5200, and when the key is released, the left
display will increment to 03608 and the MICRO mode
is again in effect waiting for another opcode entry.
At this point, if they key marked IAC REV IND is
pressed, the address will increment again with
MICRO still in control. If the address that was
entered was not in page 0 (00008 to 0177g) or in
the current page (02008 to 03778), a simple
diagnostic message consisting of a flashing display
is received by the user and another attempt to
enter a valid address may be made.

ADVANCE address to 0362g, press IAC IAC IAC

Comments: This is quicker than pressing CNTRL
SETPC 0 3 6 2 CNTRL MICRO.

Enter SZL instruction (skip on zero link), press
OPR2 SNL REV

Comments: By pressing OPR2, bits 0, 1, 2, 3 are
set showing 74008 in the right display. By
pressing SNL (the same key that previously was

used to enter the MICRO mode), bit 7 is set showing
74208 in the right display, the code for an SNL.
Pressing REV (the same key with IAC on it) reverses
the skip condition from non-zero to zero in this
case by setting bit 8, and 7430g is seen in the
right display.

This example shows how the MICROINTERPRETER assigns
multiple meanings to the keys. The twelve keys

of the keypad are read onto the 12-bit micro-
processor data bus under program control.

2-9

TABLE 2-1
TABLE OF INSTRUCTION CODES

KEYS DEPRESSED MEMORY
LEFT TO RIGHT OCTAL CODE OPERATION

- Enter MICROINSTRUCTION Mode

MEMORY REFERENCE INSTRUCTIONS

KEYS DEPRESSED MEMORY
LEFT TO RIGHT MNEMONIC OCTAL CODE OPERATION
AND* 0000 Logical AND
n 00nn or Depress numeric keys as
Olnn required for valid address
04nn or Depress IND key if INDirect
05nn MRI is required
eNTR Advances ADDRESS counter to

next location

TAD 1000 Binary ADD

018

nAL 52 1SZ 2000 Increment and Skip if Zero

=
o
n -
;‘ .
o .
.

* The sequence of key depressions required to enter the opcode, address field, indirect
bit (if necessary) and advance the address counter is shown in full for this case.
The same sequence is true for the other memory reference instructions, but only the
initial operation of entering the opcode is shown for the remainder to avoid
duplication.

2-10

s, DCA 3000 Deposit and Clear
3 Accumulator

JMS 4000 JuMp to Subroutine

JMP 5000 JuMP

0 1 2 3 4 5 6 7 8 9 10 1
T T T T T T — T
OP CODE 0-5 A | MP ADDRESS
| \ | 1 4 1 1 |
L RELAT|\7£ cli\gDRESS
MEMORY REFERENCE INDIRECT ADDRESSING

INSTRUCTION FORMAT 0 = DIRECT
1 = INDIRECT

MEMORY PAGE
0 = PAGE 0
1 = CURRENT PAGE

FIGURE 2-2

MICROPROCESSOR INPUT/OQUTPUT TRANSFER (IOT) INSTRUCTIONS

KEYS DEPRESSED MEMORY

LEFT TO RIGHT MNEMONIC OCTAL CODE OPERATION
SKON 6000 Skip if Interrupt on
e ot ION 6001 Interrupt Turn on
2, 10T 6002 Interrupt Turn off

SRQ 6003 Skip if INT Request
GTF 6004 Get Flags

2-11

RTF 6005 Return Flags
SGT 6006 Operation is Determined by

External Device, if Any

CAF 6007 Clear A1l Flags

1 1 0 DEVICE SELECTION CONTROL
1 Il 1 i ! | 1 1 |

IOT INSTRUCTION FORMAT
FIGURE 2-3

DEVICE INPUT/OUTPUT TRANSFER (IOT) INSTRUCTION

KEYS DEPRESSED MEMORY

LEFT TO RIGHT MNEMONIC OCTAL CODE OPERATION
3?& As applicable 6000

n, n, n, n...n é6nnn Depress numeric keys as

required to enter specific
address and control bits

GROUP 1 OPERATE MICROINSTRUCTIONS

KEYS DEPRESSED MEMORY
LEFT TO RIGHT MNEMONIC OCTAL CODE OPERATION
3¥§ NOP 7000 No operation
Eﬁi ﬁ% IAC 7001 Increment Accumulator

ff’?i RAL 7004 Rotate Accumulator Left

o RTL 7006 Rotate Two Left
The T in T/BSW indicates
bit 10 is set to give two

shifts. Key may be pressed
before RAL if desired.

N RAR 7010 Rotate Accumulator Right

SZa-QL

N RTR 7012 Rotate Two Right

Except for OPR1 key,
order of depression is
irrelevant.

szaaL BSW 7002 Byte Swap
Only bit 10 set giving
byte swap function.

szhL CML 7020 Complement Link

stk CMA 7040 Complement Accumulator

"o E CIA 7041 Complement and Increment
Accumulator

Logical execution sequence
is CMA, IAC, but keys may
be pressed in IAC, CMA order.

sznoL CLL 7100 Clear Link
::ﬁi CLL RAL 7104 Clear Link-Rotate Accumulator
Left

Logical sequence first
clears link, then rotates.

2-13

e CLL RTL 7106 Clear Link-Rotate Two Left

oEer’ CLL RAR 7110 Clear Link-Rotate Accumulator
$2A-0L [3 R'ight

CLL RTR 7112 Clear Link-Rotate Two
! Right
STL 7120 Set the Link

Logical sequence first clears,
then complements 1ink.

szaaL CLA 7200 Clear Accumulator

Common to all groups, so
not colored,

N ﬁ CLA IAC 7201 Clear Accumulator-Increment

Accumulator

Loads accumulator with 1.
GTL 7204 Get the Link

Accomplished by rotating

it into cleared accumulator.
:E’EZCL CLA CLL 7300 Clear Accumulator-Clear Link
Jo STA 7240 Set the Accumulator

Sets accumulator to all

ones.

Example of microprogrammed instruction to set accumulator to
octal six.

Logical sequence:

CLA CLL CML IAC RTL
DECPC SETPC RESET RUN 1AC OSA
Key Seq ue nc e: szo:10|, CLA7OP2 CLLsIOT CML4JM5 ;Ia:; BSW1TAD

Octal instruction: 7327
2-14

CLA

CLL | CMA

CML

RAR
RTR

RAL Q IAC
RTL 1

BSW IF BITS
8&9AREQ

AND BIT101S 1.

LOGICAL SEQUENCES:
1—CLA, CLL
2—CMA, CML
3—IAC

4—RAR, RAL, RTR, RTL, BSW

GROUP 1 MICROINSTRUCTION FORMAT

FIGURE 2-4

GROUP 2 OPERATE MICROINSTRUCTIONS

KEYS DEPRESSED MNEMONIC

LEFT TO RIGHT

SETPC
CLA OP2

! NOP

SETPC osR
CLA7°"2 BSW TAD
1

'ETS% HALYMP
LA MA J
R HLT

OSR

SETPC

SETPC MICRO
7
SETPC pECPC
CLA OP2
7 szaa SZA

MEMORY
OCTAL CODE

7400

7402

7404

7410

7420

7430

7440

2-15

OPERATION

No operation

Halt

Or with Switch Register

Skip

REV key sets bit 8 giving
the AND condition of skips
specified in bits 5, 6, 7.
This results in unconditional
skip.

Skip on Non-Zero Link

Skip on Zero Link
REV reverses selected skip
condition by setting bit 8.

Skip On Zero Accumulator

SETPC
CLA OP2
7
SETPC
CLA OP2
7
SETPC
CLA OP2
7
SETPC
CLA OP2
7
SETPC
CLA OP2
7
SETPC
CLA OP2
7
SETPC
CLA OP2
7
SETPC
CLA OP2
7

SETPC
CLA OP2
7
SETPC
CLA OP2
7

DECPC
orPi
SZA-QL

DECPC
oP1
SZA-QL

DECPC
oP1
SZA-QL

MEM
OoP3
SMA-QA

MEM
OP3
SMA-QA

MEM
OoP3
SMA-QA

MEM
OP3
SMA-GA

‘MEM
OP3
SMA-QA

MEM
OP3
SMA-QA

MEM
OP3
SMA-QA

1AC
REV
IND

MICRO
SNL AND
0
MICRO
SNL. AND
0

1AC
REV
IND

MICRO
SNL AND
0
MICRO
SNL AND
0

DECPC
orP1
SZA-QL

DECPC
OP1
SZA-QL

DECPC
oPt
SZA-QL

1AC
REV
IND

1AC
REV
IND

1AC
REV
IND

MICRO
SNL AND
0

SNA

SZA SNL

SNA SZL

SMA

SPA

SMA SNL

SPA SZL

SMA SZA

SPA SNA

SMA SZA
SNL

7450

7460

7470

7500

7510

7520

7530

7540

7550

7560

2-16

Skip on Non-Zero
Accumulator

Skip on Zero Accumulator,
or Skip on Non-Zero Link,
or both

OR'ed skip conditions.

Skip on Non-Zero Accumulator,
and Skip on Zero Link
AND'ed skip conditions.

Skip on Minus Accumuator

Skip on Positive Accumulator

Skip on Minus Accumulator, or
Skip on Non-Zero Link, or
both

OR'ed skip conditions.

Skip on Positive Accumulator
and Skip on Zero Link
AND'ed skip conditions.

Skip on Minus Accumulator or
Skip on Zero Accumulator or
both.

OR'ed skip conditions.

Skip on Positive Accumulator
and Skip on Non-Zero
Accumulator

AND'ed skip conditions.

Skip on Minus Accumulator or
Skip on Zero Accumulator or
Skip on Non-Zero Link or all
OR'ed skip conditions.

@ saaoL @ SPA SNA 7570 Skip on Positive Accumulator
SZL and Skip on Non-Zero
Accumulator and Skip on Zero
Link
REV AND'ed skip conditions.

SETPC SETPC
CLA 7600 Clear Accumulator

Common to all groups.

LAS 7604 Load Accumulator with
y Switch Register

Logical sequence clears AC
then loads it with switch

register.
"o Y cinom SZA CLA 7640 Skip on Zero Accumulator
then Clear Accumulator
seree W oecrc e SNA CLA 7650 Skip on Non-Zero Accumulator
1 ey ! then Clear Accumulator.
Order of key depression is
irrelevant.
SMA CLA 7700 Skip on Minus Accumulator
then Clear Accumulator
'ors e SPA CLA 7710 Skip on Positive Accumulator
! t' W ! then Clear Accumulator
e Y cxcrc ﬂ SPA SNA 7774 Skip on Positive Accumulator
! - $l ° SZL CLA ' and Skip on Non-Zero Accumulator
OSR and Skip on Zero Link, then
clear accumulator and load
7 ' accumulator with the content

of the switch register.

0 1 2 3 4 5 [7 8 9 10 1"
T 1
SMA | SZA | SNL 0
— | —— —— | —} OSR | HLT 0
! | ! A ! ! oA SPA | SNA | SZL 1

LOGICAL SEQUENCES:

1 (Bit 8 is Zero)— SMA or SZA or SNL
(Bit 8 is One) — SPA and SNA and SZL

2

—CLA
3 — OSRK, HLT

GROUP 2 MICROINSTRUCTION FORMAT

FIGURE 2-5

2-17

CHAPTER 3
INTERCEPT JR. PROGRAMMING EXAMPLES

INTRODUCTION

The reader who is not familiar with elementary programming
techniques, two's complement arithmetic and octal coding, should
study Appendix A and the IM6100 brochure for a description of
the instruction set before continuing with this section. The
MONITOR program will be used to illustrate the use of various
techniques. The SETPC and MEM keys may be used to look at the
ROM locations shown. The MONITOR listing is in Chapter 8.

EXAMPLE 1 - INCREMENTING MEMORY DATA

6624 2000 AINC, ISZ SAVPC /Increment the user PC
6625 5200 JMP MICRO

6626 5200 JMP MICRO /Return for new Micro Command

This technique uses the ISZ instruction to directly increment memory
data without needing to bring it into the AC first. Note the use of
the JMP MICRO instruction twice in case the data was 7777 and a skip
was performed. NOP instruction after ISZ can also be used to avoid
the effect of the skip on the program.

EXAMPLE 2 - DECREMENTING MEMORY DATA

6430 7340 DECPC, CLA CLL CMA /Set AC to -1

6431 1000 TAD SAVPC /Add data in SAVPC
(Tocation 0000)

6432 3000 DCA SAVPC /Restore decremented data

Note the use of the microinstruction combination CLA CLL CMA to clear
the AC and the link and then to complement the AC, resulting in 7777
in the AC and 0 in L. By adding the contents of location SAVPC to
the AC in two's complement arithmetic, a decrement is effectively
performed. Note that the logical sequence of microinstruction
execution is chosen for usefulness. It would be of no value to
complement the AC first and then to clear it.

3-1

EXAMPLE 3 - PROGRAMMING TIME DELAYS

6203 3157 DCA SAV4 /Store wait count in SAV4 and clear AC
6204 1223 TAD TK1 /Get the Time constant

6205 3144 DCA TIME /Place in the timer

6206 2144 IS7 TIME /Time out 2.4 ms at 2.46 MHz

6207 5206 JMP. -1 /Jdump back one location

6223 7620 TKI, 7620 /-112

This sequence is part of SWDB, the switch debounce routine described
in Chapter 8. The AC is cleared (incidentally while depositing in
SAV4), and the constant TK1 is fetched from the current page

address 6223. It is stored in the page 0 location 0144 and ISZ
instructions are successively executed until the timer goes to

zero and the jump-back instruction is skipped. The delay produced
may be calculated by counting the number of major states in

each instruction executed and multiplying by the state time. Thus,
ISZ requires 16 states and JMP requires 10, so these 26 states are
gone through a total of 112 times, for a total of 2912 states.

Adding in the states for the DCA, TAD and DCA (11 + 10 + 11 = 32),

we have a total of 2944 states. With a 2.46 MHz clock rate, the state
time is 813 ns so the delay is (0.813 x 2944) microseconds = 2393.472
microseconds or approximately 2.4 milliseconds.

It is also instructive to note that the location TIME is in page 0,
whereas the constant TK1 is stored in the current page (page 31).
In this case, RAM happens to be available only in page 0 and 1 and
by keeping TIME in page 0, the ISZ instruction in page 31 was able
to directly reference the location TIME in page 0. Obviously, ISZ
instructions may only reference RAM locations.

EXAMPLE 4A - ADDRESSING MODES

The user should note that a characteristic of page addressing
results in the octal coding for two memory reference instructions
on different pages being identical when their operands are in

the same relative location on the respective pages.

3-2

0020 5225 /JMP to location 25 on current
page, for example to 0025

0220 5225 /JMP to location 25 on current
page, for example to 0225

The user should enter these two instructions at the two locations specified.
By using the SIN, single instruction key, to execute the instruction, the
user will see how the addresses are referenced.

Note that memory reference instructions can reference 400g locations
directly, 200g on page 0, and 200g on the page containing this
instruction. If the instruction ﬁappens to be on page 0, then only
locations 0 to 177g are directly addressable (see Example 10).

EXAMPLE 4B - ADDRESSING MODES
The user should enter these instructions.

0020 5625 JIMP indirect via 0025

0025 0010 /Pointer to 0010g
0220 5625 JIMP indirect via 0225
0225 0010 /Pointer to 0010g

Now, by using the single step key at locations 0020 or 0220, the
address should change to 0010 showing than an indirect reference
has been made.

The pointer (location containing the effective address) can contain
a full 12 bits of address, so the program can branch anywhere in the
4K address space by jumping indirect.

When constants and pointer addresses are stored in page 0, references
may be made to them from any page, avoiding the necessity of storing
them on each page that needs them.

EXAMPLE 5 - INDIRECT ADDRESSING USED IN TABLE MANIPULATION
This example is taken from the SHELL routine described in Chapter 8.

It is a common technique of passing program control to one of
several possible sequences by adding an index to a base address.

3-3

At the point that the following sequence is entered, the accumulator
contains an octal number from 0 to 13 which stands for the routines
MICRO, BIN, BLK, SIN, RUN, HALT, RESET, SETPC, DECPC, DEP, INSAC

and SHELL respectively.

6402 1207 TAD GOTO /add base address to constant

6403 3147 DCA POINT /store pointer in POINT

6404 1547 TAD 1 POINT /get routine starting address
6405 3147 DCA POINT /phase starting address in POINT
6406 5547 JMP I POINT /go to the routine

6407 6410 GOTO, GOTO +1 /base address

6410 6600 MICRO

6411 7622 BIN

6412 6474 BLK

6413 7400 SIN

6414 6436 RUN TABLE OF ROUTINE

6415 6434 HALT STARTING ADDRESSES
6416 6165 RESET

6417 6543 SETPC

6420 6430 DECPC

6421 6502 DEP

6422 6425 INSAC

PN N N e W L e D P P T

6423 6400 BUG, SHELL

Note that location 6407, labeled GOTO contains base address 6410, so
by adding a number from 0g to 13g to 6410, a number from 6410 to
6423 is obtained. This number is stored in PQINT.

Now, the effective starting address is obtained by executing a TAD
indirect through POINT, for example contents of POINT used as
operand address. Thus, if AC contained 3g, then 6413 would be
stored in POINT, and TAD I POINT would place 7400 in the AC to be
again stored in POINT. This time an indirect jump through POINT
loads 7400 into the program counter.

Of course, POINT had to be stored in RAM and since pages 0 and 1

are in RAM, POINT was chosen to be in page 0, in order that the upper
ROM pages could reference it. It can be seen that indirect
addressing makes writing programs easier in mixed RAM-ROM memory
where memory references cannot be easily confined to small relative
address displacements. See Table 3-1 for a 1ist of pages and

their memory locations.

TABLE 3-1

PAGE MEMORY LOCATIONS
0 0-177
1 200-377
2 400-577
3 600-777
4 1000-1177
5 1200-1377
6 1400-1577
7 1600-1777

10 2000-2177
11 2200-2377
12 2400-2577
13 2600-2777
14 3000-3177
15 3200-3377
16 3400-3577
17 3600-3777
20 4000-4177
21 4200-4377
22 4400-4577
23 4600-4777
24 5000-5177
25 5200-5377
26 5400-5577
27 5600-5777
30 6000-6177
31 6200-6377
32 6400-6577
33 6600-6777
34 7000-7177
35 7200-7377
36 7400-7577
37 7600-7777

EXAMPLE 6 - THE JMS INSTRUCTION AND INDIRECT ADDRESSING

A very important use of indirect addressing is in returning to

a main program from a subroutine. Appendix A shows how two

programs may be linked using JMP instructions. The JMS instruction's
usefulness lies in the fact that only one copy of a subroutine

need be stored, for example in page 0, and a program anywhere in

main memory may call it. INTERCEPT JR. uses a "last-in-first-out"
(LIFO) or "pushdown" stack in page 0 to store subroutine return
addresses., This allows nesting of subroutines and calling sub-
routines stored in the MONITOR ROM by linking through RAM. For
further details refer to Appendix L.

3-5

Our example will demonstrate the use of the JMS instruction in
RAM, and the use of indirect addressing to return.

The user should enter these instructions.

0020 7240 CLA CMA /AC set to 7777

0021 4100 JMS 0100 /Jdump to subroutine starting
at 0100

0022 7240 CLA CMA - /AC set to 7777

0023 7402 HLT

0100 0000 /This location will contain
return address

0101 7200 CLA /AC set to 0000

0102 5500 JMP T 0100 /Return to main program

Single step through this program (by successive depressions of
SIN key after initial "CNTRL" "SIN" sequence at program starting
address) and the program sequencing will be seen to go from 0020 -
0021 - 0100 - 0101 - 0102 - 0022 - 0023. In between, it will be
instructive to look at location 0140 where the AC is saved by

the MONITOR. The AC will initially be set to 7777, then the
subroutine clears it, and then the main program again sets it to
7777. The JMS instruction stores the return address, namely

0022 in location 0100 so that upon executing the JMP indirect via
0100, the main program can be rejoined in sequence.

If a 1K RAM option card is available, the user could relocate

the main program in an upper page and executive the same program
provided the subroutine remained in page 0. The subroutine

could be moved to a page different from page 0 or the main program's
page but then an indirect JMS would have to be executed. We can
illustrate this in page 0 as follows:

0020 7240 CLA CMA /AC = 7777

0021 4424 JMS T 0024 /Jdump via pointer in 0024
0022 724Q CLA CMA /AC = 7777

0023 7402 HLT

0024 0100 /pointer address

0101 7200 CLA /AC = 0000

0102 5500 JMP T 0100 /Return

An extra location to store the pointer is neded.
EXAMPLE 7 - AUTOINDEXING

Example 3 showed how a simple loop could be programmed using the ISZ
and JMP instructions.

The IM6100 treats memory locations 0010 through 0017, in page O,
in a unique manner. Whenever an instruction makes an indirect
reference to any of these locations, the content of the location
is incremented before it is used as an operand. These locations
can, therefore, be used in indexing applications. The
incrementation is done automatically, provided the location was
referenced indirectly, without needing ISZ or TAD and IAC
instructions, so this feature is known as autoindexing. When
these locations are addressed directly, they act as any other
location.

Since the autoindex location is incremented before it is used
as an operand, it must be set to one less than the first value

desired.
0010 /Autoindex location
0200 7200 CLA /Clear AC to 0000
0201 1212 TAD 0212 /Get # of locations to be cleared
0202 7041 CMA IAC /2's complement of AC
0203 3212 DCA 0212 /Store in loop counter
0204 1213 TAD 0213 /Get "starting address -1"
0205 3010 DCA 0010 /Store in autoindex location
0206 3410 DCA I 0010 /Clear location pointed to by 0010
0207 2212 ISZ 0212 /Increment loop counter
0210 5206 JMP 0206 /Jdump back two places
0211 7402 HLT /Stop. A1l locations cleared
0212 0100 CONSTANT /# of locations to be cleared
0213 0277 START-1 /Starting address (0300) -1

Note that the autoindex location supplies successive memory address
pointers until the counter goes to zero and the program halts.
The program will clear locations 0300 to 0377.

EXAMPLE 8 - ADDRESS FIELD MODIFICATION

Instructions and program data may be stored in the same memory.
Thus, it is possible to treat instructions as data or data as
instructions if this would be of any use.

A powerful programming technique involves performing arithmetic
on memory reference instructions in order to alter the location
being referenced. In this case, the instruction is treated as

an operand and incremented, decremented, etc. Logical operations
such as masking certain bits may also be useful. Such

techniques are useful when manipulating large data tables.
Example 5 has shown one technique of manipulating jump address
pointers.

Consider the following example:

3-7

0200 7300 CLA CLL /Clear AC and L

0201 1213 TAD 0213 /Get # of data items

0202 7041 CMA IAC /2's complement of constant

0203 3213 DCA 0213 /Store TALLY

0204 7240 CLA CMA /AC = 7777

0205 0300 AND 0300 /AND contents of 0300 with AC

0206 7450 SNA

0207 5215 JMP 0215

0210 2205 ISZ 0205 /Increment address field

0211 2213 ISZ 0213 /Increment TALLY

0212 5204 JMP 0204 /Jump back to check next item

0213 0100 TALLY /Constant giving # of items to
be checked

0214 0777 MASK /Used to mask off opcode bits

0215 1205 TAD 0205 /Get instruction referencing
zero data item

0216 0214 AND 0214 /Zero opcode bits

0217 3221 DCA 0221 /Store address of zero item

0220 7402 HALT /Halt

0221 /Address of zero item

This program checks data stored in locations 0300g to 03778, when
it encounters a zero data item in the Tist, it stores the address
of this item in 0221 and stops.

Location 0213 initially contains the number of items stored

starting in location 0300. The program replaces this number

with its negative by two's complementing it. Successive data

items are then read, AND'ing with 7777 in the AC. Note that

if the AND Teaves a non-zero AC, the AND instruction is incremented,
stepping to the next item. A logical operation is done with

this instruction to strip off the opcode bits when and if a

zero data item is eventually detected. For this purpose, the

mask 0777 is stored in 0214,

On powering up most locations will be non-zero, so the user can
put a zero anywhere he chooses to check Example 8 operation. This
technique of modifying instructions is a dangerous one to use in
many situations because programs may be unintentionally changed
because of an undiscovered "bug". (Modern concepts of structured
programming discourage the use of this technique, but it is
included because in some microprocessor applications, it might
save memory locations.) For example, in this case, every time the
program is rerun, Tocations 0205 and 0213 must be initialized.

EXAMPLE 9 - USING CONDITIONAL SKIPS

Group 2 microinstructions are primarily conditional skips and may

be used to test conditions other than the number of passes that have
been made through a loop. That is, the program may be made to

loop an indefinite number of times until a specific condition is
present in the accumulator or link bit. When two or more skip
conditions are microprogrammed into a single instruction, the
resulting condition on which the decision will be based is the
logical OR of the individual conditions when bit 8 is 0, or, when
bit 8 is 1, the decision will be based on the logical AND.

3-8

In the last example, the SNA instruction was used to skip on

non-zero accumulator. The loop would continue as long as the
next instruction was skipped and when the AC became zero, the
program would jump out of the loop.

Very often conditional skips are used along with Group 1 operate
microinstructions. The Group 1 instructions are used to
manipulate the AC and L with shift, rotate, set, clear operations
to set up these registers for testing with conditional skip
instructions. This is used extensively in the MONITOR program,
for example, in the routine called HEX (see 1isting of MONITOR
and Chapter 8).

The following segment of code is in the MONITOR locations
6466-6471.

6466 7640 _ SZA CLA

6467 5263 JMP 0OK2
6470 7260 CLA CMA CML

6471 5263 JMP 0K2

This segment shows testing of the AC to see if it is zero or
not. If AC is not zero, the program jumps to 0K2. AC (0) can
be tested with instructions such as SMA, skip if AC is less
than 0, SPA, skip if AC is greater than or equal to 0, and
their combinations, and the Link can be tested with
instructions such as SZL, skip if Link = 0, SNL, skip if

Link = 1. Combinations are possible which test these bits

in one instruction, for example, SMA, SNL, skip if AC is

less than 0 OR if Link = 1, or SPA SZL, skip if AC is greater
than or equal to 0 and L = 0.

The user should note that SMA SNL will produce a skip on minus
AC OR non-zero link OR both, whereas SPA SZL will produce a
skip on plus AC AND zero link (both conditions must be present
for a skip).

The example also shows how microprogrammed combinations of
microinstructions may be used to set various constants into
the AC.

The instruction in location 6470 sets AC to -1 by first
clearing it, then complementing it and the Link to get
two's complement of -1, (7777g).

EXAMPLE 10 - FLOWCHARTING A PROGRAM

Flowcharts may be used to represent hardware operation as well
as to represent an algorithm to be implemented in software.

As an example of an algorithm, or computational procedure, we
shall work out a program to computer the product of two octal
numbers.

PROBLEM: Computer the product of two octal numbers.

ASSUMPTION: The numbers are positive integers and their
product does not exceed 40951g or 7777g.
The 1st operand is not zero.

SOLUTION: Many different multiplication algorithms
exist. We shall choose a simple, inefficient
one which is easy to understand and flowchart.

Add one number repeatedly to itself using a
second number to determine the number of
additions.

The program will make use of a memory reference instruction
known as "Increment and Skip on Zero". The ISZ instruction
adds a 1 to the referenced data word and then examines the
result of the addition. If the result is not zero, the
program continues in sequence, performing the instruction
following the ISZ. 1If the result is zero, the instruction
following the ISZ is skipped (by incrementing the Program
Counter again). In either case, the result of the addition
replaces the original data word in memory.

By computing the 2's complement of one operand (data word) and
referencing it with the ISZ instruction, we can repeatedly add
the second operand to itself until the desired product is
obtained. At this point, the counter becomes zero and the
Toop exit is taken.

After entering the program as shown, data may be entered into

locations 0032 and 0033, the Program Counter is set to the
starting address, and the program is run.

3-10

INITIALIZE

1

Read 1st Operand

]

Compute 2's Complement
of 1st Operand

Store Loop Counter

g

ADD 2nd Operand

¢

Increment Loop Counter

NO

Counter = 0

YES

Store Product

!

HALT

FIGURE 3-1

3-1

0020 7300 CLA CLL

0021 1032 TAD 0032
0022 7041 CMA IAC

0023 3031 DCA 0031
0024 1033 TAD 0033
0025 2031 ISz 0031
0026 5024 JMP 0024
0027 3031 DCA 0031
0030 7402 HLT

0031 loop counter and final product
0032 1st operand
0033 2nd operand

PROGRAM TO MULTIPLY TWO OCTAL NUMBERS TOGETHER

CNTRL SETPC 0 0 2 0
CNTRL MICRO OPR1 CLA CLL
CNTRL TAD 0 0 3 2
CNTRL OPR1 CMA IAC
CNTRL DCA 0 0 3 1
CNTRL TAD 0 0 3 3
CNTRL ISZ 0 0 3 1
CNTRL JMP 0 0 2 4 enter program
CNTRL DCA 0 0 3 1
CNTRL 0OPR2 HALT
CNTRL
CNTRL SETPC 0 0 3 2
CNTRL MEM 1st OPERAND
MEM 2nd OPERAND
CNTRL SETPC 0 0 2 0 execute program
CNTRL RUN Display shows product

For example, if 1st operand is 00004 and 2nd operand is 0010, the
display will show 0040. The user will also find it instructive

to load small numbers as operands and single-step through the
program to verify that the program follows the flowchart. Thus,

set the PC to 0020, then press "CNTRL", "SIN" and then press the
"SIN" key repeatedly. Each time it is pressed, the program executes
one SINgle instruction. At any point, the user may set the PC

to 0410 to examine the contents of the accumulator (this is explained
further in Chapter 8) and resume execution of single instructions

by resetting the PC to the last address the user had stopped at and
continuing with SIN key depressions.

3-12

The yellow Inspect AC key may be used in the MICRO mode to
inspect AC contents at any time. The user may alternately
single step and press IAC to note the change in the AC. Note
that when the program is fully executed in SIN mode, location
0031 is found to contain the loop counter value 0000 instead
of 0040 even though the AC contained 0040 prior to single
stepping the DCA 0031 instruction.

The reason is that the MONITOR saved the loop counter and
placed a breakpoint in its place and even though the single
instruction was executed properly, the loop counter was
restored. A complete explanation may be found in Chapter 8
in the description of the SINGLE INSTRUCTION EXECUTE routine.

The DCA 0031 in location 0030 may be replaced by a NOP,
7400 while single stepping. In the RUN mode, of course,
the program will halt showing the final product in location
0031. The Inspect AC feature could be left on in the RUN
mode, but since the AC is cleared when the DCA is executed,
this is not particularly useful.

It is instructive to replace the DCA 3031 in location 0027
with a JMP 0020 or 5020, then running the program with the
Inspec AC mode on. The flickering of the display reflects
the continually changing contents of the AC as the program
is executed repeatedly. Use the RESET switch to get out
of this Tloop.

The user will find it useful to rewrite the program to make
the assumptions less restrictive. For example, a check
could be included to test for a zero Ist operand and, if the
test was true, the product zero could be immediately
calculated. Tests for negative operands could be included
and/or checks for arithmetic overflow.

3-13

EXAMPLE 11 - BIT MANIPULATION

Often, it is necessary to set, clear or determine the status of
individual bits in a word. For example, a peripheral interface
may be returning the status of various devices, and the processor
must take action conditional on the status of these flags.

There are several methods. In one, the AC is rotated until the
desired bit is in the link and then group 2 operate micro-
instructions are used to skip conditionally on the link status.
This technique is illustrated in Example 9. Another method is
to AND a mask word with the AC, zeroing out all bits except the
one to be tested and then testing the AC for zero.

This technique will be illustrated with an example from the SIN
routine in the MONITOR.

7450 1400 INDB, TAD I SAVPC /get the instruction

7451 0262 AND LOT /mask out indirect bit

7452 7650 SNA CLA /test; is bit set

7453 5564 RETURN /no; return with true
address in TIME

7454 1544 TAD I TIME /yes; get true address

7455 3144 DCA TIME /place it in TIME

7456 5564 RETURN /return with true address

. in TIME
7462 0400 LOT, 0400 /AND mask word

This routine INDB, determines the effective address referenced

by an instruction and places it in location TIME. By AND'ing

the instruction with 0400, the AC will be non-zero if the indirect
bit, bit 3, is set and zero if this bit is zero.

The methods for setting and clearing bits are similar. One can
rotate the bit into the Tink and then use group 1 microinstructions
to clear or set the link. This has the advantage that rotates

may be combined with link bit operations in one instruction.

To clear a bit, one can AND the word in AC with a word containing
one's everywhere except in the desired bit position. To set a bit,
one can add a word containing zero's everywhere except in the
desired bit position. This technique is used by the bit set
routines in the MICROINTERPRETER, ROM locations 7243-7275.

The next example shows the use the MQ register in logical

operations. It will be seen that this register may also be used
in bit manipulation operations.

3-14

EXAMPLE 12 - LOGICAL OPERATIONS

Boolean operations play an important role in computer logic.
We have seen examples of how the AND instruction can be used
to mask out selected bits.

The NOT or logical complement operation is easily performed by
placing the logical data word in the accumulator and executing
a CMA, complement AC, instruction.

The inclusive OR operation is performed by placing one logical
operand into the MQ register (executing an MQL - Toad MQ from
AC), loading the second logical operand into the AC, then
executing an MQA instruction (contents of the MQ are OR'ed with
contents of the AC).

Any Boolean operation may be synthesized using combinations of
the basic AND, OR and NOT operations.

EXAMPLE 13 - I/0 PROGRAMMING

Chapter 7 and Chapter 8 give examples of I/0 instructions as
used in INTERCEPT JR.

There are three methods by which information may be transferred
between INTERCEPT JR. and peripheral devices:

1) DMA I/0 transfer
2) Interrupt I/0 transfer
3) Programmed I/0 transfer

The first method involves Direct Memory Access, DMA, by an I/0
devices and allows for high speed transfers of blocks of data

at essentially the memory cycle rate. The transfer is controlled
without processor intervention on a "cycle stealing" basis.

That is, the I/0 device requests a DMA cycle and the processor
grants it at the end of the current instruction. (See Figure 17
of the IM6100 brochure). The processor tri-states its bus
drivers and from that point on, as long as the DMA REQ line is
active, the device controls the DX bus and data transfers on the
bus. Typical DMA using devices are disks, tapes and CRT screen
refresh circuits.

INTERCEPT JR. primarily uses the last two methods. Both of
these require CPU intervention. Interrupt transfers use the
interrupt system to service one or more peripheral devices
simultaneously, permitting processing to be performed con-
currently with data I/0 operations.

Both methods use the AC as a data buffer for transfers in
both directions.

Interrupt programming is especially useful in real time systems
which are required to respond to real time events. The time

spent waiting for a change in device status is greatly reduced or
even eliminated. This is done by writing 1/0 handling routines
which are separate from the main program and using the interrupting
capability of I/0 devices to enter these routines only when the

I/0 device is either ready to perform a data transfer or requires
CPU intervention. Thus, as long as the device does not request

an interrupt, the mainline program may continue to run and time

is not wasted "polling" 1/0 devices for changes in status.

In INTERCEPT JR., the control panel timer generates interrupt
requests at periodic intervals. The display refresh routine that
periodically drives the LED displays is an example of an I/0
handling routine. When the main program is interrupted, a

method of returning to it after servicing the interrupt request
is necessary. INTERCEPT JR. saves the current content of the PC
in location 0000g of the memory and fetches the next instruction
from location 0001g if an external I/0 device requests an
interrupt.

In the case of a control panel interrupt, the return address
is stored in location 0000g of panel memory. This is the
same as 0000g of page O of the main memory in the INTERCEPT JR.

For further details on device interrups and CP interrupts, refer
to the IM6100 and IM6101 data sheets.

The third, and slowest method, that of programmed data transfer,
is also the simplest, needing a minimum of hardware support. The
INTERCEPT JR. PIEART board uses this technique. The processor,
upon recognizing an I/0 instruction, opcode 6g, places the
instruction on the DX bus during IOTp © LXMAR. The selected
device communicates with the CPU through four control lines--

Co, C1, C2 and SKP. The control 1ine SKP, when low during an
I0T, causes the CPU to skip the next sequential instruction.

The INPIE, TALK, LISN, and READ routines of the MONITOR should be
studied to see the use of I0OT's in programmed data transfer.

For example, the print to TTY routine is as follows:

3-16

7600
7601
7602
7603

7604

6163
5200
6161
3144

5564

TALK,

SKIP2 /Skip on clear Xmit buffer
JMP . -1 /Xmit buffer not yet clear
WRITE] /Write AC to Uart Xmit buffer
DCA TIME /Clear AC and store the

old character in TIME
RETURN

Note the use of the SKIP2 instruction to implement a "wait" Tloop.
When the condition is satisfied, the loop is exited. The device
must activate the SKP Tine back to the CPU in order for the

CPU to skip the next instruction.

The WRITE1 instruction is another IOT used to write the AC to the
UART. (See Chapter 7 for device address codes and command codes.)
Refer to the IM6100 and IM6101 data sheets for more information.

The next chapter describes dedicated IOT instructions used in
INTERCEPT JR. namely 6400 - Load Display, 6402 - Enable/Disable
CP Timer, 6403 - IOT CPREQ, 6406 - I0T Reset, 6407 - IOT RUN.
The experienced user may use these to shut off the timer and
perhaps use subroutines in the MONITOR for his own purposes,
for instance, display information other than the USERPC and its

contents.

EXAMPLE 14 - TELETYPE I/0 USING MONITOR CALLS

The following program makes use of the MONITOR ROM PIE-UART
subroutines by calling them via the software stack mechanism.

The control panel interrupt requests must be shut off to prevent

timing difficulties.

0100
0101
0102
0103
0104
0105
0106
0107
0110

7340
6402
4161
6340
4161
7613
4161
7600
5104

Set AC to 7777

Disable CP request timer

CALL

PIE initialization routine INPIE entry address
CALL READ from

Teletype routine

CALL TALK, the print

to TTY routine

Jump back for next character

3-17

Note that the stack mechanism requires that the CALL
instruction (JMS 0161) be followed by the entry address

of the subroutine. (See Appendix L, ROM Based Subroutine Calls)

EXAMPLE 15 - PRINTING UNDER KEYPAD CONTROL

The following program will print ASCII characters on a
Teletype under control of the INTERCEPT JR. board.

Refer to Appendix F for the ASCII character set.

070
071
072
073
074
075
076
077
100
101
102
103

104
105
106

107
110
111
112
113
114
115
116
117
120
121
122

7340
6402
4161
6340
7300
4161
6156
4161
6441
7004
7006
7002

1121
7500
7001

7002
3122
4161
6156
4161
6441
1122
4161
7600
5104
0002
0000

BACK

K000z,
TEMPT,

STA STL
10T TIMER
CALL
INPIE
CLA CLL
CALL
CLKPD
CALL
HEX

RAL

RTL

BSW

TAD KO002
SMA
IAC

BSW

DCA TEMP1
CALL
CLKPD
CALL

HEX

TAD TEMP1
CALL
TALK

JMP BACK
0002
0000

/Disable

/Control panel timer
/Initialize

/PIEART interface

/Wait for keypad

/To clear

/Read octal

/Data from keypad

/Shift three places

/Left and swap bytes

/To determine leading
code digit

/MSB of ASCII code
always one

/Is 2nd ASCII digit
4,5,6,7?

/No, 1st digit must
therefore be 3

/Yes, 1st digit must be 2

/Store temporarily

/Wait for clear

/Keypad

/Read 2nd octal

/Digit

/Assemble ASCII character
/Transmit character

/To printer

/Go back for next character

Appendix F shows that the 8-bit ASCII character codes have the
property that if the left octal digit is 2, the second octal
digit is 4, 5, 6 or 7, and if the left octal digit is 3, then

the second octal digit is 0, 1, 2 or 3.

This program allows the user to enter characters as two
successive octal digits.

3-18

Note that this assumes the eighth (parity) bit is always set.

EXAMPLE 16 - PROGRAM TO DEMONSTRATE I/0 TO 6957 AUDVIS MODULE

0225 7201 CLA IAC /Set AC=0001

0226 6402 ENDIS TIMER /Shut off CP timer

0227 7000 NOP

0230 7000 NOP

0231 7604 READ, LAS /Load keypad to AC

0232 7450 SNA /Key depressed?

0233 5231 JMP READ /No, go back to try again

0234 6404 LD DISPLAY /Display AC on LED
register

0235 6401 CLOCK /Click speaker

0236 5231 JMP READ

The first two instructions shut off the control panel interrupt timer.
The three instruction loop in locations 231, 232, and 233 cause the
processor to wait until a key is depressed, and when this occurs, to
load the LED register with the AC and CLICK the speaker.

While a key is depressed, the processor executes the instructions

LAS (15 major states)
SNA (10 major states)
LD DISPLAY (17 major states)
CLOCK (17 major states)
JMP READ (10 major states)

continuously, and the speaker "clicks" merge into a high pitched
beep. The fundamental frequency of this "beep" is easily calculated
by counting the number of major states in the above instruction
sequence, multiplying by twice the clock period and taking the
reciprocal of this number.

In this case, there are 69 major states; and, assuming a 2.56MHz
crystal, the clock period is 390 ns, and the "beep" frequency is
17 (69 X 2 X 390 X 10-6) = 18 KHz.

Now change the instruction in location 0236 to 5230. This adds a
NOP, or 10 more major states to the loop, decreasing the frequency
of the beep. By placing 5227 in location 0236, the frequency is
lowered further. This program enables the user to find out which
DX line each key is connected to.

Instead of a beep, the program can be made to click on each key
depression by replacing the two NOPs with 4161 and 6156. This calls
the CLKPD subroutine which waits for a clear (fully released)

keypad before returning to the calling program.

3-19

The action of the HEX program which encodes key depressions in order
to generate MONITOR program subroutine starting addresses may be
easily seen by replacing the three instruction keypad read loop in
locations 231, 232 and 233 with the sequence 7000, 4161, and. 6441.
As before, 4161 is a JMS to the top of the RAM subroutine stack and
6441 is the starting address of the HEX routine. Descriptions of
these programs may be found in Chapter 8, and a discussion of the
software stack may be found in Appendix L.

The program just entered should have looked 1ike this:

0225 7201
0226 6402
0227 4161
0230 6156
0231 7000
0232 4161
0233 6441
0234 6401
0235 6404
0236 5227

EXAMPLE 17 - REAL-TIME PROGRAMMING

A.

MONITOR subroutines

Note that when using MONITOR subroutines via the stack mechanism,
the CP timer should in general be disabled. The stack base is
initialized only on power-up, but there is always a slight chance
that when the user calls a subroutine and the user program is
setting up the return linkage, a CP interrupt with the resulting
CALLs to REFSH, SWDB, CLKPD could disturb the locations used to
set up the user subroutine return.

Programming for user-generated interrupts

Programs using input and output routines spend a lot of time
in loops (skip on device ready flag instruction followed by
JMP*-1) waiting for a peripheral device to accept or transmit
data. The processor can spend this time productively by
using the interrupt facility to signal external conditions to
the running program. These external conditions could be
peripheral device flags (ready for operation, operation
complete, etc.) or alarm conditions (power fail detected).

When the interrupt system is enabled (via execution of the
ION instruction), then whenever a device generates an
interrupt request to the running program, the following
operations occur:

3-20

1) The instruction currently in execution is completed.
2) The INTGNT (interrupt grant) signal is activated.
3) The contents of the PC are stored in location 0000g.

4) The interrupt system is turned off so no further interrupt
requests will be acknowledged.

5) The IM6100 begins executing instructions starting at 0001g.

Location 0001g usually contains a direct or indirect JMP to the
entry address of an interrupt service routine. In simple systems,
the interrupt handler may begin at 00018.

The interrupt handler in general must perform the following:

1) It must save processor status. In general, this means the
contents of the AC, L, MQ, instruction and data field registers,
and any other data required for proper resumption of execution.
The structure of the mainline program (background program) and
the interrupt handlers (foreground programs? determines the
amount of information needed to be saved.

2) The various I/0 devices must be polled to determine which
one generated the interrupt. Upon identification, control
must be transferred to the proper device service routine.

3) The required service is performed, and the device
interrupt flag is cleared.

4) The processor status is restored, the interrupt system is
enabled by executing an ION or RTF instruction. Both
these instructions take effect (turn the interrupt system
on) only after the next sequential instruction, a JMP I
00008.

5) The JMP I 0000g causes execution to resume as if no
interrupt had occurred as long as all the required
status was saved and restored, and the time delay to the
mainline program was not significant.

3-21

If a second interrupt occurs while an interrupt is being serviced,
the return address in location 0000 would be lost unless the
interrupt system is disabled while servicing the first interrupt.

Such a situation may occur when high and Tow speed devices are
being concurrently serviced. To ensure rapid response to the

high speed device, the interrupt system is re-enabled before the
Tow speed device has been completely serviced. The interrupt
handler must, therefore, save the return address and the low

speed device service routine must return indirect through the save
address rather than 0000g.

In the INTERCEPT JR., control panel interrupt requests have
higher priority than device interrupt requests so a similar
situation arises.

Device identification may be accomplished in several ways.

Each device must recognize certain IOT instructions addressing

it. At least one of these, in a device capable of requesting
interrupts, is a "skip on interrupt request" instruction. When
this instruction is executed, if the addressed device is
grounding the INTREQ 1ine it will also ground the skip (SKP) Tline.
This causes the next instruction (typically an unconditional

skip) to be skipped and a JMP instruction executed to the proper
service routine.

Typical code follows:
EXAMPLE 17A

HANDLER, DCA ACSAVE /SAVE AC

RAR /GET LINK,

DCA LKSAVE /AND SAVE

KSF /KEYBOARD STATUS FLAG?

SKP /NO; CHECK PRINTER

JMP KBD /YES; GO TO KEYBOARD
/SERVICE ROUTINE

TSF /SKIP ON PRINTER INTERRUPT

SKP /NO; GO TO EXIT SEQUENCE

JMP PRT /YES; GO TO PRINTER SERVICE
/ROUTINE

CAF /CLEAR ALL DEVICE FLAGS

JMP EXIT /AND RETURN

EXIT, CLA /CLEAR AC

TAD LKSAVE /READ LINK STATE

CLL RAL /AND RESTORE

TAD ACSAVE /RESTORE AC

ION /ENABLE INTERRUPTS AFTER
/NEXT INSTRUCTION

JMP I 9 /RETURN TO MAINLINE PROGRAM

3-22

The instruction sequence which determines the interrupting
source is called a "skip chain” because of the number of
skip instructions.

Skip chains must be designed so that high-speed devices are
tested near the top of the chain and that information loss
does not occur due to timing problems.

I[f two interrupts occur simultaneously, the high speed
device, being higher up in the chain, will be serviced
first, and the low speed device will be serviced as soon as
the interrupt system has been re-enabled and the background
program has been resumed because it will request another
interrupt.

Alternatively, the skip chain may use JMS instructions to

the device service routines. Upon termination of the higher
priority device service routine, the skip chain is reentered,
without re-enabling the interrupt system. Polling of lower
priority devices may thus continue and the skip chain must
terminate with an ION, JMP I @ to return control to the
mainline program if no further interrupt requests are pending.

Another case arises when during the execution of a low speed
device service routine a high speed device requires service.
Because the interrupt system is disabled, the request for
service may be ignored long enough for information to be lost.

Sometimes, a device may not be capable of high speed data
transfers, but it has high priority nevertheless. This is

the case of control panel interrupt requests in IM6100 systems
such as the INTERCEPT JR. A priority interrupt system can

be established through software by the following sequence

of operations:

1) Begin low priority device service routine by saving all
required processor status as well as background program
return address in 0000g.

2) Execute an ION instruction.

3) Clear low priority device interrupt request flag.
Interrupt system is now enabled.

4) Service the device as required. A high priority interrupt
is permissible now without losing the background program
linkage.

5) Terminate the service routine by restoring processor

status and return to the background by an indirect jump
via the stored return address.

3-23

The INT pushbutton on the AUDVIS card generates an interrupt to
the IM6100. The following example illustrates interrupt
programming techniques. On receiving the interrupt, the IM6100
automatically saves the PC in location 00008 and executes the
instruction in location 0001g. The example interrupt service
routine will simply display the current value of AC, re-enable
interrupts, and return to the main program.

INTerrupt GraNT (INTGNT) becomes active after an INTREQ

is recognized, and is reset after the first 10T instruction
is executed. During the time INTGNT is active, CPREQs are
gated off by the hardware.

EXAMPLE 17B
/INTERRUPT SERVICE ROUTINE

0001 3020 DCA ACSAV /SAVE AC

0002 1000 TAD 0000 /GET SAVED RETURN ADDR
0003 3021 DCA PCSAV /AND SAVE IN PCSAV

0004 1020 TAD ACSAV /RESTORE AC

0005 6404 DISP /AC TO DISPLAY

0006 6001 ION /RE-ENABLE INTERRUPTS
0007 5421 JMP 1 PCSAV /RETURN TO MAIN PROGRAM
0020 0000 ACSAvV, 0000 /AC SAVE LOC

0021 0000 PCSAV, 0000 /PC SAVE LOC

/MAIN PROGRAM

/INCREMENT AC REPEATEDLY. WHEN INT
/PUSHBUTTON IS PRESSED THE INTERRUPT
/SERVICE ROUTINE WILL DISPLAY THE
/CURRENT VALUE OF THE AC.

0022 6001 START, ION /ENABLE INTERRUPTS
0023 7001 LOOP, IAC / INCREMENT AC
0024 5023 JMP LOOP /AGAIN AND AGAIN

In the INTERCEPT JR., the CP timer need not be turned off for user
generated interrupts provided that the CP TIMER routine execution
time does not interfere with the device interrupt response or
service time. This is because the hardware uses INTGNT to gate

CP interrupt requests.

However, INTGNT is reset by the execution of any I0T and this
would allow CPREQs to get through once again.

Note that the execution of an IOT after an INTGNT is also used

by pheripheral devices to place an interrupt vector on the
DX bus.

3-24

Interrupt vectoring is a procedure by which an interrupting device
can identify itself eliminating the need for a skip chain. The
device places an address (the interrupt vector) onto the DX bus
which is used by the processor to branch to the appropriate device
service routine. Prioritization of the devices is accomplished

in the hardware by a "priority chain" such that a device may
request an interrupt only when no higher priority device is also
requesting an interrupt.

A user interrupt routine in an INTERCEPT JR. system with vectored
interrupt should be functionally identical to one of the
following routines:

EXAMPLE 17C-Interrupt Service Routine without timer off:

0000 0000 0000 Return address

0001 3006 DCA AC Save AC in 0006

0002 1000 TAD 0000 Get interrupt return
address

0003 3007 DCA PC Save return address in 0007

0004 6002 I0F Vector to user service
routine

0005 0000 0000

0006 0000 AC, 0000
0007 00 PC, 0000

Note that the CP Timer is gated off while the instructions in
0001-0004 are being executed by JR. hardware (gate D4).

Also note that the user interrupt service routine should
return indirectly through location 0007 (JMP I 0007-5407) and
the service routine should use contents of location 0006

as AC.

The user interrupt service routine is quite likely to be
interrupted hy the CP Timer but the timer routine will
return properly to the user routine.

EXAMPLE 17D-Interrupt Service Routine with timer off:

0000 0000 0000 Return address

0001 3006 DCA AC Save AC in 0006

0002 1000 TAD 0000 Get return address

0003 3007 DCA PC Save in 0007

0004 7001 IAC IAC

0005 6402 EN/DIS Timer Disable timer and vector

0006 0000 AC, 0000
0007 0000 PC, 0000

This routine may let one CP Timer request through since the
timer oscillator may have already clocked the request FF (D5).

3-25

Unfortunately, the only way to guarantee that no timer
request interferes with the interrupt service routine
execution time is to turn it off in the main program
itself. One must do this, in any case, if the interrupt
response time is critical.

Please note that locations 0010-0017 are autoindexed and
hence they must not be used to save PC since the contents
of 0010-0017 will be incremented by 1 before being used
if they are referenced indirectly, for example, by an
instruction JMP I 0010 (5410).

Note the examples 17C and 17D use the techniques described
earlier for a system with a high priority (CP) and low
priority (user) device. The IOT instructions reset INTGNT,
allowing CP requests to get through and vectoring to the
user service routine. In example 17C, the IOF is used purely
to vector, as the user interrupt system is already
automatically disabled. 1In more complex priority interrupt
systems, interrupt processing for a given device can be
interrupted in order to service higher priority devices, and
this procedure is facilitated by saving interrupt return
addresses and interrupt processor state on a stack similar
to the MONITOR subroutine stack.

Real time systems are much harder to debug because of the
asynchronous nature of the signals and events. Failures
that occur non-repetitively and seemingly at random are very
hard to pinpoint. The user must be much more careful in
writing and documenting software, and analyze interaction
between program segments thoroughly.

As an example of a simple failure because of an asynchronous
event, consider an interrupt service routine that did not
save location 0000g.

EXAMPLE 17E

0050 IéN /ENABLE DEVICE INTERRUPTS
0051 JMP T P /RETURN TO BACKGROUND

Assume that a CP Timer request was generated immediately after
the execution of the ION in 0050. Now location 0000 will

have 0051, the return address. After the timer service
routine, the program returns to 0051 which specifies a JMP I D,
that is, to jump to itself (since 0000 has 0051). So the
program will get stuck here and will never get out.

3-26

SKP Programming

Often the programmer wishes to test the condition of an
external device and execute different program segments
depending on the result. One way of accomplishing this
is to read the device status (with an IOT instruction)
into the AC and then use a conditional skip operate
instruction to perform the test. Another method uses a
single I0T instruction (called a SKIP IOT) which tests on
external device and skips the next sequential instruction
if the test was successful. The SKP pushbutton on the
AUDVIS module is a "device" which may be tested in this
manner using a 6405 SKIP IOT instruction. The 6405 IOT
in this case also reads the switch register into the AC,
but it is possible to have a SKIP IOT which does not
modify the AC. In the following example, the switches
are read into the AC, and the AC is two's complemented

if the SKP pushbutton is not pressed. Finally the AC is
displayed on the LED readouts.

EXAMPLE 17F

0020 6405 START, RDSWRG /READ SWITCHES AND SKIP
IF SKP BUTTON PRESSED

0021 7041 CIA /NEGATE AC
0022 6404 DISP /DISPLAY AC
0023 5020 JMP START

3-27

CHAPTER 4
INTERCEPT JR. MODULE

INTRODUCTION

As shown on the schematic, all memory and I/0 devices are
connected to the IM6100 DX bus. The twelve (12) bit bus carries
time-multiplexed addresses and data from memory and I/0 devices.

Timing information must be provided to strobe data on and off
the bus and select lines are needed to enable the proper devices.

The MONITOR ROM and 256 x 12 RAM are mapped in upper and lower
areas of the 4K address space, and it is necessary to select
the proper devices during memory I1/0.

The keyboard commands must be interpreted after making sure
switch bounce does not cause erroneous operation.

The ADDRESS and MEMORY display digits are multiplexed in order to
reduce the number of decoder/drivers required.

The IM6100 microprocessor used in the INTERCEPT JR. is the commercial
temperature range device and a 2.46 MHz crystal is used in order to
ensure operation of the system as battery voltage falls from 6 V to
4.5 V.

TYING ON TO THE DX BUS

The DX bus carries addresses and data at different times. A1l
peripherals and memory address inputs, peripherals and memory
data inputs and outputs are connected to the bus. All elements
connected to the bus are, therefore, tri-state devices.

Data strobes and device signals must be generated in order to
demultiplex data from the bus or multiplex data onto the bus.

The MONITOR ROM, a 1024 x 12 device is mask-programmed at the
factory to decode the lower ten (10) bits as an address, and the
upper two (2) bits as a chip enable. For example, the MONITOR
ROM, as supplied by the factory, has the upper two bits mask
programmed to 11 to select the ROM for 6000 to 7777.

When data is read out, the chip puts its data out onto the DX
bus. Thus the DX pins on the 6312 are bidirectional (addresses
in and data out).

The RAM is 256 x 12, implemented in CMOS by 3 6561 chips, each
256 x 4.

The Ag-A7 address inputs and the I/0 data pins are connected to the
DX bus.

4-1

ADDRESS DEMULTIPLEXING

DATA

Both the ROM chips and the RAM chips have internal address latches.
These latches are loaded from the address inputs when the strobe
input STR is driven Tow. When STR is low, the latches are not
affected.

When the processor places memory address data on the bus, it
drives the signal LXMAR at pin 10 Tow. This signal, Load External
Memory Address Register, is intended to strobe the memory address
latches. Note that the chip does not have to be selected in order
to latch address information.

DEMULTIPLEXING

After the CPU places a memory address on the bus, a data transfer
must take place either into the CPU from memory or from the CPU to
memory. The direction is indicated by the XTC line. The various
SELECT Tlines are activated during the data-in and data-out phases
of the memory cycle. XTC is high for the first half of a memory
cycle (when memory read operations may be performed) and Tow for
the second hal¥ (when memory may be written into). Thus XTC may
be directly connected to OEH, Output Enable Active High, of the
ROM chips and R/W, Write Enable Active Low, of the RAM chips to
enable these chips for reading or writing. During XTC high, of
course, the RAM may be selected for reading. The memory outputs
will not be activated unless the chip has been selected as well
as had its output enabled. Otherwise, many chips would be
activated at the same time.

Obviously, it would be undesirable to simultaneously read from
several devices onto the same DX lines at once.

For this reason, the active low chip select pins on the RAM chips
and OEL, Output Enable Active Low, on the IM6312's are connected

to the SEL 1ine. This line may be strapped to either the "MEM SEL"
line or the AND'ed combination of "MEM SEL" and "CP SEL". These

are active low signals generated by the CPU to select user memory,
MEM SEL, or control panel memory, CP SEL. With only the Intersil
provided control panel ROM in the system, the jumpers should provide
the combination AND signal. This combination signal will select
memory when either MEM SEL or CP SEL goes low.

Another aspect to be considered is how addressable memory space is
partitioned. In the INTERCEPT JR., the MONITOR ROM occupies the
highest 1K of the basic 4K address space and the RAM occupies the
lowest 256 words of this space. It is possible to program 256 word
pages of the 4K address space for RAM into the IM6312 ROM such that
it will generate an RSEL, RAM SELECT, signal by decoding the high

4-2

order four bits of the address. These fields must obviously be aligned
with page boundaries. RSEL is connected to CS7 of the IM6561's. In
the IM6312-002 MONITOR ROM, RSEL is activated by "0000" on DXO, DX1,
DX2 and DX3.

RSEL allows random mapping of double page RAM fields within the 4K
address space. Note that the base page, or at least the first 16
locations must be writable in order for autoincrement instructions
and interrupt instructions to work. Also note that the highest
location (7777) should normally be in ROM as it is used as a pointer
to power up initialization routines. See Figure 8-1 for a memory
map.

Normally the RAM area does not overlap with the ROM area, therefore,
one of the RAM chip select pins is kept permanently Tow by a jumper
to GND so that selection depends only on the chip select connected
to the SEL Tine. BVCC is always present for data retention.

The mapping of RAM into ROM space is of significance should the
user generate a ROM to be placed in the spare socket which requires
this feature. In such a case, the RAM chip select jumper must be
connected to the appropriate RSEL pin. The ROM is mask programmed
to generate RSEL appropriately.

Please refer to the IM6312 data sheet for further details.

KEYBOARD INPUT

The INTERCEPT JR. uses a 12 switch keyboard which is an ideal
situation as there are 12 DX lines. Each key is connected through
a 3-state inverting buffer to the corresponding DX line.

When the CPU executes an OSR instruction, OR Switch Register with

accumulator contents, it activates the SW SEL, Switch Select, line
and OR's the DX bus with the accumulator. SW SEL is used to enable
the keyboard buffers thereby giving the means to read the keyboard.

Naturally, it must not respond to illegal key closures (illegal
combinations, bouncing, or too many keys being depressed, etc.).
These conditions are checked by the firmware, to be described later.
To improve noise immunity, the inputs to the buffers are pulled up
to VCC via 1K resistors in a DIP package.

DIGITAL DISPLAY OUT

The INTERCEPT JR. has two display registers, each with four
decimal (BCD) digits.

4-3

Each register is driven by a type 4511 CMOS BCD-TO-7 segment latch/
decoder/driver and four transistors that enable successive digits
in turn (H2, J2, Q1, Q3, Q4)*.

The CPU loads the BCD latch with a digit each, and the 34042

quad CMOS latch (G2) with a single bit and this enables two
particular digits to display the decoded contents of the BCD
latches. In the next cycle, the BCD latches get loaded with the
contents of the two adjacent digits and the bit shifts one
position in the quad latch, enabling the next digits, and so on.
The CPU can blank the displays under keyboard control in order to
conserve battery power.

The data in the AC is loaded into the display latches by 'LOAD
DISPLAY' at IOTA - XTC - DEVSEL. The 'LOAD DISPLAY' command is
generated by IOT decoding circuitry to be described in the next
section.

The 2N2222 transistors, when turned on by the shifting bit, connect
the LED common cathode to a low voltage. The drivers source current
to individual segments, lighting these up for the time that the

bit keeps that digit selected (nominally 8 ms at 4 MHz).

I0T PROCESSING

The INTERCEPT JR. uses Programmed Data Transfer techniques for all
I/0 operations. This technique uses the IM6100 IOT instructions,
which have an octal opcode of 6, to initiate peripheral I/0 operations.
These operations could be sensing of peripheral device status flags,
for example, 'is TTY ready", or controlling device operation, for
example, "move disk head to next track", or a data transfer operation,
for example, "read character". The nature of the operation depends
entirely on the device interface circuitry.

The IM6100 also has the capability for INTERRUPT data transfers
and DMA data transfer, but these are unused in the INTERCEPT JR.
except for console interrupts described in the next section.

When the IM6100 fetches an IOT instruction, it executes an I0TA
cycle, during which the entire IOT instruction is placed on the DX
bus during LXMAR time. This means external address registers, such
as the ones on board memory chips, will all be lToaded with the I0T
instruction. In order not to have a memory chip respond falsely,
the CPU suppresses the MEM SEL signal, and activates the DEV SEL,
Device Select, signal. The device address and control information
present in bits 3-11 of the IOT instruction are decoded and the

DEV SEL signal is used by the peripheral to enable the selected
functions.

* These designations are used to identify the devices on the
schematic and on the assembled board.

4-4

The 340175 CMOS quad latch (B3) is strobed by LXMAR to latch DX3
and DX9, DX10, DX11 from the bus. The 74C42 CMOS BCD to decimal
decoder (B4) is fed with AX11, AX10, AX9 and AX3. The AX3 line
acts as an enable to the decoder and must be high in order for
the D input to the decoder, which is the most significant bit, to
be Tow.

This means that all device addresses in this system should be

of the form 1XXXXX. The 74C42 is a control decoder and only eight
of its outputs, corresponding to the possible permutations of the
three bit control field in the IOT instruction, may be used. Of
these eight, only five, corresponding to I0T's with DX3 high and

0, 2, 3, 6 and 7g in their control field, are used. For simplicity
we shall assume a device address of 100000 or 40g.

These I0T instructions will now be described:

LOAD DISPLAY, or 6400 is gated along with XTC and DEVSEL
through an OR, the 34025 NOR (A3) followed by the 34069
inverter (C4), into the Load Enable pins of the display
drivers. During IOTA . XTC - DEVSEL time, this control
function will Toad the latches in the display drivers
(H2, J2) and the 34042 quad latch (G2) which drives the
multiplexing transistors.

I0T RESET, or 6406 is gated along with DEVSEL through the

two NOR's (C5) to generate an active low RESET. RESET is

also generated on power-up, when the one input of the 34001
NOR gate (C5) is pulled high by the charging .47 microfarad
capacitor. The RESET line driven low will clear the IM6100
accumulator, load 7777g into the program counter, and halt

the CPU, besides resetting external logic. RESET is activated
on power-up through the RC circuit, at any time by pressing
the RESET switch or under program control. The RESET line
into the IM6100 is sampled at T1 time of the Tast cycle of an
instruction, and the worst case response time is 14 usec at 4 MHz.
The I0T RESET is a software simulation of the direct RESET
1ine needing approximately a dozen instructions. Including
the time needed to debounce the keypad, executing the routine,
etc., the response time is many milliseconds. Thus the CPU
does not actually do a RESET; it is made to clear all
registers initialize the PC to 0200 and is then halted.

IOT RUN, or 6407 from the control decoder is gated along with
DEVSEL. When enabled by XTC, the RUN/HLT line is driven by a
negative going pulse. Each such pulse causes the CPU to
alternatively run and halt by changing the state of the
internal RUN/HLT flip flop.

4-5

I0T CPREQ, or 6403 is gated with DEVSEL through the 34025
NOR (F3) and 34069 inverter (C4) into the active low direct
set input of the DFF 74C74 (D5). During IOTA time, DEVSEL
will set the DFF and provided that INTGNT is not active and
holding off the 34011 NAND (D4), a CPREQ will be issued.
The 74C74 is reset by CPSEL.

CP TIMER EN/DIS, or 6402 is an IOT instruction that is used
to turn the control panel interrupt timer on or off under
program control. The CP timer circuit is formed by two

gates (34001 NOR_at C5 and 34011 inverter at D4) and an RC
circuit (6.8 K R3 and .47 microfarad C8) and as long as

pin 5 of the NOR at C5 is low, the oscillator is enabled,
running and clocking the DFF at D5 at a 30 Hz rate. Thus,

CP REQuests are issued at a 30 Hz rate (the DFF being reset
by CPSEL in between). When IOT instruction 6402 is executed,
during IOTA - DEVSEL - XTC time, clock input pin 11 of the
74C74 DFF at C3 is driven low and the rising edge of DEVSEL
clocks in the data on DX11 into the flip flop. At this time,
the IM6100 is driving the DX bus with the accumulator so if
AC11 is high, the DFF is set, and if ACI1 is Tow, the DFF is
cleared. If the DFF is set, the CP timer is disabled by
holding pin 4 of the NOR gate at C5 at a low. If the DFF is
cleared, this gate is allowed to toggle and the timer runs.
Note that during normal operation, the CP timer is running,
and CPREQ and CPSEL are being generated.

The reason that CPREQ is not activated unless INTGNT is inactive
is that control panel interrupt requests have higher priority
than device interrupt requests or even DMA requests. Since
INTERCEPT JR. uses main memory for both control panel as well

as user routines, interrupt return addresses are saved in Tocation
0000g. Thus, if CPREQ were allowed to be active at all times,
the user's device interrupt return address could be destroyed

by a CPREQ. INTGNT is activated only by INTREQ and is reset

by executing the first IOT instruction in the interrupt service
routine. At this time, the CPREQ is allowed to get through,

as long as the IOT did not disable the CP timer. If the user

is implementing an interrupting device interface with PIE
interrupts enabled, a single IOT would be used to reset INTGNT,
disable CPREQ and get an interrupt vector from the PIE. At the
conclusion of the service routine, CPREQ would be re-enabled
under program control.

The monitor firmware will be more fully discussed in Chapter 8.
For a more detailed discussion of the control panel
capabilities of the IM6100, refer to the IM6100 brochure.
INTERCEPT JR. uses the same memory address space for control
panel, monitor functions and user memory. See the discussion
on the monitor program for further details.

4-6

OPTIONS

The user may put another IM6312 ROM in the second socket provided
on the INTERCEPT JR. board. Extra decoders are not required. The
second ROM could contain user and/or factory generated programs
such as floating point math routines, I/0 handlers, diagnostics
programs, utilities, etc. See Appendix K.

As part of the initialization sequence, the MONITOR will also
check for the presence of a ROM in the expansion socket. Proper
interfacing to the MONITOR requires that any ROM in this socket
should be programmed to occupy the 4000g-5777g address area,
should have 0764g (two's complement of 7014g) in location 5777g
and should have a valid entry point at 4000g.

The following chapters will describe the optional boards that
may be plugged into the 6950-INTERCEPT JR. to expand its
capabilities. The three connectors on the 6950 board are in
parallel and bring out the DX bus, IM6100 control lines, select
lines, power connections and unused IOT control lines from

the 74C42 decoder (B4).

The basic 256 words of RAM may be disabled by tying chip
select high through the jumper option pins provided. This
is done by cutting the printed trace between pins 2 and 4
(above MONITOR ROM) and strapping pins 1 and 2 together.
This is done when the 6951-M1KX12 JR. RAM MODULE board is
to be mapped into the lower 1K field in 000g to 1777g.

The information in this manual and in the IM6100 Family

brochure should help the user to design his own I/0 inter-
face boards if required.

4-7

4-8

1 rorsigs JOINNM 1dIDYILINI-0569 .
JILYW3IHIS ITNAOW "¥0 Ld3IDYILINI
94
1
= i ERE)
Sm 7L
— TX¥9] NI 107 5 d [mm:i B
& T9%p9) 13538 101 = o
EA BT Bizl 59 i 0
N 59 Y9 mu m.m 3
xv9 X9 £Xv9)03) 10T v 71° <4
—td 512 g
B v
s
- 1
= 3
=
(7122 o
Al _d1g 2 o ~ z
H w~
= §90%
€1 5
H o= ® _ F L)
o\ Y !
sior -
» 3 2 el ol st
s = @ > = 170 NI ON9
£ © = r - kil z 50 50
N SIS 235 -~ (oxyg) 41 510 = Txd
M AT 62
8t TVl viv0 ov
N NG INT IN9 N[6t
¢ H)i331 9t]
K i 735430 B w RE T
3 613 2t
. vit &
o 119# :u
» e TIX0 87
Rl s o5
>
e X bX
o ICETH R
AN W L
9%C 9x!
¢ e S 12
] [ZC
7 e (3T .
3 % H Zx0 81 OCIOWT
Y o TXa 11
N T oxe 91
¥
v
. Ay 1
7iX 1
. [)y
PR ALY -
B EETIRE)
oy | 038 W
IND VWG
(AN s - e
i o
S ws b
" Ea
o[Wm
oIa i -
e — o bl = slzlelsle clolelsle < - = o o o ° = < = < ¢ | clelele lelelele 2ozl Ielslelzlelslelslelelelelx|s
¢ AAA E HWMQM NG I = s & 3 £ & = o N t 3 M R SEREE RIS WMABu I NS
=38 37 MY ox = z
- e tfrt vy adetjerlvt
15601 = ; 3
T B : (7348) 19948) 133883 o
. 2 (M 30 A t
A¥iasic : _ i i WA
AYORIW B I K 1 1958
7 e
= = NE
- ! " n 1e S
T1 T 1 [:
CTEN A
ot K11
7 P
(560N ‘ 5P
Ty
b s 1S9PcT
A¥3951G b=
55 3800Y H —
; o} T}
. B Y otxd |m|
T 3 ox
El 2 u ¥
3 €
22228z Y ¥ Mm H
- SO I d X
fas S — - 99 M “
- in 5275 MIeL T oaCr wIN0C 15 Q440 414975 &7 3 ol
— - hbl} 3 PO F R
s TR NO * 2t
0. HOY L I
M5 43M04 a1r 0 1
e N 2159 ML I v
2 ' B = . 1 30|~
2 10Ny THUISECTED oCd ¥3M0e i s |
i - W
2222N2 148 00PN P Tops
VIENT WA 35y 5P
20 +2ddNS WKEIIXT TWNOIidO MLIM 3SP: 1y)

CHAPTER 5
JR. RAM MODULE

INTRODUCTION

The JR. RAM MODULE, 6951-M1KX12, pictured in Figure 5-1, allows
the user to expand the complexity and size of the programs that
may be written up to the 4K word memory size limit.

BATTERY BACKUP
FOR RAM
NON-VOLATILITY

TWELVE IM6518
1024 x 12 CMOS
RAM ARRAY

FIGURE 5-1 POWER FAIL

DETECTOR

MEMORY DISABLE
SWITCH

CHIP & FIELD
SELECT LOGIC

ADDRESS, STR

& WE BUFFERS FIELD JUMPERS

ADDRESS BUFFERS

The board is fully nonvolatile using penlite cells to retain the RAM
chips in the low power data retention mode. Thus, the user may

write programs on a board, unplug it and use a different board with-
out losing programs. The board may be mapped into memory space
according to several jumper options. The board may also be configured
as either an Instruction Field or a Data Field by jumper option.
(Refer to the IM6100 brochure,

DISCUSSION

Twelve (12) IM6518 CMOS RAM chips are used to implement the 1024 x

12 array for this board. The IM6518 is organized as 1024 x 1 with
separate data-in and data-out pins and ten (10) address pins. (Refer
to the IM6508/18 data sheet for further information.) INTERCEPT JR.
uses a single bus for all address and data I[/0, therefore, the DI

and DO pins on the RAM chips are both connected to the respective DX
line. The ten (10) address lines are buffered using ten gates from

5-1

two 34050 hex CMOS buffers (Gl and G2). One gate is used to buffer
XTC. This signal and LXMAR, as previously explained in the discussion
of the 6950 board, strobe memory addresses into the RAM chips and
enable the chip for data write operations.

The SUP SEL signal is also buffered. This signal selects the RAM
for both control panel and main memory use.

A NAND latch is formed by two gates of 34011 quad two input NAND (E3)
and can be used to disable memory by grounding one input to one of
these gates. Switch S1, DISABLE, is provided for this purpose.

The two most significant bits of address are latched in the 340175
quad D-type latch (G3). This latch provides both true and
complemented outputs, and, by connecting the appropriate jumpers
to the 34075 three input OR (F3), the 1K RAM field provided by
the board may be mapped into any of the four 1K fields of the
total 4K memory space addressable by the IM6100 microprocessor.

Since the highest 1K field is occupied by the MONITOR ROM and
256 words of RAM are provided in the lower 1K field by the 6950
module, normally the jumper should be placed to map the RAM into
one of the middle 1K areas, for example 20008-3777g or 4000g-
57778.

If these two fields are being allocated for the PROM board, 6952,
the RAM may be mapped into the 1K base field in which it will
overlay the 256 words provided in the 6950 board. This will
provide the additional 768 words that would otherwise be
unobtainable.

Table 5-1 proviﬁes the jumper connections for different mappings.

TABLE 5-1
Desired Mapping Strap* Pins 9, 10
0-1777 To Pins 5 & 8
2000-3777 To Pins 5 & 6
4000-5777 To Pins 7 & 8
6000-7777 To Pins 7 & 6

* These strapping option pins are numbered and located between
the 340175 at G3 and the connector pins. For mapping 2000-
3777, pins 9 and 5 and pins 10 and 6 are strapped together.
Other mappings require cutting the printed trace before
adding the new straps.

5-2

The board may also be configured to be either an instruction field
or a data field by an appropriate jumper connected to the DATAF
pin. Normally, the field jumper from test point 2 is connected

to Vgc and distinctions are not made between IF and DF. These
distinctions are usually required only in extended memory systems
(Refer to IM6102 data sheet).

The RAM on this board may be made nonvolatile by using two "AA"
type penlite cells in the clips provided. If Vcc from the "D"
cells falls below 3.9 volts, the zener diode CR2 turns off,
turning off transistor Q2, which in turn cuts off the series
transistor Q1. Diode CR1 becomes forward biased, and the "AA"
cells power the RAM array in the data retention mode.

JILVWHHOS HTINAOW Wv¥ °¥r

a s ZLXLN-1S69 HSIZNI
ane
—
L x4
P —— =2
"
- [
—_— .18
. "
- o
—_— [
—_——— t
3 ¢ L101-0008 — .
13 ¢ LL1%-000% —_ °
s s L415-0002 :
1) s L011-0000
awy any v 1 .
04 LUOHS & LUOHS naw TN
NEVEIO WIN “
e
%01 3 ¢
" s 0 . n o Loy
q N7\ oo I
siov st g] oY dloiYijoY o] el ¢ ' +
0, q 4 T AMGV Lior
M
T of |o * z il Gt
|
[-_ D4 Wy 4 £0 ¥ '4 ‘63 si0v
oa oa g
4 £3 X
y/74 T M rabss o
“he L Loy~
& 3
z1 o2t Ll L Ry €3 i
o Y 1 294 5
n—m(. M [Loy
ne * |4 uss |4 L [
[FI O Mz
ty
v
i ov]
amfogr o
wshy st o
QPT SPT R
hid TY b oy
[}
S—
—a %A Wyl

<t
I
(H)13suIdNS Lo

uvwxt

Jvive
txa

%xa

CHAPTER 6
JR. P/ROM MODULE

INTRODUCTION

The JR. P/ROM MODULE, 6952-P2KX12, pictured in Figure 6-1, enables
user developed programs to be stored in user programmable read
only memory.

BIPOLAR P/ROM POWER STROBE
SOC!(ETS DRl\lIERS

ADDRESS RANGE |
5000g - 5777g

ADDRESS RANGE |
4000, - 4777,

ADDRESS RANGE |
Figure 6-1 3000 - 3777, |

ADDRESS RANGE
2000, - 2777,

ADDRESS
LATCH

MEMORY ENABLE
AND POWER STROBE
DECODING LOGIC

The user has the option of utilizing the IM5623, 256 X 4, or IM5624,
512 X 4, three-state output Avalanche Induced Migration (AIM)
programmable bipolar P/ROMs to obtain from 256 to 2048 words of
program. Power dissipation is minimized by supplying power, via
the POWER STROBE DRIVERS, only to those P/ROMs which are enabled.
ADDRESS LATCH, MEMORY ENABLE AND POWER STROBE DECODING LOGIC are
pictured in Figure 6-1.

The figure shows the address range for IM5624, 512 X 4 P/ROMs, For
the user's convenience, the address range for the IM5623, 256 X 4,
P/ROM and IM5624 are shown in TABLE 6-1. The user should change
address range, as required, when mixing IM5623 and IM5624 on a given
module.

6-1

TABLE 6-1
ADDRESS RANGE IN OCTAL IM5623/IM5624

IM5623 (256 X 4) IM5624 (512 X 4)
2000-2377 2000-2777
3000-3377 3000-3777
4000-4377 4000-4777
5000-5377 5000-5777

DISCUSSION

This text should be used in conjunction with the enclosed
schematic for a complete understanding of the 6952-P2KX12
JR. P/ROM MODULE.

The memory address is latched from the DX bus by the two
74LS174 hex latches when they are strobed by LXMAR.

The lower nine bits of the address go to the address inputs
of all the twelve P/ROMs, which are arranged in a matrix of
four rows of three.

The higher order three bits of the address are decoded by the
7415138, and it generates a chip enable to the appropriate row
of P/ROMs. This chip enable is also used to turn on the two
transistors in the appropriate power strobe circuit in order

to connect Ve (less a VCE(SAT)) to the power pins of the
enabled row of P/ROMs. There 1s no delay penalty in power
strobing because the bipolar P/ROMs are much faster than
required by the CMOS processor. The average power dissipation
is reduced to approximately 5% of the non-strobed case. With
the chip enable high, the P/ROM outputs are in a high impedance
state permitting XTC to be used as one of the signals

enabling the 74LS138 decoder. The P/ROM outputs, therefore,
may be directly connected to the DX bus. The XTC line signals
the read and write phases of the memory cycle. Thus, XTC when
high, enables decoder pin Gl during the time that the address
is Tatched into the 74LS174's, and remains enabled during the
time the address is decoded, the P/ROMs are enabled, strobed
and accessed. XTC goes low during the second half of the memory
cycle, disabling the P/ROMs.

Decoder pin G2A is enabled only during the SUP SEL time, that is,
when either MEMSEL or CPSEL is active. Therefore, the memory is
really powered only for three clock cycles.

The uppermost 1K of memory is in the monitor ROM on the processor

board, so the decoder does not use the pins for a decoded zero
and one.

6-2

In the event that extended memory is used, the DATAF (DATA Field)

pin is jumpered to the G2B enable pin of the 74LS138 decoder.

This signal is normally low, enabling the decoder, and is activated

to the high state during the executive phase of indirectly addressed
AND, TAD, ISZ and DCA instructions (see IM6100 data sheet) so that
data transfers are controlled by the Data Field, DF, and not the
Instruction Field, IF, when addressing more than 4K words. Otherwise,
the G2B pin may be left grounded by a jumper.

Table 6-1 shows the address space occupied by the P/ROMs. The

user must supply at least three P/ROMs and can use them anywhere
in the address space provided.

6-3

OIIVWAHOS TINAOW WO¥/d °¥rl

- 11
I |
S
—— e ——
s —— _
zl ul ool s L hd ‘ 7 |
£ i
‘o %o fo sim -] o Fo) : |
b 5 7 .
C——— . H i
2 - [.
e - 3 1] | 7 |
[z~ 2z . i .
1115 - 0008 — ——] : y — . A ,
CE— - 2 : ol
e — T e
A — 5 ; | 7 | Sl .
1 T I i H I i
] T !] ;
ﬁ ! ; _r _V 7 i ,
B! 01 2] ol oo s : | ,
o 2o to ! e % fo rog | e Lo il
B 3 !
N = ——_ |
9
e — e |
v 1 ol T - i i
€ v et I . ' Lo
uLy - 000y ——————— o295 'k ; -) . P
{ ofL H e ! :
K v i —e . i i
L4l Fr) Dn— 1 yOSIPL T 7 | J
2, [. |
[. :]A. T T yvax
T T i ; : i
! | ! . ! i i .
i o o { ol : {6
! i | .
ta Yo o fo oo, SERPE N S SEQS S— 2 i
i o — | N B - T ! H
o |5 ol + | 510 o b + v |xa
R — & — S S U S S H h
B —_— oF T——— S + [S—— 4 + o |%xa
v .) ; 0 € H '
(1) i
T . H L
mmmmmmm b ——————{ 25 : — F— i i T z |*xa
-] 1 e T .]
b 3 PR 1 e ks i | %xa
B P e e 4
ofot— o s ;] or §¢xa
S) Per 7 |
! e ®
-
T) +1° t s |0
: 2183 |
~; 0 | s} i o ! ” T |
‘o o 2 fg W [
_—] e o -
. — . M]¢ ——] v 2 F
s . — . P2 ; - * i afs ¢ |Sxa
. . o oy o |
06002] L - > o
! (£ . «c J t 1 arg L |
| z o[z :
e (L. 1 €
] N * wif© o T » [t
o T i = r —1° a s |xa
143 [Z L]
FRS LN — E) ES] S | :
. i “ : 7 CoT 7[° o v |'xo
! | i | #7° afg ¢ |%a
| | | ' 2S00
— = | . SuIawnr i
7 w BOLINOW
H s ESTL | puod—————— | gz fpun
_ R | $——o o—d Bl ;
; i !
R
: | ++— -0 o—q vk , Y774
. . __ . . st al; i m 2awnr oon—— {79700
L Sy e T (e A SR R k]
- — — S— e + > - 2 3 ¢ NOILDNLSNE
: |A . _ 5 o e dviva
1 . — b
i e o v Z x [asans
s
—_—— e —— — ﬁ 100 iN0 L} feX
! y77; i -9
- . 00 L]
! N "
! : =
|

bbbbbb

»»»»»»
wwwwwwwwwww

6-4

CHAPTER 7

JR. SERIAL I/0 MODULE

INTRODUCTION

The JR. SERIAL I/0 MODULE, 6953-PIEART, pictured in Figure 7-1,
allows the user to communicate with a 110 baud full duplex
terminal with either an EIA RS-232C type differential voltage
interface or a 20mA current loop interface.

TTY TRANSMIT
OUT (20mA FDX)

READER
RELAY
DRIVER

EIA RS-232C
TRANSMIT

ouT
FIGURE 7-1

M6101
ADDRESS
PULL-UPS

E{A RS-232C
—-12V SUPPLY

proscossemmcas

ASYNCHRONOUS
SERIAL
INTERFACE
CONNECTOR

EIA RS-232C
RECEIVER IN

TTY RECEIVER
IN (20mA FDX)

CRYSTAL

IM6403 UNIVERSAL
ASYNCHRONOUS
RECEIVER
TRANSMITTER UART

IM6101 PARALLEL
INTERFACE
ELEMENT PIE

This board uses two CMOS LSI chips, the IM6101 Programmable Interface
Element (PIE) and the IM6403 Universal Asynchronous Receiver/

Transmitter (UART).

The MONITOR ROM provided with the 6950-

INTERCEPT JR. MODULE contains a bootstrap loader for loading programs
from the 6953-PIEART using BIN formatted media, such as paper

tape punched out by the 6950-INTERCEPT JR. via the 6953-PIEART

and an ASR-33 Teletype using the Memory Dump routines contained in

the MONITOR ROM.

This allows the user to create programs, dump

them out on paper tape and use them at a later date by simply

reading the tape back in.

DISCUSSION

The data sheets on the PIE and UART should be studied in order to
fully understand the description of the operation of this module.

7-1

It will also be beneficial to study the listing of the PIE-UART
routines in the MONITOR ROM.

The PIE address used is 00111, therefore, all IOT instructions
to the PIE are of the form 616X or 617X in octal.

By using a UART, the amount of code required to do serial I/0
is considerably reduced because bit timing is taken care of by
the UART. Also, the programs become insensitive to the CPU
clock frequency. Both the PIE (B3) and the UART (B1) are
general purpose programmable devices and, therefore, need to
be programmed or initialized to specific system requirements.

Some functions are programmed by hardwired pin connections and
others by MONITOR ROM firmware routines.

The printed wiring is set up to program the PIE SEL 3-7 inputs to
the address 00111. It also grounds CNTRL pin 2 of the 6403

UART selecting the internal 11 stage divider. This divider's
output is the 16X clock used by the receiver register and
transmitter register. The 6403 is designed to be directly
clocked by a crystal. The crystal used is a TV colorburst
crystal of 3,579,545 Hz. When this is divided by 211 and 16,
the baud rate of 109.2 Hz is within the tolerance limits of a
110 baud Teletype interface. The DIP package of 10K resistors
(A3) pulls up the SEL 5, 6, 7 inputs and the PIE series priority
input pin 3. The PIE control registers A and B and the vector
register are initialized by the INPIE routine in firmware.

Table 7-1 shows the constants loaded into these registers.

TABLE 7-1
CONTROL REGISTER A

0 1 2 3 4 5 6 7 8 9 10 11
FL4 FL3 FL2 FL1 WP2 . WP1 . 1e4 IE3 1IE2 IE]
1 1 1 0 1 0 0 0 0 0 0 0

FL 2, 3, 4 bits set high cause the unused FLAG outputs
2, 3, 4 to be at high level

FL 1 bit set low causes FLAG output 1 (Reader Run
Relay Flag) to be at low level

WP 2 set high means positive WRITE POLARITY or

positive pulses at WRITE output 2 (used to
load the UART CONTROL REGISTER)

7-2

WP 1 set Tow causes negative pulses at WRITE output
1 (used to load the UART TRANSMITTER BUFFER
REGISTER from the data inputs).

IE 1, 2, 3, 4 set at 0 disables all PIE interrupts.

TABLE 7-2
CONTROL REGISTER B

sL4 SL3 SL2 SL1 Sp4 SP3 SP2 SP1

NOTE:

1. Sense input S4 is not used, therefore, SL4 and SP4 bits are
irrelevant.

2. SL 3 =0and SP 3 =1 program the SENSE3 flip flop to be
set by a positive going edge. SENSE3 is connected to the
serial data input of the UART and is used for start bit
detection.

3. SL2 =1 and SP 2 = 1 program the SENSE2 flip flop to be
set by a high Tevel. SENSE2 is connected to the TRANSMITTER
BUFFER REGISTER EMPTY (TBRE) output of the UART which indicates
that the UART transmitter is ready for new data. The TBRE
signal is a high level.

4. SL 1 =1and SP 1 =1 program the SENSE1 flip flop to be
set by a high level. SENSE1 is connected to the DATA
READY (DR) output of the UART, which is a high Tevel
indicating that a character has been received and transferred
to the receiver buffer register.

TABLE 7-3
VECTOR REGISTER

o 1 2 3 4 5 6 7 8 9 10 11
INTERRUPT VECTOR VPRI
o 0 0 0 0 O O 0 0 O 0 0

NOTE: The PIE interrupts are disabled in this application, and
the sense flip flops are tested by the firmware with
SKIP instructions.

7-3

The PIE's READ2 output is unused and the READ1 output is connected

to the UART RECEIVER REGISTER DISABLE (RRD) and DATA RECEIVED

RESET (DRR, an active low input) so that when a received character

is ready, Rl which is normally high (keeping the RECEIVER REGISTER

disabled) pulses low during IOTA-DEVSEL, transferring the receiver

data to the IM6100 via the DX bus while simultaneously clearing the
DR flag in readiness for the next character.

The UART is also initialized both via hardwired connections and
under program control.

STATUS FLAGS DISABLE (SFD pin 16) is grounded to enable all UART
status flags. The UART CONTROL REGISTER bits are loaded from the
DX bus as shown in Table 7-4.

TABLE 7-4

DX Lines 0 1 2 3 4
Designations PI SBS EPE CLS1 CLS2
Constant 1 1 1 1 1

PI =1 PARITY INHIBIT - Parity generation and checking
is inhibited and PARITY ERROR (PE) output is
forced Tow.

SBS =1 STOP BIT SELECT - In conjunction with CLS1 and
CLS2, this selects two (2) stop bits.

EPE = 1 EVEN PARITY ENABLE - Irrelevant as parity is
inhibited.

CLST = 1) CHARACTER LENGTH SELECTED - These bits select on

CLS2 = 1) eight-bit character.

A1l unused pins are brought out to test points, to faciliate
experiments by the user.

The UART TBR parallel data input bus and RBR parallel data output
bus are connected to DX4-11.

The serial input and output pins of the UART go to both EIA-RS-232C
and 20 mA current loop interface drivers and receivers.

7-4

Table 7-5 shows the connector and jumper options for the two
interfaces.

Serial output bits from the UART cause the push-pull EIA driver
to switch between Vg¢ and -12 volt and transistor Q2 to supply
25 mA nominally (5 volt + (R5 + R4)) to the current loop
interface.

Briefly, the PIEART interface works as follows once the
interface is initialized. When transmitting to a terminal,
the IM6100 executes a waiting loop using a SKIP on SENSE2
instruction followed by a jump back. SENSE2 as shown in
Table 7-3 is set when the TRANSMITTER BUFFER is empty. When
the character has been transmitted, the waiting loop is
exited and a WRITE]l instruction is executed writing a new
character into the UART transmit buffer. The PIE strobes the
DX bus at the proper time when this instruction is performed.

When receiving from a terminal, the IM6100 resets the SENSE3
flip flop by executing a SKIP on SENSE3 instruction. This flip
flop senses the start bit of a character. The READER RUN flag
is set by executing a SET FLAG 1 instruction to the PIE. Now
the interface is ready for a character from either a tape reader
or a keyboard and a wait loop is entered. This loop is exited
when a start bit is detected and the READER RUN flag is cleared
just in case the data source was a reader. This stops the
reader from advancing until the CPU is ready for another character.
Another wait loop is entered and this time it is exited when the
DATA RECEIVED flag goes true, setting the SENSE1 flip flop. The
accumulator may then be cleared and a READ1 command executed.
This causes the PIE to enable the UART receiver buffer onto the
DX bus, simultaneously clearing the DR flag.

When reading BIN tape, the above transmit and receive program
sequences are called as subroutines, while the main program
performs functions such as testing characters for a rubout,
accumulating checksums, testing for leader-trailer, etc.
(Refer to MONITOR description).

Whenever SKIP on SENSE flip flop instructions are executed, the
PIE will test the state of the desired flip flop and, if it has
been set, it will assert the SKP/INT output causing the IM6100
to skip the next instruction. The sense flip flop is then
cleared. For more details, refer to the PIE data sheet.

7-5

TABLE 7-5
20 mA LOOP/EIA RS232-C CONNECTOR PINOUTS

OPTION STANDARD CONNECTION MODIFIED CONNECTION
Voltage Change +5 VDC on V¢c +10 VDC on V¢
Option Connect points #1 and #2 Cut between points #1 and #2

and connect points #1 and #3

Driver/Receiver 20 mA Toop EIA RS232-C
Change Option

Connect points #4 and #5 Cut between points #4 and #5

and connect points #5 and #6

EIA Earth No EIA Earth ground To connect Earth ground, tie
Ground Option points #7 and #8 together

CONNECTOR PINOUTS

20 mA Loop EIA RS232-C
Pin Signal Pin Signal
1 XMIT+ 1 Earth Ground
2 KEY 2 XMIT
3 XMIT- 3 RCVE
4 RCVE+ 7 Signal Ground
5 RCVE- 18 -12 VDC
6 RDR+ A1l others are N.C.
7 RDR- Pins 5 (Clear to Send)
8 -12 Vbe g Eggzgiszg E?ﬁgy%ignal
9 N.C. Detector)
10 N.C. may have to be tied to VCC

with some terminals

7-6

In order to use the module, it must first be connected to a serial
ASCII 110 baud tape reader, typically an ASR-33 Teletype equipped
with the reader. The connection is done by a cable connecting the
20 mA Toop connector pins to the Teletype terminal strip. The
Teletype is turned to the LINE position.

Note that the Teletype must be equipped for 20 mA full duplex
operation and should have a reader run relay installed (such as 6909-RELAY).

To read BIN format tape, the tape is placed in the reader, the key
is put in the START position and the sequence CNTRL 1 is pressed
on the INTERCEPT JR.

As explained on page 2-5, this function will activate the loader.
At the end of the load sequence, the machine is halted showing

the AC (SAVAC location 0140) whose contents represent the checksum
and should be zero for a valid load.

To dump memory onto tape, the starting and ending address of the
block should be entered into locations 0176 and 0177 and the
program run starting at location 7510. Naturally, the tape punch
should be turned on.

Chapter 8 page 14 describes these routines in more detail.

Table 7-6 lists the PIE-UART instructions as used by the MONITOR.
These instructions are also listed in the program 1listing.

TABLE 7-6
PIE-UART INSTRUCTIONS
6160 READ1 (Reset UART Data Received Flag and read
received character)
6170 READ2 (Generate read strobe 2) - Not used
6161 WRITE] (Load UART Transmit Buffer)
6171 WRITE2 (Load UART Control Register)
(

6162 SKIP1 Test state of sense FF1; skip if set
by UART Data Received Flag)
6163 SKIP2 (Test state of sense FF2; skip if set
by UART Transmit Buffer Empty Flag)
6172 SKIP3 (Test state of sense FF3; skip if set
by START bit)
6173 SKIP4 (Test state of sense FF4; skip if set) -
Not used

7-7

6164
6165
6175
6174
6166
6176
6167
6177

RCRA
WCRA
WCRB
WVR
SFLAG1T
SFLAG3
CFLAG1
CFLAG3

Read control register A)
Write control register A)
Write control register B)

Set FLAG 1) - Reader Relay Flag - ON

Set FLAG 3)

Clear FLAG 1) - Reader Run Relay Flag - OFF
(Clear FLAG 3)

(
(
(
(Write vector register)
(
(
(

In addition to these, the IM6100 internal IOT instruction 6007g or
CAF (Clear A11 Flags) clears the sense flip-flop thus clearing all
interrupt requests.

The serial I/0 module is typically used with the INTERCEPT JR. BINARY
LOADER and MEMORY DUMP routines in order to read BIN format tape and
dump a block of memory onto BIN formatted tape.

The PIE-UART interface is initialized only when the BIN and DUMP

programs are used.

The user has access to these routines via

the software subroutine call stacking mechanism in case the
serial port is to be used for other purposes, such as printing

characters on the Teletype.

The user may also write his own code in RAM for interface
utilization and handling Teletype 1/0.

Example 14 in Chapter 3 shows how the MONITOR subroutine may be
called to implement Teletype keyboard and printer operation.

7-8

JR, PIEART SERIAL I/0 MODULE SCHEMATIC

7-9

GND 2.8

RESET

OXg
DXy
DX,
DXy

DXy

DXg

DX

DXy

DXg

DX10

DXy

XTC
LXMAR
DEV SEL

INT GNT

SKP/INT

-V
(vee)

4069

TP19 4
TP
TP

9
—Y
SSuF
28
k|
M4
k |
(+]]
01.F

DEY SEL

INT GNT

NOTE: ALL RESISTORS ARE ' WATT

SKP/INT

Gnd - 27

13

10

XMT »

TTY TRANSMIT
OuUTPUT

AMT -

L1
100.H

> TP1S Rig
\ 0 Rg INS14
Qs N 100 1} CRg
2N3638
4 > "
villl xTa AAA Q4
¢ ne 2N2222
S0 !}
BA-3 02 t INS14
O TP | S 2N3638 CRa
R11
10K
¢ 03 + > "
2N3838
- —9 Re b 001 ,F
o T ¢,
Ry R
001 .F 58K 47011t T 100 (1
61‘#1
+Sy
) r» 4089 12V
HAM
; 820 CAy
EIA JUMPERS 4089 R17 A3 INg 14
5 4 10K
& - 12 .
-0—0- 3 * > x4 RCVE
S
s - Cq4 CRg TTY RECEIVER
—— 4T, IN914 INPUT
108
R1s > »S RCVE-
I R12
N4 274
oe 3.8X BB-2
2m v :
-1 = VCC
24K .1
R1S v
£ TP1a
> TP
£L> TPS
- o> P13
‘ DTN Rz A8
1201} 11K
—L£>» TPs CR»
> TP21 2N3838 * I l—’
> P20 4
o> TF — > . § 1-2K 3
#6 RDR r a
L TP 1 e R READER ca TLan?
EIA-AA JUMPER T 1.F 3 RELAY SOpF
O TP AA-1 ' INOI4 pRIvER
—0 . |
TP12 0o -C_ D ¢ —> 7 ROR -]|
)
1 12011
R1
9
¢’ 20—
7 12 18 CR1
C—o—1- ¢ Pt
AB-7 IN4GOR
e S8pF
—C D Y C8 == isv
-12v +
> - TEST POINT % - CONNECTOR POINTY
s
INMEIRS L 6953-PIEART aEv G

CHAPTER 8
INTERCEPT JR. TUTORIAL SYSTEM MONITOR PROGRAM

The MONITOR is structured as an interrupt driven main program refreshing
the display and looking for a CNTRL key depression; upon detecting it, it
branches to a routine SHELL that picks up the next key depression, branches
to appropriate routines and performs the operation.

The MONITOR uses main memory to store control panel routines in order to
keep the system inexpensive. The IM6100 architecture, however, will
allow control panel programs to exist in separate memory totally trans-
parent to the user.

Figure 8-1 shows the memory allocation map for INTERCEPT JR.

The MONITOR uses several locations in page 0. These are listed in the
program.

Some of these locations, SAVAC, SAVMQ, SAVFL in location 0140g, 0141g,
0142q, are used by the MONITOR to store IM6100 registers and flags and
enab?e the user to conveniently examine and alter these registers.

Locations 0000 and locations 0143g to 0177g inclusive may not be altered
by entering data through the keypad (MEM, DECPC or MICRO modes) or by
using the BIN loader.

The user is urged to follow the descriptions of the MONITOR routines by
referring to the program listing. The symbol table at the end of the
listing may be used to find subroutine entry points and absolute
addresses of symbolic operands.

WORD PAGE
o
256 BIT RAM 0
IM6524 1
377
6000 30g
ROM
IM6312-002
7777 378
FIGURE 8-1

8-1

START

ADPDELS]
7717

I

INT
LT
2

SAVE AC,
FLAGS AND MQ
IN RAM

N2

ESTABLISH CP STACK
LOCATIONS IN RAM

SHELL
cALL HEX K
ESTABLISH THE

TJIMpP POINTER

)

TUMP THRY

YE

TMP TO ROM
ADDITION (4000)

RESET STACK POINTER
To Fil'7. SET SWITCH
TO DISPLAY 1777 5726

L

YES

[Go T ExiT |
-

CEXIT
NV
ICALL CLKPD]

ouT

RESTORE 0OLD MQ
AC AND FLAGS

L

RETURN FROM CP MODE
TO USER MODE THRY
Loc SFF 8B

1
(END)

POINTER TABLE
TO PROPER ROUTINE
BIT O
BIT | GO TO THE
INSAC RouTiNE
BIT 2 GO TO THE
DEPOSIT RoutTing
8IT 3 GO To THE
SETPC ROUTINE
BIT 4 GO To THE
DEC PC FoUTINE
BIT 5 6o To THE
RESET ROUTINE
B]T (D GO TO THE
1 HALT ROUTINE
BIT 7 60 To THE
RUN ROUTINE
B8IT 8 GO TO THE SINGLE
JENSTRUCTION
ROUTINE SIN
BIT 9 GO To THE DISPLAY
BLANK/RESTORE
ROLTINE BLK
BIT 10 6o To THE
LOADRR ROUTINE
_BIN
BIT 1l 6o TO ThE
MICRO INTERPRETER

CLERR BT
BUWKET

GET DIG)T Cops
FRom ITHRTUS

GET FEOPEE

MUDEY. TO LOCATIONS

/sP1, DISP2,
DisP 3, DisP 4

IVCERE hERT
Dic/T CODE

LUEITE &AC TOD
DIe LR

OLERR RE AL
LI

RETLR: 1D

13
“moniror
UPORTE "RAG
EET

YES

SAVE LSER TC
N RBRm (SAV 2)

oLl QDISLD
T TISFLAY -
LEER TC K D _TES
mEmoRT DA

(il 00ISLO
(TC LIvFLR Y
LR PC ANO
OnEL. FHC)

LEICE DNTR LHCSED 7T
LOL TINE I LECRTIONTS
Sl B AMO DAL 2 WTD
THE FOOE (LOCRTIONS
sy, Disp 2, ISP 3
TSP 4, IV PROPER
COEMAT FoE DISARY

8-3

CLERR AC AND
LINKE

!

BLRIK DISPLRY]

(ReTLRAS)

NO

Cmee. £DISLD
(TC DisAny

JnElR R AMD
LOC# TIORS PLiTER
T FY 27

LOAD KEYPAD
INTO RAM

CLEAR AL
AND LINK
WAIT FOR
A KEYPRESS

SAVE THE AC
WHICH HAS THE
KEYPRESS IN RAM

)

FIND THE HEX NUMBER
CORRESPONDING To
THE KEY PRESS

M

LOAD THE HEX B{NARY
NUMBER To BITS
=g THRU M) OFAC

ESTABLISH
WAIT COUNTER

COUNT DOWN
ONE CIRCLE
ON WAIT

RETURN WITH XEYPAD
READING IN THE AL

RESTORE OLD AC

RETURN FRoM
VALUE TARLE FoR MEX
SUBROLTING
BuTioN Sw_REG BT ® HEX VALWE RETY

SAVE THE Ac

RED o a J!
YELLOW 1] A GET THE RETURN
* e 2 q ADDRE S
‘oec pe” 3 8

4 & 7 L
% s P DECREMEBALT THE
s © P STALW F:NTEK
y
k4 7 RESTORE THE
3 8 3 Lne £oAC
2 9 z T
’ 10 !
RETUR N To THE
o 1 &) PROGRA M

RESET

SET STATUS
SO THAT

OISPLAY

15 ON

J

CLEAR:
SAVAL

SAVMQ

SAVEL

10T RESET
bHO L

SET PC To
BRI

CALL A SUBROUTINE

[susRouTWE overnea cawl

ITmMe To A SuB RooTINE
THRG A LINK N RamM,
LTORE USER PL 1IN
LOCATION CALLX

L

QRLLXY
SAVE THE AC

¥
URDATE THE STACK
PoinvTER

L%
GENERATE THE RETLRN
ADDRESS FROM THE
Pc 3ToREMm IN THE RAM

N
STORE THE RETURN
ADDRESS OM THE
STACK

04

RESTORE THE AL

Ieo TO THE SOBRITWE

HLT

oo To
ExIT

¥

ENTABLISH A
POINTER TCe THE
ET THE AGORESS PROPER ROUT [NE s
FRom sAVee

y

TJUMP INDIRECT

TOGGLE AC / MEM

SHIFT 1T THREE
PLACES TO THE LEFT ON THAY POINTER DISPLAY FLAG
ADD IN THE o1 GO To SHEW
NEwW 61T
¥ .
RESTORE To ¢ oo o EXIT D
SAV PC UEe
6o Back Birs 24 4 [bec savee]
To START

0
r4

il

HLT

Tocete BLank gt | ¥ U ND: ;‘:‘R‘:ysﬁé‘f
IN_STATUS IoT Ruiv
COMPUTE THE
PAGE RAODDRE=S
GO TO EXIT
GO To EXIT

COMBINE
PRLE ADDRES
WITH PAGE
Num BRER

No ‘ED‘S)TQTI‘;L;{I,R THE AN INDIRELT
s FRoMM L -
GET THE MEMoRY THE Tume ! FREN
Wwoed TOMRECT TABLE
THRG SAUPC

ADPRESS THRKRV
ADORES S Amem)a

T -
-%@ “PEcLEE O

SHIFT T 2 Pracms
To THE LEFT

ARD)N THE OEw
Dye T

SAVPC
WORD IN RAM OEC

RETUR N

T*
o2 INC SAV PL PLACE HD‘DRES?
Found N “NexT”
[CALL PLACE TO DEPOS\T

37

ADJUST VALUE
TO USE AS A
POINTER

']

THEN TIMP
THRU PoiTERQ

7\' INCREMENT SAVEC

JMP

LOAD AC WITH ‘“Soge”
i.e ‘5”7 INTO THE oP
CODE OF THE INSTRUCTION

80 TO AAND

ATMS

i

N
KEY
LS c G0 TO SHELL
#, kev ‘TAC”
q”
< ,_Kglq—)[GoTO ALPR 3 I

e \\Bll
M Go To ApeRi I

o+ gt
J 1;LE_Y__7_{ Go To AQPRZR I
=

by ,_KEL_% Go Yo ALOT l
% "K;Y_S-“?i GO TO AImP I
it ,_“_’L_){ 6o To ATms
8 L){ Go To ﬁ_c_h_J
5 ﬁ_z__{ o To AIS?I
#*10 ,_K_Ei_i 6o TO ATAD]

kev o |

Go To AAMY

LOAD AL WITH “44g8"
lLe, “4” {(NTO THE oP
CODE OF THE INSTRUCTION

(%
o
4
> 3
o
> 3
z
[=]

LOAD AC WITH “3g¢de”
te. ¥3“ INTo THE op
CODE OF THE INSTRWTION

|

D
%
N

LOAD AC WITH "2ggg”
(e 2" INTo THE aP
CODE OF THE INSTRUCTION

Go TO A

:

ATAD

ot

LOAD AC WITH “4ggg”
fe. "1 INTo THE op
CODE OF THE INSTRUCTION

©
o]

-4
o

>3
>
Z
o

CALL PLACE TO LOAD
AC INTO MEMORY

CLEAR ABSLLUTE
ADDRESS

ADTUST VALVE To
USE AS POINTER

SHIFT ADDRESS OVER
ONE OCTAL DIchT

ADD NEW DI16ITAND
PUT N ABIOLUTE
ADDRESS

TuMP THRY POINTER]

TO PROPER ROUTINE|

CLEAR DISPLAY
WORD IN RAM

CALL ODISLE KEY *9”

-
(T DVSPLAY) BT 24

1

FLASH ERROR CONPITION
CLEAR ABLOLUTE ADORESS

I

BLANK THE DISPLAY

ADDRESS IN

COMBINE OF CabE

CURRENT
AND ADDRESS PAGE [T!ME OUT ACCORDING 70]
FIRST TIME CONSTANT
YES
CALL PLACE TO PUT SET CURRENT
TINSTRUCTION IN RAM PRGE ©IT ESTABLISH COUNT

CALL SwDB

INCREMENT SAvPL

KEY "¢
KEY “1A¢]

SET THE
INDIREST BIT

W PAcE To PuT
INSTRUCTION IN MEMORY

]

M

CLEAR DiSPLAY

GO TC MICRO

NO
COUNT DOWN BY ONE

8-7

WORD N RAM

CALL oD\SLD
(To QISPLAY)

G0 To_MRPA

RETURN
LOAD!

WITHOLT

QEPOSIT BDATA
INTO USER
PC (SAV PC)

(e

INCREMENT Sav RC
EYET

AIOT

CALL PLACE TO SET
THE

WORD

INSTRUCTION
To LPFH

TEST
Fer *¢’
KEYPRESS

NO

SHIFT 10T (OpE

CVER ONE DIGIT

ADD THE NEWDIGIT
TO THE 10T COBE
BOoUND TOY CODE
To BiTS ™3 THRU™I

CLEAR B\TS ™3 THRU *1f
IN INSTRULTION

COMBINE THE INSTRUCTION|
AND THE NEW 10T CODE

AND CALL PLACE

IN RAM

TO PUT

CALL PLACE TO SET INSTRUCTION
WORD TO "18¢8

. e
l CALL HEX J\

ESTA B4isH THE
PoidT ER To
TABLE

}

TP THRU TABLE

To TRE RiGHT
ROUTINE

e -
_'—'lGO ToNEer e ‘¢ 9 "2

x*

1 "1ALY v v
._.JGD To ASET i llé

CALL BsSET

'_ICA/.A /SSETs‘l'< ;! CALL BSET > l___‘

\\qu e *

BACK

RIETS tasT
GET THE QTG GET THE

ConSTANT

GET THE BTi0
CONSTANT

PLACE THE 8T
CoRITANT
THE MR

|

TORT THE mae
WITH THE TusTRUCTION
WO /D

[Reprace e msm-rm]

GRT THE

GET THE INSTRUCTION

CALL PLACE TO PUT
INSTRUCTION 1IN RAM

GET THE Bi™
CousTANT

CONSTANT GET THE 8ir7

ConsTANT

8-9

CALL PLALE To SET THE
INSTRUCTION WORD TO M4@6

ESTABLISH THE
POINTER To THE
VALUE OF THE

RouTINE ACKRE 33

|

_—l ChLL B3ETB ’L

CALL SET

< cALL BSET & l,(

TJume THRU THE

PONTER To

THE PROPER.

RouTINE
Fo pt '~ Tl
© a it ;'IJ CALL BSETY l_.
ozt | 00

CALL B8

5 qn | pr g

“ "8’ "3" *s

wolw, . o=

39y Ty

w, L N Py

s Ll % J‘ cast u:r.nl___.‘

8-10

CALL PLACE Te SET ne
INSTRUCTION WORD ~o “1Jf
,l C AL ey
ESTABLisH ThE
SoNTER TO THE
VALUE OF THE
RouTinE ADDRE 53
Te TrRRu TRE
PowTeA To THE
PROPER Routwie
-) e -
o ro NEKL
E o e
/" TAC I e
* I o
*—— CALL B3RTS z A 2 i
- NS I
4 37173 '8
cA«u B3ET T
*, ..7», l/ .
- o . “ -
s -
6o BACK 6 |5 &

SIN

SET SWITCH TO
DISPLAY PC AND
MEMORY DATA

CALL CLKPD

ESTABLISH THE
RAM RETURN LINK

BUMP RETURN ADDRESS BY Two (GIveS

ADORESS OF RETURN POINT OF
SUBROUTINE CALLED)

y

GET THE iNSTRocTiON
THRL AV RC

yes

COMPUTE “NEXT “AND"NEXT+(
BY ADDING ONE ANOD TWO
TO THE VAWE IN SAVPL

\r

REPLACE WITH BREAXPOINTS
THE INSTRUCTIONS SPECIFIED
By ' NEXTY AND ‘NEXT+”
AND STORE THE OLO
INSTRUCTIONS IN RAM

6o ar |

| Restore user svate |

EXECUTE INSTRUCTION
SPECIFIED BY SAV P

v

I CALL INAD

{

STORE “NEXT"
ADORESS N SAV PC

\

CALL INRD

!

INCREMENT
SAV PC AND STORE
IN "NEXT

¥
\NCREMENT "NEXT”
AND STORE IN SAV PC

[eo 1o smew k

l UP-DATE SAV PC|

RESTORE THE OLD
INSTRU(.TIONS‘ To
*NEXT “AND "NEXT+1"

RETURN THRU THE BREAKPOINT
AND THE RAM LINK

v

SAVE AL, MQ AND FLAGS

8-11

IN DIE
CLEAR PLL
¥LAL S
CLEAR DisPLAY |
LoADd FPIE CRA
Wit 72co
LoRO PIE CRB
it X
LOAO PiE
VECTOR REG
WITH SRIE

LOAD UART CONTROW
WITH 7600

s RETURN I

8-12

LISN

REJSET START
BIT SENSE FLAG

y

SET READER
RUN FLAG

FIRST
START 81T
REC))EVED

YES
|£LEAR READER RUN FLAG]

l READ ll

DATA READY 7

READ VART BUFFERAND
CLEAR DATA REATY RLAG

UART
MIT BoFFR

CLEAR 7

WRITE AC To UART
XMIT BUFF ER

SToR B AcC (0
“Time "’ AND
CLEAR A¢

IREYURN

Lo |

CALL INPIE

INITIALIZE RAM

LocaTion S
USED 3y @N

CHECKSUM = &

FIRST CHAR = 12

LAST CHAR= 200

LAST CHAR FLAG= -i

o Lonn DAtaz wiTH
-

LCLE,AR LAST CWAR FLAOj

TEST
LAT
LT CHAR?

WAL
AN

GET THE FRsT TY
CHAR. By

LISN

CTOWE THAT CHAR. N

CrLL NG

“HoLo

TELT

1T TR

CHRAY L A Duaou.—?

STORE CHAR
o “
IN [AsT

7T
T A CHANGE

-~ RECD.
A LT

CHAR P

-

FIELD CHART

YeZ
GET = (CHAR,
FROOY SN
CALL TALK To
PRINT CHARS,
BEY ROBAUTS
4 (5] RoBOUTS NO
\
NO
YES
SET A
To -1
PLACE CHAR MASK ouT
—— N Top HALE CHANNEL %
OfF SAVPL PUNCH

MOVE UIY ONE
PAIR <t CHARD,

oY AVPE

<AVE CHAR

» "
IN G THIRD

PLACE CRAR
N AST YIALF

PC

THIS

SECOMD
CRAR 7

MASK oUT
BT (Ps) AND
ASSEMBLE LAST

TWO CHARS RECD.

STRAY

SLRTRALT

FRom
CHECKSLM

SORTRACT THE
TWO HALFS OF
LAST WORD
FrROM RESULT

NOSAY R (p1Hd)

Y

lL,TmcE FINAL CRECKSOM —I

LET SAUPC To
24
Go To

CALL PLACE To

RErCT

COMPLE TE \WORD
IN RAM

J

INCREMENT
HAN Pe

ToRN

LW TO

TARE
GN-LINE

ETTABLIIH TTART ARO

STOP PoinTs i~ Loc A3/
ANe 132 0SinG BEP

LSE RUN T.a ITART
MACHINE wTa LSEWR
MOOE

CicmBi® € TVMER
INTERRUPTS

A INDpack?
CHECK SUM

£IACE
CLEAR

TRTCH o oo ADDRES.

FRovn ko 3/

FowmiaT TP HAIE
AT Bin ForRmAT
CRA&IrS

CAavk

ParseM

FORMAT LAST HALF
As B CHRARCTER

CALL PumcR

TET THRE CounT
Egone To -63

PLACE A LEADEQ/TQ‘\!LEg{
ChakacT BR IN THE Ag

INCREM BT CounT

P ETcn DATA N MEmoAy |
TpEcFiLD By koo, 13)

FolRmaT

CHARACTER

LAY HACE
WIN FORMAT

FORMAT TCP HALF

To A @BiIN
FORMAT
CHARAC TER

LoC, 13
EQuAL To B2

ANOKE 35
Tee 3 Eguas
LoC 132

w

[NERE AN

8-14

PuNEH GUT
(HARACTER

ADD THE
To CHECKIUM

HaRACTE R

FEicw Tne [
CHECK SUM |

INCREMENT gACH

FieT

FoRmaT
WALE oF

THE LasT
CHECK Som

Fokmat THE

Gt cuBikTumn

HaCE

REsTaRz ae
INTERRUPTS

MONITOR STACK

Summar

Locations 1678 to 1778 are used as a software stack for subroutine
return addresses. Additional area can be allocated to the
stack by reserving any amount of space from 2008 on down.

On every CP interrupt after saving AC, MQ and FLAGS, the MONITOR
reestablishes the stack locations in RAM but will reset the

stack pointer and display modes ONLY if the user's program counter
is pointing to location 7777. A stack call is implemented by the
instruction 4161 followed by a 12-bit absolute pointer address and
a return is implemented by the instruction 5564.

Discussion

The JMS (jump to subroutine) instruction of the IM6100 operates

by storing the return address in the location referenced by the
instruction and stepping to the following location. This location
must contain an executable instruction. ROM resident subroutines
must have their entry points in RAM, as ROM cannot be written
into. The MONITOR uses a pushdown stack to minimize the overhead
involved in storing subroutine return addresses.

A subroutine is "called" by invoking a supervisory routine, CALL,
followed by the subroutine entry address. CALL increments the PC
then Teaves it on a stack, starting at 0167, updating the stack
pointer in 0165. A return from the subroutine is performed by
executing another routine, RETURN, which 1inks back to the main
program by "popping" the return address off the stack, decrementing
the pointer. The return address skips over the entry address

which followed the CALL statement. By reserving enough space in
RAM, subroutines may be "nested" to any practical depth desired.
Programs starting at location 0200 1imit the stack depth to nine
locations, of which several may be used at any particular time by
the MONITOR routines. The program makes no provision for interrupt
service routines using the stack since these higher priority
routines may overwrite locations used for temporary variables by
subroutine calls or returns.

Referring to Page 8-2, the INTERCEPT JR. MAIN FLOW CHART, the
MONITOR is entered on power-up or on every CPREQ through location
7777 of control panel memory and the return address is saved in
location 0000. The MONITOR updates the register save locations

and goes on to the initialization routines. The CP subroutine
stack is established. (Refer to Appendix L for a description of
software stack operation with the IM6100.) Returns from subroutine
calls should normally leave AC, MQ and L unchanged.

Next, the presence of the expansion ROM is checked. If location
5777g has 0764g in it, the program branches to location 40008,
which should be the entry point for the additional ROM.

If the expansion ROM is not present, the MONITOR checks whether
it is going through a power-up RESET (PC = 77778). The stack
base is initialized only if there is a power-up RESET or user
PC is 77778.

The Display Refresh subroutine, REFSH, is executed 100-200 times a
second in order to keep the display flicker-free.

Next, the keypad is tested for depression of the CNTRL key. If
this is not detected, the monitor goes to the out point, restores
registers and flags and returns via the pointer in location 0000.

If a CNTRL key depression is detected, the switch debouce routine,
SWDB, is called, and the test for CNTRL is made again. In case

the test fails, the routine waits for the keypad to become inactive,
by calling CLKPD, and exits as before. If the CNTRL key is
definitely detected, the MONITOR enters the undefined control state
SHELL and subsequent key depressions will have to be detected and
analyzed. The MONITOR calls HEX, which generates starting addresses
for the subroutines that are used to service each of the different
key depressions that define a control state. Figure 8-4 shows the
connections between the keys and the DX bus, and the control state
selected by the key.

The MONITOR is directed to the proper service routine, and may or
may not need further data (more key depressions, external conditions,
status word bit settings, etc.) to properly execute the routine.

We shall now study some frequently called subroutines in the MONITOR
ROM, REFSH, SWDB, CLKPD, HEX and EXIT.

8-16

DX LINE 0 1 2 3 4 5
KEYBOARD -
CONTROL CNTRL SHIFT MEMory SETPC DECPC RESET
STATE data
deposit
VALUE 0013g 0012g 0011g 0007g 0010g 0006g
RETURNED or or or or or or
BY HEX B1e Ae 916 716 816 616
DX LINE 6 7 8 9 10 11
KEYBOARD
CONTROL HALT RUN SINgle DISplay binary ~ MICRO
STATE instruction| blank/ loader interpreter
execute restore

VALUE 0005g 0004g 0003g 0002g 0001g 0000g
RETURNED or or or or or or
BY HEX 516 Mg 316 216 116 016

FIGURE 8-4

8-17

REFSH - ROM locations 6105-6155, flow chart, Page 8-3

The REFSH routine checks the display flag (MSB) of the STATUS
word in location 0143g. If the flag is cleared, the display

is blanked. If the flag is set, the routine examines location
01338, the SWITCH word. If the MONITOR UPDATE flag in the MSB
of this word is clear, the routine jumps to UDIS. UDIS uses

the display code in bits 10 and 11 of the status word as an
index to one of the locations DISP1, DISP2, DISP3, DISP4 by
adding these two bits to the constant TADJ - 01348 and using the
sum as a pointer. Thus UDIS refreshes the "USER DISPLAY".

If the MONITOR UPDATE FLAG is set, the User PC is stored in
SAV2 (01558) and bit 6 of location SWITCH is tested. If this
bit is set, the data at the User's PC is obtained, stored in
SAV3 (01568) and the ODISLD routine is called. This routine
formats the contents of SAV2 and SAV3 into four words that
are placed into locations DISP1, DISP2, DISP3, DISP4. These
locations are used to update the display.

If bit 6 in SWITCH is cleared, the routine checks bit 7. If
bit 7 is set, the User AC stored at SAVAC location 01408 is
transferred to SAV3 so that the User PC and User AC are
displayed in real time. The SHELL will recognize the CNTRL IAC
sequence as a request to complement bit 6 in SWITCH.

If bit 7 is clear, location 01278 is used as a pointer to the
word that will be placed in SAV3. On power-up initialization,
SWITCH is Toaded with 77778 so bit 7 is set at that time.

Figures 8-3A, 8-3B, 8-3C show the display options available
to the user as determined by STATUS and SWITCH bits.

o 1 2 3 4 5 6 7 8 9 10 M1
STgp X X X X X X X X ST9 STyg STyq

X = Don't Care

STgp = 0 - Displays blanked
1 - Display refresh enabled
ST9 = "bit bucket" catches carry out when STy1g, STy are

incremented. Program clears this bit before every
update.

STyg STy1= DISPLAY CODE when added to 0134g indicates which

location (01348—01378) is used for display update.

FIGURE 8-3A STATUS WORD LOCATION 0143g

8-18

o 1 2 3 4 5 6 7 8 9 10 1

SWp X X X X X SWgSW7 X X X X

X = Don't Care; SWg is MONITOR UPDATE flag
SWg

0 - Display refreshed through user programmed DISP1-4
locations.

1 - USER PC used to update left display; right display
to be determined by SWg and SWy.

- Right display contains memory data at User PC.
- SW7 will determine right display.

]
oO— O —
L}

SWg

SWy Right display contains user accumulator.

- Right display contains word pointed to by 0127g.
FIGURE 8-3B SWITCH WORD LOCATION 0133g

OPTION I: OXX XXX XXX XXX 1in location 1133g

User loads Tlocation 01558, 01568 and calls ODISLD or loads
location 0134g, 0135g, 0136g, 0137g. CP interrupts will
place the contents of 0155g and 0156g in the left and
right displays, respectively.

OPTION II: 1XX XXX 1XX XXX in location 0133g

CP interrupts will place the User PC in the left display
and data stored at the User PC in the right display.

OPTION III: 1XX XXX 01X XXX 1in location 0133g

CP interrupts will place User PC in the left display and AC
in the right display.

OPTION IV: 1XX XXX 00X XXX in location 0133g

CP interrupts will place User PC in the left display and
the contents of the location whose address is in Tocation
01278 in the right display.

FIGURE 8-3C ACTIVE DISPLAY OPTIONS

The Octal Display Load routine ODISLD will place octal data
passed through Tocations SAV2 and SAV3 (01558, 0156g) into
the four locations 01343-0137g in the format shown in Figure
8-3C. BCD data may also be displayed but the four locations
must then be Toaded under user program control.

Example: Octal numbers ABCDg in 0155g; EFGHg in 01564

A B C D E F G H

A CALL to ODISLD will Teave the DISP1-4 locations
containing:

0134 0001 A E 0135 0010 B F
0136 0100 € G 0137 | 10000 D H

FIGURE 8-3D DISPLAY FORMATTING

The ODISLD routine makes use of a subroutine SHIFTY to shift digits.
The shift count is passed to the subroutine as a constant following
the CALL address. Thus the address of this constant is pushed onto
the return address stack and the subroutine must access it via the
stack, and increment the return address.

SWDB - ROM Locations 6200-6224, flow chart, Page 8-4

This routine reads the keypad into the accumulator, waits for several
milliseconds, and again reads the keypad to see if it matches the
first reading, thus indicating the end of switch bounce. If the
readings do not match another timeout is allowed. During the timeout,
the display is refreshed approximately every four milliseconds.

8-20

CLKPD - ROM 1locations 6156-6164, flow chart Page 8-4

This routine calls SWDB in order to timeout bounces, and
checks for a zero reading from the keypad (indicating
keypad clear) as long as required then returns to the
calling program.

HEX - ROM locations 6441-6473, flow chart Page 8-4

This routine calls CLKPD to get a keypad clear indication,
then this routine determines which key was pressed and
generates a different number for each key. These numbers
are used by the SHELL routine to generate starting
addresses to the control state routines for each key.

EXIT - ROM locations 6051-6063, flow chart Page 8-2

This routine is entered when no keypad activity can be
detected. The routine waits for the keypad to clear by
executing CLKPD, then restores all registers and flags
from RAM save locations. It then returns via the
pointer in location 0000.

There is another entry point to this routine called OUT
which is used if no keypad activity was detected even
before key debouncing is needed, indicating the keypad
was already clear. By entering at OUT, CLKPD does not
have to be called, saving at lTeast the 20 milliseconds
it takes to execute SWDB.

CONTROL STATE SERVICE ROUTINES

Four of the control states possible through key depressions
require extremely simple service routines. These four along
with the symbolic starting address are:

INSPECT AC INSAC
DECREMENT PC DECPC
HALT HALT
RUN RUN

These routines are stored in ROM locations 6425-6440, and the
flow charts are shown on Page 8-5.

8-21

These routines are each a few instructions long and self-explanatory.
They modify the RAM save locations. INSAC complements bit 6 of the
switch word in location 0133 (see Figure 8-3).

The control panel program when executing the EXIT routine restores
all flags and registers in the IM6100 from these RAM save locations.

The RUN routine uses the IOT RUN, 6407, command described in
Chapter 4.

Except for DECPC and INSAC, the above routines, when complete,
branch to the EXIT routine described previously by jumping
indirect via the Tocation labeled UG. DECPC and INSAC, upon
completion, jump indirect via BUG which is the starting address
of SHELL, returning INTERCEPT JR. to the undefined control
state. This enables the user to pick the next control state
without again pressing the CNTRL key.

RESET, ROM locations 6165-6177, flow chart Page 8-4

A keypad RESET (CNTRL RESET) clears AC, FLAGS, MQ save
locations, clears external device flags by pulling the
microprocessor RESET line low during DEVSEL time (thus
not affecting the microprocessor, which samples RESET
during state time T1) and Toads 0200 into SAVPC.

DEPOSIT INTO MEMORY, DEP, ROM locations 6502-6542, flow chart
Page 8-5

This routine with starting address at DEP may be executed
repeatedly when a sequence of numbers is entered from the
keypad. It begins by calling the routine HEX. The

value passed on by HEX is tested for being greater than 7.
If it is not greater than 7, it is interpreted to be an
octal digit to be deposited into memory by shifting it into
the rightmost digit. This is done by getting the current
memory data indirect via 0000g, SAVPC, shifting left three
bits, while clearing the link each time so that zeros are
shifted into the LSB, then adding the new digit. The
routine PLACE is then called, which makes a range check
and disallows writing into location 0000g (reserved for
interrupt return addresses) or into locations 01438 -
01778, as these locations are used by the MONITOR to

store temporary variables.

If the digit is greater than 7, it is not to be entered into
memory, but rather a pointer is computed to force a branch
to the proper routine to be executed next. This is done

by adding the contents of TAB, 65108, to the value returned
by HEX, 10, 11, 12, 13, resulting in 65208, 6521g, 6522g,

8-22

BLANK

65238. These locations contain pointers to routines DCI, PC1,
EXIT and SHELL respectively.

In other words, pressing DECPC at this time results in routine
DCI being executed, pressing MEM results in routine PCI being
executed, pressing the yellow key results in the EXIT routine
being executed and pressing the CNTRL key results in SHELL
being executed, meaning a return to undefined control state.

Routine DCI decrements the PC by adding -1, 77778, to it, and
returns to DEP to get the next digit, indicating the contents
of the decremented memory location may now be altered.

Routine PCI increments the PC when key MEM is pressed and
returns to DEP so that data may be entered into the incremented
memory location.

These routines allow the user to step forwards and backwards
through memory and alter data at will, as long as the memory
area being addressed is not in ROM. ROM may be examined but
not altered.

FLAG TOGGLE, BLK, ROM locations 6474-6501, flow chart Page 8-5

This routine is executed when the key marked DIS RAL ISZ is
pressed when in the undefined control state. Bit #0 in the
status word, Figure 8-3A, is called the blank flag, and this
routine toggles it every time it is executed, therefore,
allowing the user to shut off the display to conserve power
and to turn it back on. The routine clears the AC and L,
gets the status word, shifts bit #0 into the link (by doing

a left shift), complements the link, shifts if back, restores
status and goes to EXIT.

SET PROGRAM COUNTER, SETPC, ROM locations 6543-6573, flow chart
Page 8-5

This routine, like DEP, accepts octal digits from the
keypad. It begins by calling the routine HEX to get a
valid number from a key depression. The value is checked
for being over 7. If not, the routine goes on to GOON,
which Toads the digit into the rightmost octal position
in the PC and jumps back to SETPC to pick up a new key
depression.

8-23

If the value returned by HEX is greater than 7, a base
address in location ADJT is added to it, and the sum
is used as an indirect pointer back to SETPC (if the
DECPC or MEM keys are pressed) to EXIT (if yellow key
is pressed) or to SHELL (if CNTRL is pressed).

MICROINTERPRETER, MICRO, ROM locations 6600-7275, flow chart Page 8-6

Routine MICRO calls HEX and gets an index to compute a
pointer to the routines servicing the individual keys
(see Example 5 in Chapter 3 for a detailed description).

Pressing the IAC key causes AINC to be executed, incrementing
SAVPC. Pressing any of the keys with memory reference
instruction opcodes on them causes routines ATAD, AISZ, ADCA,
AJMS or AIMP to be executed. These routines load the opcode
into the AC and jump to AAND. (Note that the opcodes are
sometimes stored as constants, and sometimes are instructions
located elsewhere in the same page). After the opcode of a
memory reference instruction (MRI) is interpreted, when the
keypad is activated to enter an address digit, the value is
first checked to be a valid digit (less than or equal to 7)
and displayed as the least significant octal digit in the right
display. When any numeric key is pressed, the opcode is
shifted out and displayed continuously in the left display.
The user can enter any string of octal digits into the right
display from right to left, and terminate the string by a
CNTRL keypress. If the absolute address in the right display
is valid (page 0 address or current page address) the MICRO
will interpret the instruction correctly along with the
proper page bit magnitude. While the CNTRL key is depressed,
MICRO will display the instruction on the right, the user PC
on the left. As the CNTRL key is released, the left display
increments and the MICRO mode is reentered for the next
instruction.

If the IAC key is pressed without pressing any numeric key, the
PC will increment and the MICRO mode will remain in effect.
Note that the yellow IAC key is also labeled IND and may be
used to set the indirect bit.

Routine MRPA continues to scan digits entered from the keypad
and checks to see if they are address digits, 0-7, a CNTRL
key depression (routine NEXT is executed in which the user PC
is incremented, and control returns to MICRO to interpret

the next instruction) or an IND key depression (in which case
routine ZONK is entered in order to set indirect bit 3).

This is done by rotating the indirect bit into the 1link,
setting it and rotating back. Control is passed back to MRPA
so it makes no difference if the indirect bit is set before
or after the address bits are supplied.

8-24

MICRO, 1ike SHELL, depends on MONITOR utility routines HEX,
CLKPD, SWDB, PLACE, etc. in order to acquire valid keypad
data and enter it into allowable memory space.

When interpreting MRI's, MICRO makes use of the different
display mode options in the routine TOZE by loading SAV2
and SAV3 with the opcode and absolute address and calling
ODISLD. MRPA is again entered to acquire the next digit
while control panel interrupts cause the MONITOR to

display the opcode and address. When address entry is
terminated, routine ADTS checks if the address is in page 0
or in the current page (by comparing PC page bits with page
bits of address) and either calls PLACE or branches to
FLASH.

PLACE (Page 8-8, locations 7561-7577) makes a range check

and disallows writing into location 0000g (reserved for
interrupt return addresses) or into locations 0143g to 0177g
as these locations are used by the MONITOR to store temporary
variables.

If the absolute address is out of page, FLASH is entered,
which flashes the display to indicate an invalid address
field. The flash routine blanks the display using IOT
instruction 6400 and times out approximately

(4096 X (16 + 10) X 10) or 1064960 states. This takes over
half a second at 3.33 or 4 MHz.

8-25

FLASH then checks to see if the keypad has been depressed.
If it has not, the routine continues to time out a
different constant, TKB. If it has, the address field

is cleared and subsequent depressions of the keys load-the
new digits in the address field.

Routine AIOT (Page 8-8, locations 7000-7042) is entered if
in the MICRO mode, key IOT is pressed. An opcode of 6 is

entered into the AC with a microprogrammed combination of

Group I microinstructions and the routine collects digits

from the keypad, while checking for a CNTRL key entry.

Detection of a CNTRL causes a branch to NEXT which
increments SAVPC and returns to MICRO as before. Octal
digits are shifted into the device address and control
fields of the IOT instruction from right to left.

Routine AOPR1 (Page 8-9, locations 7043-7124) is entered
when an operate group 1 instruction is to be loaded via the
keypad. The routine stores 7000 into the user addressed
location by calling PLACE with 7000 in the accumulator.
Then HEX is called as further digits are expected.

A table of jump addresses is used as described in Example 5,
Chapter 3 to branch to the proper routine.

The branches either cause the program to ignore the key

and look for the next key depression, AOPR1 + 3, or call
BSET11 or call an appropriate bit set subroutine, JA10-JA4.
The bit set routines are used by routines in all three
operate groups so they are coded as subroutines that may be
nested in the MONITOR stack.

The bit set routines work by reading a constant, AAA-AAG
(lTocations 7243-7251), corresponding to the appropriate bit
being set into the AC, then jumping to the MBST routine. This
routine stores the constant temporarily in MQ, clears the

AC, gets the instruction in its current state, updates it

by OR'ing in the MW, replaces it at the user addressed
location by calling PLACE and returns.

This procedure is followed by all the operate group
microinstruction service routines.

In other words, a table of jump addresses is used to

computer a branch to either a bit set routine or back to
the keypad reading sequence.

8-26

SINGLE INSTRUCTION EXECUTE, SIN, ROM locations 7400-7560, flow
chart Page 8-11

This routine is useful in program development as a single
instruction at a time may be executed allowing intermediate
results to be examined under MONITOR control. This routine
may only be used to single step through programs in RAM and
not in ROM because software "breakpoints" are implemented
by replacing the instruction at a breakpoint with a jump

to the breakpoint processing subroutine and this requires
writing into the memory.

SIN first initializes page O locations 0152 and 0153

labeled STORE and SHIFT to contain the instruction JMP I
SHIFT and the address 7524. This initializes the breakpoint
return linkage locations. Then it checks the instruction
for a CALL (4161g), a JMP or a JMS. If it is none of these,
it goes to the EXEC routine.

If it is a JMP or a JMS, the INAD routine is called to
determine the next address to be accessed, this is placed in
SAVPC for a pseudo-JMP and SHELL is reentered; to execute a
pseudo-JMS, the current PC is incremented and stored at the
next address (stored in TIME), the next address is incremented
and replaces the contents of SAVPC, and SHELL is reentered.

Routines INAD and INDB determine whether the current page
bit and indirect bit are set by masking off all other bits
and testing for a non-zero AC. If the page bit is set,
the current page number is obtained by masking off other
bits. This page number is concatenated with the page
address. If the indirect bit is set, the effective address
is fetched and replaced in TIME. In any event, when
location EXEC + 4 is reached, TIME contains the address

of the next instruction to be fetched. Now the program
gets the contents of this location, NEXT, and the next
sequential one (NEXT + 1) and saves them in SAV1 and

SAV2. The contents of these two locations are replaced by
the instruction JMS BACK, which is 4151, a JMS to page O
location 0151 and labeled BACK. Then both these locations
are tested to see if the instruction was actually placed
there, that is, if RAM exists there. The program does
this by reading the locations back, adding the two's
complement of 4151g to them and checking for a zero AC.

If the locations were indeed loaded correctly, the program
proceeds to restore the MQ, LINK and AC and performs an
indirect jump via SAVPC, executing the instruction
specified by the user.

8-27

This instruction is executed, and, when the user program
fetches the next instruction, it turns out to be the JMS
BACK breakpoint placed by the MONITOR, so the user program
stores the return address in BACK, 0151, and executes the
instruction in location 0152 which happens to be the JMP [
SHIFT which was placed there earlier. Thus, control is
returned to the SIN routine at the point 7524 Tlabeled RET.
The routine saves away the AC, L and MQ again, restores
the two instructions at the breakpoints, updates the user PC
using the address stored in BACK and returns to the
undefined control state.

The reason for storing JMS BACK in two successive locations
can now be seen to provide for the case when the single
instruction to be executed may skip the next location.

The MONITOR will allow all JMP, JMS, AND, IOT and OPERATE
instructions including JMP*-1, JMS*-1, and JMS*-2
instructions to be single stepped properly. A limitation
of the SIN program is that TAD, ISZ and DCA instructions
which refer to a *+1 or *+2 location cannot be single
stepped properly. There is little application for a
program that uses instructions referencing the next
sequential location, and especially, alters it, so we shall
look at the cases when *+2 locations are accessed.

The instruction TAD*+2 will add the breakpoint
instruction 4161 to the contents of the AC.

The instruction ISZ*+2 will increment the value
4161 to 4162 and then the original datum is re-
stored so there is no net effect when single
stepping this instruction.

The instruction DCA*+2 is useful in the INTERCEPT

JR. to display a result when the location following
this instruction contains the HALT instruction

7402. However, when single stepping this instruction,
the DCA will write over the breakpoint instruction,
then the original content is restored, so there is

no net effect. It is recommended that the sequence

DCA*+3
NOP
HALT

is used to display data in programs when single stepping
is desired.

A simpler alternative is to leave out the DCA instruction
(so AC is not cleared) and select the Inspect AC mode
before running the program. The right display will then
show the AC.

8-28

PIE INITIALIZE, INPIE, PRINT TO TTY, TALK, RECEIVE FROM TTY KEYBOARD
OR READER, LISN

These routines in ROM Tocations 6340-6362 and 7600-7621
are described in Chapter 7 on the PIEART board. See
Page 8-12 for the flow chart.

INTERCEPT JR. BINARY LOADER, BIN, ROM Tocations 7622-7775, flow
chart Page 8-13

This loader uses the PIEART interface board. The routine
initializes the PIE-UART checksum and RAM locations it uses,
then gets a character by calling LISN. The character is
checked for being a rubout (all channels punched) or part
of leader-trailer (only channel 8 punched), and if it is
either, the program branches to RUM or LTC respectively.

RUM continues to scan characters and echo all characters
until another rubout is detected at which point it returns
to BEG+1, which begins to process the next character.

The system does not load text enclosed by rubouts.

LTC checks if the character is a first LT character or not.
If so, the load routine is ended, the stray bit which

appears on some PAL-8 generated tapes is masked, the checksum
computed, the SAVAC location placed in the address display
and the machine is halted showing the checksum.

If the character received was neither a rubout nor an LT
character, the program updates the checksum, checks for a
"change field" character (if it is, it is ignored and the
next character is processed) and checks for "origin" data
(if so, it gets the address data in two successive
characters). The loader will ignore data for locations
0000g and 0143g-0177g. Data is loaded by routine DL2 only
when conditions are valid.

INTERCEPT JR. MEMORY DUMP, DUMP, ROM Tlocations 7305-7376, flow
chart Page 8-14

This program requires that the first and last locations,
of a block of memory to be dumped on tape, should be
entered in Tocations 0131 and 0132, and the program

run starting at location 7305.

The program uses leader-trailer routine TWTY contained

in locations 6363-6374. It will punch out a BIN formatted
tape complete with leader-trailer and checksum.

8-29

The program disables the CP request timer, initializes
the PIE-UART, calls routine TWTY in the leader-trailer
program to punch 63 LT characters.

The program next punches out the origin address, user
entered in 0131, in two successive ASCII characters
along with the channel 7 punch.

The data is also punched out using two characters per 12
bit word. The program counts the 1st and 2nd characters
by looking at location BACK which is loaded with 7776

and incremented as a character is output. After two
characters, the location becomes zero and the ISZ that
incremented it will skip the BSW that is used to position
the 2nd half of the character.

After every data item is transmitted, the address is
checked to see if the end of the block has been reached.

As each character is punched (by calling the PUNCH
routine, which in turn calls TALK), the checksum is
updated in location SAV5.

After the last data item has been punched, the checksum
is punched by CHSUM and routine TWTY is again called to
punch out the leader-trailer tape.

Finally, the CP request timer is restored and the
processor halted.

8-30

NTERSIL

+ MNITOR I

000 START=e0u0

i

i}

*(1140

§

8 8

DOT4e OC

2

238838

00156 0000
000¢

*0161

00161
#0164
0000

[GS4d
0000

Q0lé4
001¢%
00166

416y
)

7777
oTI7T 377%
7776

oTT7e

08013 1644
1247
3630
1000

7
06022 3227

20000
SAVPC.

.40

*16l
CALLX,
LYY

RET,
STACh .
L5

CALLe M2

soconoon

IFDOS FAL im

oz —RER - FAGE 1|

. MORITOR

THE AGNITOR PROGRAM FOR THE INTERCEFT R,

THE ROM MA;

00

coxoRons0sD50

1FD0S PAL LA D&-RFR~T7

caLLy
RETPNa e [BETC

/ MONITOR 2

7777

7778

*START
it

INIT

TAD
P

TAD
S1a
e

'NI\RL‘INVEPFQEYE
HAS FEEN [€SIGNATED 13D00E.

ROGKAM REZTDES IN THE [Mc 31 ROM MARNED
“OAND 15 ROM MASH SO04, THE

EEEN FROCKAMMED TO OCCUFY
E A‘l\k\-7777 HIYN THE RAM SELECT ATTIVE
CE onidimirt

THE FALE TER: VARIAELED FOR THE FROCRAM
THE MONITOR & Ews‘ LOCATIONS 130-17
FOR 1TS TN REITRICTS THE U‘EF(

ACCESD TO THESE il‘ﬂ”(ﬂf.

© THESE LOCATIONS ARE
s HOWEVEER THEY MAY

IBLE TC THE uSER

ACCESS
STURBEL BY THE MONLITOR

BE LI

THE FOLLCWING LOCATIONS (ANNOT BE LDADED
7 UZING THE BIN LOADER OR THE MEMORY DEPOSIT
© OF MICRD ROGITINES IN THE ®CNITOR

PRCE 1-)

. Y?EAM(-E TEFT LOTATIONT FOR THE MONITOR

7 3TACH

LOTATIONG 1£7-177 AFE STACK FOINTER
©LOATION: AVRILAELE T0 THE MINITIR AND
. TEF. TMEFE 1% WO STACT OVERFLIW
¢ CHETE BUT Al"ﬂ]']l‘NA’ AREA CAM PE ALLOTTEL
©TOTHE Vb BV RETERVING ANV AMOUNT
. SFACE FR RO RS
[&3 IN”IMI'E[‘ MY EY A FrwER

THE FETCEAM ESLATED FOFE TME MONITOR TTACH

THE TONTELL EANEL (CF . RESUEST ENTES FOINT
S OTO THE MINITOR FROGRAM

IFDCS PAL 1A O4-APR-T7 PAGE 1-2

< THE FROGRAM START PCINTER

7 THE INIT RUTINE FOR THE MONITOR
s PERFORMS THE ELEMENTARY FUNCTIONS
s OF THE MONITOR,

SAVE THE USER AC IN RAM

GET THE UCER FLAGE

SAVE THE USER FLAGS IN Ri

GET THE USER M) AND CLEM THE MG
SAVE THE USEK AQ IN RAM

ESTABLISH THE CP SUBRROUTINE STACK
LOCATIONS IN RAM

THE LINF TO THE ROM ADDITION

THE PLACEMENT (¥ A FEY IN THE

¥EYHOLE OF THE ROM ADDITION (LOCATION

$777) WHICH MATCHES THE VEY IN THE
MONITOR PROGRAM (VALUE s 7014

WILL CAUSE THE CONTROL PROGRAR

TO BRANCK TO THE ROM ADDITION

AT THIS POINT.

NN

/ THE MONITOR NOW BRANCHES
7 TO THE ROM ADDITION

OET THE USER PC

INCREMENT THE VALUE

TEST: WAT THE USER P EQUAL 1O 7777
NOt THIS IS NOT A POWER-UP CP CALL

AN

Figure 8-5

06023

2%
06026

31ee

04131 7300
06132
04193 3321

04134
0615%

1140
5331

e

8-31

/ MONITOR 2 IFDOS PAL 1A 06-APR-77 PAGE 2
TAD BASE / YES: THIS 1$ A POMER-UP RESET
DCA STACY / RESET THE STA(Y PQINTER
CLA CMa ¢ SET THE AC
OCA SWITCH s SET THE SWITCH TO THE DEFALT
7 CONDITION OF DISPLAY UPDATE ON
4 AND MD (MEMCRY DATA) DISPLAY ON
CALL 7 REFRESH THE DISPLAY
REFSH
LAS 7/ LOAD THE DEVPﬂ[‘ VO YNE M.
M 7 LOOF FOR A
P ouT JONGE GO YO OUT
CALL £ YES: TEST T0 SEE IF IT IS A VALID
SWDB 7 SWITIM PRE
s CLA
JPEXIT o0 TO EXTT
P GO TO THER PROGRAM SHELL
SHELL
ST, SR T CALLXeZ ¢ THE TAELE OF CONSTANTS
KCALLY. CALLY
KRETY. TY
BASE, STACk 2
RAM2L, $777 7 KEYMOLE POINTER
RAMK, -7014 s PEY
RAM24, 4000
s THE EYTT FOLTINES FOR THE RONITOR
€xtT, cnu. / WeIT FOK TME +EYPAD TD CLEAR
CLKFD
ourT, CLA CLL s TLEAR THE AU AND LIN
TAD SAVMC © PESTORE THE MO TO THE USER
oL
TAL SAVFL 7 RESTORE THE (1N TO THE LSER
TLL RAL
["LEQF THE AC
TAD SAVAC ‘ NRE THE AC T THE
o8 R TORE THE INTERRLET E~AE‘LE FLAC Y THE
; USER AND COME CLT OF P
MF 1 SAVFLD ¢ RESTORE THE B0 Tu THE ‘r‘sﬂ
©OTHIS IS THE END OF THE MONGTOR FRCCRAR
7 MONITOR 2 IFDOS PAL 1A O6-AFK-T7 PAGE -1
THE SUBROLTINE STACE FOM OVERHEAD
CALLY. DCA A
132 51A0 . STACH PLINTEF
TAD CALLX ¢ LALLY MAT THE KETURN ADIRESS
1AC / INCREMENT THE RETURN ADDRESE
ma 1 sTACY
1AL LLX .
DA LHU X .
TAL A . THE
MFO T CALLX ‘ THE ‘“PFHMHNE TALLED
RETY, XA a0 < SAVE THE A
TAD 1 STACH 7/ GET THE PETLRN A[lDRE<- FROM TME STACH
DCA CALLX ¢ OAND FUT IT N
CmA Ty s COMPLEMENT THE ﬁ[ﬂNU LT
TAD STACH < DECFEMENT THE STACY AND REST('RE THE
s USER LIN
DCA STACH . TORE THE STACH POINTER
TR AC . RE THE AC
OME 1 CALLY . Rsvuﬁn i THE FROGRAN
i CONTINUE WITH THE MONITOR
’ <U9vam=
7 THE [I3FLAY PEFFESM FOUTINE
s THE AC AND THE LIN¢ ARE iv
REFSH. CLB CLL LLEQE THE A1 AN LiM
TAD STATUS ;Y T
SPA (LA < me LIZRLAY FLAR SET™
M e)
©ONDS COME DT OF THE ROUTINE
THRU, 6400 ¢ WRITE THE A T THE DISPLAY
CLA CLL ¢ CLERP THE A AND TRE LINH
RETURN 7 RETUPN T THE PROGRAM
TAD SWITEH 7 BET THE SOFTWARE SWITCH
SMA (i © TEST: I3 THE MONITOR UPDATE FLAG SET
P L . REFRESH THE L"QER QISFLAY
Tap 7 OYEID GET THE USER Py
/ MONITOR 2 FAL 1A 04-AFR-T? PAGE 2-2
DA SAY2 SIORE IN shv: TC PASE 1O QCISLD
TAD SHITCH . N
BSW .
SPA . N
JMP MODIS .
RAL ’
SPA (LA ’ AL D(:PLAV FLAG SET>
I ACDIS . C»EY THE USER AC
TAD 1 127 . T THE WORD POINTED TO BY 127
(L9 DA cAav: 4 PRES TO QUISLD THRU SAV2
CALL 7 WPDATE DISPI-DISP4
0DISLD
upDIS. TAD STATUS / GET THE STATUS WORD !
AND Sk | / CLEAR THE BIT BUCKET
BCA STATUS / RESTORE STATUS
TAD sTﬂTU< ¢ GET STATLE
S s MASH DUT THE DIGIT CL"DE
TAD VQDJ /AL ST YO THE TABLE
/ DISFLAY WORDS
DCA POINT © PLACE A5 A POINTER
TAD I PCINT ¢ CEY THE DISFLAY WORD
€1 ¢vatur ¢ INCPEMENT THE DIGIT CODE
S THRL ¢+ G0 LOAD THE DISPLAV
TAD.I pISet / THE TAGLE O CONSTANTS
LAy 77713
mSE2, 0003
MDDIS. CLA + CLEAR THE AC AND LIN
TAL 1 SAVFC + GET THE MEMORY DATA
L3 + G0 URLATE
ACDIS TAD SAVAC ¢ GET THE LKER AC
o /G0 LUPDATE
THE CLEAR +EYFAL ROVITINE
7 THME AC AND' LIN ARE NOT AFFECTED
CLPD. DCA SAvE - IAVE THE AC IN SAvy
oL © GET A TWITCH READING

7 TEST Fi& A ZJERD READIMG
BACY ANL: TRV A3AIN

1 DRE A

N Tr THE PROGRAM

TAD AV
FETUPN

THE REET FIUTINE

INTERSIL

/ MONITOR 2 1FDOS PAL 1A O&-APR-77 PAGE 2

/ CLEAR THE AC. LIM.. FLAGS, AND MC
7/ FOR THE USER. SET THE STATUS
7/ WORD SO THAT THE DISPLAY IS ON

06165 7340 RESET, CLA CLL (MA SET THE STATUS WORD

Obise 3143 DCA STATUS

06147 2140 DCA SAVAC ¢ CLEAR THE USER AC

06170 3141 DCA SAVFL 7/ CLEAR Y’C USER FLAGS

06171 3142 DCA savma s CLEAR R 0

04172 4406 $40¢ 7107 R(SE' OF EXTERNAL FLAGS
06173 1274 TAD CRUMB 7 SET THE USER PC TO 200
06174 3000 DCA SAvP(

06173 8777 JF 1 FAD /60 TO HALT

04176 0200 CRUMB. 0200
06177 4434 FAD. HALT

THE TABLE (F CONSTANTS

7 MONITOR 2 IFDOS PAL 1R D6~APK-77 PAGE 3

G
7 CROSS THE PACE ROUNDARY TU PAGE €2
Iz

46200 eSTART+200

¢ THE SWITOH DEEDUNCE SOUTINE
7 LOSE THE AC AND THE LIM

06200 7604 SWDE. LAS 7/ READ THE PEYEAD INTO THE AC

06201 3148 A SAVE + STORE IN SAVE

08.20. 1224 TAD TCNT ¢+ GET THE WALT COUNT

06203 3137 DCA SAVA 7 PLACE IN THE COUNTER

1223 TAL Tr 7 GET THE TIME CONSTANT

06205 3144 DCA TIME / PLACE IN THE TIMER

06206 2144 187 TImE 7 TIME CuiT € MILLISECONDS

06207 3204 P -]

06210 4161 CAL| ¢ PEFRESH THE DISFLAY

06211 510% REFSH

06212 2137 157 savs 7/ COUNT DOWN THE WAIT COONT

06213 3204 e -

06214 7¢04 LAS 7 GET ANOTHER SWITCH READING

06213 7041 CIA + MEGATE IT

06216 1143 TAL SAVE + ADL IN THE FIRST READING

06217 7640 SIA (LA + TEST FOR A MATCM

06220 3200 SwDP 4 NG MATOR S0 DG 1T AGAIN

06221 1143 TAD SAVE 7 THERE [T A MATCM S0 GET THE
+ +EYFAD READING INTC THE AC

06222 384 RETURN ¢ 30 BACY YO TME PROGRAM

06223 7620 Try, e ¢ THE TAFLE ((W<TANTS

08224 777T YONT. kedsl

7 MONITOR 2 IFDOS PAL 1R 06-APR-77 PAGE 4

THE OCTAL DISPLAY LOAD ROUTINE

MC-IIQNV« ARS PASSED THRU SAVY AND
WILL GO TC DISPLAY W1

MD $AVJ IJILL GO TG DISPLAY 82

06225 7307 ODISLD, CLA CLL 1AC RTL s SET THE & TO 0004
06226 7002 BSW 7 SET THE & TG 0don
06227 31 pca TEMR 7 PLACE IN TEME
1185 TAD SAV2 ’ OEY THE FIRSY DISPLAY WORD
06231 0316 AND C1 ’ OUT THE FIRSY DIGIT
32 4161 AL 4 SNYFV OVEF % PLACES TO THE RIONT
06233 4322 SHIFTY
04234 7773 1773
235 1136 TAD SAV3 / OEY THE SECOND DISFLAY MD
06234 0316 AND mSC1L / WASK. OUT THME FIR:T DIG
04237 4161 T SR R € BlAcEs o e miokT
06240 6322 SHIFTY
06241 7767 778
06242 1130+ AD TE| / MLACE THE COMPLETE DISPLAY WORD
06243 14 DCA DISPY / INTQ DISP)
Ob24a 7332 CLA CLL CM. RTK / SET THE AC TO 1000
06245 7010 RAR
06246 3130 DCA TEMP 7/ PLACE IN TEMP
06247 11983 TAD SAVY / GET THE FIRST DISPLAY WORD
0317 D WSC2 7/ MASK OUT THE ‘EEOND oiGIY
06231 41461 CALL / SHIFT OVER 2 PLACE!
06232 $322 SHIFTY
233 7776 7776
06234 11% TAD SAV3 / GET THE ZECOND DISPLAY WORD
0317 AND MSC2 7 WASY OUT THE SECOND DIGIT
06238 4161 cALL 7 SHIFT OVER & PLACES
04237 5322 SKIFTY
7772 772
Ob261 11% TAD TEMP / PLACE THE DISPLAY WORD
06242 3138 DCA DISP2 4 INTO DISP2
06263 7332 CLA CLL W RTR 7 SE1 I 8 10 2000
3130 [7 PLACE IN T
06265 1138 TAD SAV2 7 GET THE FIRST DISPLAY WORD
0h26¢ 120 AND MSC3 / MASK QUT THE THIRD DIGIT
7104 cLL £ SHIFT LEFT ONCI
06270 11%0 TAD TEMP / COMBINE WITH TEWP
04278 1% DCA TEMP
06272 1136 TAD SAV3 7 GET THE SECOMD DISPLAY WORD
06273 0320 AND hSC3 7 WASK OUT THE THIRD DIGIT
06278 4181 CAL 7 SHIFT OVER TWAEE PLACES
06273 4327 SRIFTY
06274 7778 7778
06277 1150 TAD TEWP / GET THE DISPLAY MWORD
04300 3136 DCA DISPI / AND PLACE IN DISPI
06301 7330 CLA CLL ML RAR 7 SET THE AC TO 4000

oedn

0L 40%
Qedue

k407
2410

0¢423
06426
06427

08434

uta480

8-32

26400

/ MONITOR 2 1FDOS PAL 1A O4-AFR-T7 PAGE 4-1
A TEWF 7 PLACE IN TEWP
?En s:vz 7 GET THE FIRST DISPLAY WORD
AND mSCA ¢ MASK. OUT THE LAST DIGIT
Sk + POSITION
CALL 4 SRIFT QVER 2 PLACES
SHIFTY
778
TAD SAVI / GET THE SECOND DISPLAY WORD
MSCe / #ASt OUT THE LAST DIGIT
TEMP 7 COMBINE WITH TI
OCA DISP4 7 PLACE IN DISPA
RETURN 7 60 BACK TO THE PROGRAM
mSCL. 7000 / THE MASK TABLE
MSC2. 0700
mSC3. 0070
MSC 4, 0007

SHIFTY. bca HoLD © STORE THE DIGIT IN SAVE
TAl 1 STACK 7 GET THE POINTER TO THE SHIFT COUNT
A POINY 7 PLACE IN POINT
TAD 1 POINT £ GET THE SHIFT CONT
A SHIFT 7 PLACE_IN SHIF
182 1 STaCr 4 BUMP THE ksvum ADDRESS BY OME
TAD HOLD 7 JET THE DIGIT
CLL RAR 7 ROTATE [T ONE PLACE RIGHT
IS SMIFT . lncntnem THE COUN
- / NOT DONE SHIFTING er
TA[TEMF ’ ALL DONE. NOW COMEINE WITH TEMP
DCA TEMF
RETURN 4 G0 BACK TO THE PROGRAM

¢ REFER TC THE LATER FART OF THIS LISTING
+ FOR THE INF1E ROUTINE SOURCE WHICH l‘:

7 LOCATED AT THI: POINT IN THE ADDRE:S

/ SPACE.

: 16000 FAL 1A G -AFE=TT FAGE ©

THE MONITOR IHELL FROCEAM

SHELL GEY A NUMEER FEOM THE +EVFAD
Gl Th 1»(AUTINE
“0Ta. S TMENT VALUE FOF THE TARLE
TABLE OF FOINTEF:
ELK:.
i
¢ THE INIFECT AT EOLTINE
INGAC. L.ALL G TC AL FLAG Tl

£ L

o e S0 OTDOTHE G

THE DECFEMENT €0 ROUTINE

¢ IET THE AC
¢ &t THE ZEE
/ REITIRE THE DECFEMENTED P
Ti THE SMELL

T -1
£

/ OMONITOR 2 TFD: FAL 1A D6-AFF-"7 FAGE %-t

© THE WALT FUUTIME

WY EAS THE BN FL[E-FLOF
LU ;G0 T EXIT
¢ TME EUN RODY INE
RUN. w1 (LEAR THE RUM FLIF-FLOP
4 ST RN CPMANT
e

NTERS L

1A 04-APR-77 PAGE &

Od474 7200
044735 1143
004

06477 7030
04300 3143
06301 3624

2
.
H
&
9

6600

/ MONITOR 2

HEX.

HEXUC.

Kn7y.
xma,

Bk,

/ MONITOR 2

DEP.

SNERD.

TAB.

Len

(298

© MONDT

SETPC,

Masr..

000N,

ADJT,

WAVE .

‘

CLA [4V%
CLKPD
CALL
SWDR

SNA
AP HE XU

CLA CLL
TAD STATUS
RAL

M RAR
DCA STATUS
P UG

TAL 1 SAVRD
CLL RAL

o IFDs PAL

cALL

3
DCA TEMF
TAD TEME
AND mAsH
SNA (LA
M OON
TAL TEWP
TAD AL T
ICA TEMF

1FDOS PAL

THE HEX

DIGIT ROUTINE
INE

TO A HEX DIC" FROm ¢
HE

11 I8 T

CLEAR THE AC AND THE LINK
HAIT FOR A (LEAR YEYPAD

GET A READING FROM THE rEYPAD

TEST FOR ﬂ FEYPRESS
N0 50 PAC

YES: ROTATE RIGHT OMCE

TEST: WAS THAT E” SET

YES: GO TG THE

NO: INCREMENT VD(ROTATE COUNT
GO BACH AND RTTATE AGAIN
CLEAR THE AC AND THE LTN

GET THE HEX NUMGER

SUBTRACT 7

TEST: IS IT E(UAL TO 7

Na3

YES INCREMENT THE VALUE TO @
GET THE FINAL VALUE INTO THE AC
GO BACK TO THE PROGRAM

TEST: WAS THE VALUE 8>

v !
DECREMENT THE VOLUE TO 7
-

7/ THE BLANF FLAC TOGGLE ROUTINE
7 THE &C AND LIN ARE LDST

< CLEAR THME AC AND THE LIM

CET TWE STATUS WORD

FLACE THE FLAT IN THE LIN
TOGGLE THE FLAC AND RESTORE
RESTORE STATUS wORD

GO TO EXIT

IFOOS PAL 1A (4-APR-77 PAGE ¢-1

THE MERCRY DEFCSIT RIUTINE

GET A MEX VALUE FRi™M THE +EVPAL

FLACE 1T IN TEME

GET THE VALLE FROM TEWS
mase T BIT W

1€ THE vALUE ~ 7

7 TC LOAD THE MENCRY

VALLE
HST TO Fumv AT TME TABLE
PLACE IN TE
GET THE FUXNYEE
PLACE IN TEMP
GO O THE ROLITINE

THE TABLE OF POINTERS

GEY THE MEWCRY DATA THRU SAVPC
ROTATE TVER ONE OCTAL DICIT

<AL IN THE NEW DICIT

FLACE IN THE MEMOEY

GO GET THE NEXT LGTT

< SET THE OC AND THE LIM

DE* RENENY Tuc _USER Fi

u(v -EY mc NEH DIerT
INCREMENT THE (RER PO
IN CASE THE PO wAT 7777
GO GET YHE NEX DIGIT

1A Og-RPR-77 PAGE

/ YHE ZETFC ROUTINE
s THE AC AND LINe AKE LOFT

GET A HEX NUMEER FRONM THE FE(FAD

URE IN TEWF
GET THE VALUE FROM TEMF
mA TORIT e

uE
[uu T 10 Pmm AT THE TABLE

oev'm: pmmen FROM THE TABLE
PLACE THE POINTEF IN TEWF

GO TO THE PROPEK ROUTINE

GET THE USER PC

SHIFT IT (VER (ME OCTAC DIGIT
FLACE THE NEW DIGIT

PLACE IN THE LISER PC LOCATION
GO CET THE NEXT D510

THE TAELE F PUINTERS

’

+ CROSS THE PAGE BOUNDARY YO PAGE 44
#START+600 -
THIS 16 THE MICROINTERPRETER
AN WHICH 15 ENTEREL FROM THE

NSNS

MONITOR

BY DEPRESSING THE "MICPO"

VEY FOLLOWING A "RED" OF CONTRL
Ki THE P

EY PRESC.

FAM 16 EXITED BY

2y
TWO CONTKL rEYPRESSES IN SUCCESION.

08626

06627
08630

06831
06632

N6633

asses

T62
OeTL:

%223

8-33

7 MONITOR 2

MICRO.

XED,

AINC.

ATAD,

AIST.

ADCA.
#3000,

AT,

AmE.
800,

AANTI.

MRFA.

7 MONITOR 2

ELO.

Toz.

TOZE.

ADTS,

/ MONITOR 2

¥1000.

NEXT.

TUG.
TUos.

FLASH.

XED+1
AAN

in
ATAD
ALs2

181 SAVPC
JP HICRO
P MK

TAD k1000
P RAND

€LA {LL (M RTR
P ARND

TAD b 2000
JHPAAND
3000

CLA CLL TAC RTR
P AaND
TAD + SinC
P AAND

000

CALL
B

ang 201

TAD EL
140 TEMF

KA SWITCH

JAD | <AVPL

TAD Savs
AND TUG1
SNA

JHP PUMP

DCA HOLD
TAD SAVP(
AND TUG1

TAD 1 SAVPC

CALL

PLACE

CLA CLL CrA

DCA SWITCH
L

CLkPD

S NEXT

TAD 1 SAVP(
CLL RTL

L
CLL CM RTR

I8! SAVPC
P MICRO
JP MICRO

0177
7600

IFDOS PAL 1A Q6~APR-77

IFDOS PAL 1A 04-APR-77 PAGE 7-1

s GET A HEX VALUE FROM THE KEYPAD

ADJUST TO FCINT n e TaBLE
PLACE IN THE POIN
GET THE JumP Anmzs;
PLACE IN POIN
GO TO THE moosw ROUTINE

THE TAKLE OF POINTERS

NN

INCREMENT THE USER PC

RETURN FOR NEW MICRC COMMAND

s EET THE AC TC 1900
© G0 TO MRPA

SET THE AC TO 2000
;B0 TO MREA

ZET THE AC TO DN
© G0 TO MRPA

SEY THE AC T 4000
GO T MRPA

SET THE AD TE %00
£ GG T MRFR

‘. H_QLE THE '0‘ “'d'E IN THE

oy 1

TEtor voE AFLSCUTE atgREss
. GET A HMEX VALLE FROM THE FEVFAL

ORE IN TEME

GET THE VALLE FFO® TEMF

MATY IR H

VALLE © 7

GG TO ADDRESS LCAD
E3; ADMST TQ TARLE

ADD THE (HARACTER

PAGE 7-2

PLACE IN TEMF

OET_THE POINTER

PLACE IN TEMP

00 TO THE PROPER ROUTINE

OGN

THE TABLE OF POINTERS

GET THE AESULUTE ADDRESS

RUTATE 1T OVER ONE DCTAL
£ DIGIT

ADD IN THE GIC
PLACE IN THE QB<O\.UTE ADDRESS

CLEAR THE DISPLAY SOFTWARE

SWITCH

GET THE JN<YPU¢:Y10N S0 FAR
PLACE IN DISPLAY

GET THE AESCLLTE AIMWES<

PLACE IN THE SECOND DISPLAY

LOAD THE DISPLAY MEMORY LOCATION

NN

GO GET THE NEXT DIGIT

TAKE YP‘ ARSOLUTE ADDRESS
HASK THE PAGE ﬂl\mibs
TEST: !\ 1T PAGE

YE3: Ov TO PLACE IN ‘HORV

N~ s

IFDOS PAL 1A 06-APR-77 PAGE 8

4 STORE IN HOLD

/ GET THE MEMORY ADDRESS

7 PMASK Cl‘T TPE PAGE NUMBER

7 NEGATE

7 ADD IN DE PAGE NUMBER OF THE
7/ ABSOLUTE ADDRESS

7/ TEST: ARE WE IN CURRENT PAGE
FLASH AN ERROR CONDITION
SET THE CURRENT PAGE BIT

/ YES:
7/ GET THE ABSOLUTE ADDRESS

s MASK OUT THE PAGE ADDREST

7 PLACE IN THE MEMORY

s SET THE AC

7/ SET THE SOFTWARE SWITCH TO

/ WAIT FOR THE END OF THE WEYPRESS

7 THE ASSEMBLED INSTRUCTION
¢ OO GET THE NEXT MICRO COMMARD

7 GET THE INSTRUCTION

7 CLEAR THE LINK. AND POSITION
+ THE INDIRECT EIT

7/ SET THE RIT AND REPOSITION
7 PLACE IN THE MEMORY

s B0 GET THE NEXT VALUE

7 INCREMENT THE ADDRESS
s GO BACr TO MICRQ

+ THE FLASH ERROR ROUTINE

CLEAR THE ARSOLUTE ADDRESS
WAIT FOR A CLEAR KEYPAD

CLEAR THE DISPLAY

GET THE FIRET TIME CONSTANT
PLACE IN STORE

CLERR THE TIMER

TIME OUT

[N

COUNT THE TIME CYCLES

o100
07101

NTERSIL

+7000

7333
4161

122y

7 MONITOR 2 1F005 PAL 1A Co-APR-77 PAGE B-1
. -3
180 TkB 1 GET THE SECOND TIME CoNsTANT
0CA STORE 7 PLACE TN §
CAL 7 GETR surTo Aeaping
$2A CLA 7 TEST FOR ANY KEYPAESS
e TO1E
157 STORE / COUNT DOWM THE DISPLAY ON STORE
e FLASH 7 GO AND FLASH AGAIN
™A 7773
™. 720
/ CROSS THE PAOE BOUNDARY TO PAGE 856
*START +1000
*AIOT, CLA CLL CrL TAC RTR 7 SET THE AC TO 6000
- caLL 7 PLACE IN THE MEMORY
PLACE
DCA SAVS 7 CLEAR THE ABSOLUTE ADDRESS
AL 7 GET A MEX DIGIT FROM TME KEYPAD
X
DCA TEMP 7 PLACE IN TEWP
TAD TEWP 7 GET THE VAL
AND COB 7 mASH OUT BIT 88
con. LA / TEST: 1S THE VALUE > 7
S08 / NQi GO TO THE ADDRESS LOAD
a0 TEWP 7 YESt OET THE VALLE
™ 7 ADD ~11
sna CLA 7 TEST: IS IT A "C* KEYPRESS
»® 1 sor 7 YES: GO 1O MNEXT
JP A10T+4 / WOi 0O GET THE WEXT DIGIT
0T, 7788 /-1
$0C. 7000
cus. 0777
$00. TAD 1 SAVPC ; GEL T INSTRUCTION
0 SOC / WASK OUT THE OP Ci
CALL J PUACE BacK TN THE PERORY
PLACE
TAD SAvs / OET TME DEVICE CODE
L RAL
ClL R&C / ROTATE 1T OVER OME OCTAL DIGIT
CUL AL
/ WONITOR 2 IFDOS PAL 1A 06-APR-77 PAGE B-2
1aD TEMP / ADD IN THE NEW DIGIT
D CUS 7 BOUNE THE CODE TO EITS 43 10 811
DCA SAVS ¢ PLACE THE NEW CODE TN SA
TAD Savs ’
180 T SAvPC 7 Cplg UiTn TeE INSTRUCT ION
L / PLACE IN THE MEMORY
PLACE
P AIOTHA /60 GET THE NEXT DIGIT
/ THE OPERATE GROUPS ASSEMBLEY
7 ROUTINES
AOPRI. TAD SOC 7 SET THE C 10 7000
cALL 7 PLACE IN THE MEMORY
PLACE
CALL / GET A MEX VALUE FROM THE TABLE
HEX
TAD oum ¢ ADWUST & POINTER 1O TreE TaBLE
DCA POINT 7 PLACE IN POINT
TAD 1 POINT) GET m FOINTER FROM THE TABLE
DCA POINT 7 PLACE IN POINT
J¥ 1 POINT 7 60 TO THE ROUTINE
o oumel / THE TABLE OF POINTERS
AOPR1+3
i
W9
»e
7
Jne
Jas
a4
AOPR1 3
ACPR 3
PSET11
soT. NEXT
JAs CALL 7 SET THE PROPER BITS IN THE
BSET4 7 INSTRUCTION
P AOPRISI
JAS. CALL
BSETS
P AOPRIS)
M. CALL
Té
€ AOPR1<3
/ MONITOR 2 IFDOS PAL 1A O6-APR-77 PAGE §-3
M7 CALL
BSETY
FP ACPRIS
6. CALL
BSETE
P A0PRIeS
,e. cALL
PSETS
JP A0PR1e3
10, CALL
PSETIO
2 AOPRI+
BSETII. TAD | SAVPC 7 GET THE INSTALCTION
ROR
CLL CPL RAL / SET BIT w1t
CALL 7 PLACE IN THE MEMORY
PLACE
JP ACPRI+3 / G0 GET THE NEXT COMMAND

0002
0004

7 MONITOR 2

AOPR2.

o2,

JBe.

JET.

JRO,

L0,

GUE.

/ WONJTOR 2

TAD 7002
CAL|

CALL
BSETIN
WP AOPR 24 2

“URey
7

IFDOS PAL 1A 06-APR-77

IFDOS PAL 1A 0&-APR-77 PAGE ©

SET THE AC EQUAL TO 7400
PLACE IN THE MEMORY

~~

GET A HEX DIGIT FROM THE

rEYPAD

ADMST TO POINT AT THE TABLE

FLACE IN THE FOINTER

GET THE _#F ADDRESS FROM THE TARLE
FLACE IN PCINT

30 TO THE PROPEF ROUTINE

+ SET THE PROFER EITS IN THE
INSTRUCTION

© THE TARLE F POINTER:

PAGE -1

/ CROS:

s T

HE PAGE BOUNDARY TG FAGE &

AOPR3.

03,

SCh

PBSET?.

BSETR.

BSETY.

PSETIO.

MasT,

Jpe
NEXT

TAD I0L2

TAD AAG
P MBST

TAD ARF
P MBSy

TAD ARE
Je NBST

TAD RAD
P MBST

Tab AAC
JHP MBST

TAD AAB

TAD SWITCH
Se

RAL

ML RAR
DCA SWITCH
RETURN

IFDOS PAL 1A 04-APR-77

’

+ SET THE AC E\'UM. TO 740t
PLACE [N MEM:

GET A HEX READING FROM

YNE KEYPAD

T R POINTE& TO THE TABLE
PLALE IN POIN

GET THE QK‘D‘?ES‘ FROM THE TAELE
PLACE IN POINT

GO TC THE PROPER KOUTINE

¢ SET THE PROPER R1Y IN THE
7 INSTRUCTION

PAGE 9-2
THE BIT SET SUBROUTINES

SET BIT 810
SET BIT @0
SET RIT 48
RIT #7
SET BIT 06
SEY BIT €S
SET EIT 94

AN aNas s
A
n

PLACE THE SET CONSTANT IN THE MQ
CLEAR THE AC AND (1N

GET THE INSTRUCTION

OF IN THE RIT TQ BE SET

PLACE IN THE MERORY

RETURN TO THE PROGRAN
THE RINSAC ROUTINE
T0 TOGGLE THE AC DISPLAY FLAG

7 QET THE SOFTWARE SWlTCH
7/ POSITION THE FLAC

+ RESTORE "C sumn
/ RETURN TO THE PROGRAM

REFER TO TME END OF THIS LISTING FOR
THE S E OF THE DUMP PROGRARM
WHICH RESIDES IN THIS ADDRESS SPACE.

INTERS L

or1)

#7400 START+1400
7 THE SINDLE INSTRUCTION ROUTIME
7340 SIN, as CLL O s !T THE AC
319 DCA SNITCH / SET THE SWITCH TO nlvuv PC AND MO
el L 7/ WAIT FOR A CLEAR XE
1% axreo
1227 TAD X, / QET THE RETURN LINF INSTAUCTION
3152 DCA $TORE ’ Puct 17 IN STORE
57} TAD PLUN / OET TWE LI ADDRESS
3133 DCA SHIFT 7 PLACE IT IN SMIFT
1400 TAD [SaveC / OET THE INSTRUCTION TO BE PERFORMED
1234 TAD KAL 7 ADD ~CALL
»A LA / TEST 15 THE INSTRUCTION A CALL®
P KALL 7 YES: 00 TO KALL
1400 TAD / MOr GET THE INSVRUCHW
023 . MO / MASK OUT THE OPC
121 TAD KIT / ADD -4000
7630 ™A CLA 7 TESTI IS 11 A s
3346 . ol S d / YES) EYECUTE A PSEUDO-JNS
1400 TAD 1 savec / MOT GET THE INSTRUCTION
0230 7 WASK OUT THE OPCODE
m TAD Kar I -
7630 WA CLA / TEST; IS THE INSTRUCTION A J%
5342 .4 7 YES: n:cuv: A PSEUDO- P
3263 P EXEC / N0t 0 THE NORWAL EXECUTE
7 nouvn(
8330 KMP, P I SHIFT
7000 . 7000
4000 KIT, 4000
7324 PN RET
3000 KAT, 3000
317 KA. AL
1400 INAD. TAD 1 SAVPC / GET THE INSTRUCTION
7 / WASK (R(T THE PAGE ADDRESS
Nk oA THE 7 PLACE IN TIME
1400 TAD 1 SAVRC 7 OET THE INSTRUCTION
0261 0 ouT / MASK OUT THE CURRENT PAOE BIT
7650 "™ LA 7 TEST: IS THIS CURRENT PAGE
2% e INDB / WO GO TO INDI
7 MONITOR 2 1FDOS PAL 1A 06-APR-77 PAGE 10-1
1000 TAD SAVRT / YES: GET THE CURRENT ADMESS
0260 ~ND PUD 7 MASK OUT THE PAGE
1144 TAD TIME / COMBINE WITW THE PAGE Anmﬁss
a4 OCA TIME 7 PLACE IN TIFE
1400 INDB, TAD [SAwC 7 GET THE [NSTRUCTION
0242 AND LOT / MASK OUT THE INDIRECT BT
7630 SMA CLA 7 TEST: IS THIS AN INDIRECT
4 TURN 7 MO n:er WiTH THE ADDRESS
7INT
1344 TAD 1 TiME 7 YES: osv THE TRUE ADDRESS
Fess oCh TIME 7 PLACE IN TIME
4 RETURN 7 RETURN WITH THE ADDRESS IN TIME
0177 NOT, o177
PUD. 7600
0200 OUT. 0200
0400 LOT, 0400
1000 EXEC, TAD SAVPT / GET THE CURRENT ADDRESS
7001 1A / GEMERATE PCe]
3144 DCA TIME 7 PLACE (T IN TIME
7 NOW WE CONTIMUE WITH “NEXT"
/OIN TImME
1148 TAD TIHE / GET THE NEXT ADDRESS
7001 7 OENERATE vcnq
3448 DCA SAVE 7 STORE IN
1344 1aD 1 TIME 7 OET THE rcn‘ msmucnow
3134 DCA Savi 7 STORE IT IN Sav
1343 YAD 1 save 7 OEY THE NEXTaL 1w<vnutnon
3138 DCA $AV2 s PLACE IT |
1323 TaL 7 GET TME (NSTRUCTION - S BACK®
384 OCA I TIME 7 PLACE THE BREAVPOINT IN “NEXT"
1323 TAD TAL 7 GET =M BACK"
s DCA I SAVE / PLACE 1T IN "MEXTei"
1323 TAD TAL 7 GET THE BREAKPOINT
7041 cia
1544 TAD | TIME / ADD "NEXT- TO -BREAKPOINT
Y40 $1A CLA 7 Test mn I GET PLACED
3722 1 Hot 7 WO R SORETHING
1323 TAD TaL 7 oer e u(nr?ox
7041 1A
1343 TAD 1 SAVE 7 ADD “NEXTel® TO -BREAVPOINT
7640 $1a (LA 7 TEST: DID 1T GET PLACED
8722 1 m07 7 NOPE
4 IF WE GOT THIS FAR
/ EVERYTHING MUST BE COOL SO
7 WE WILL NOW EXECUTE THE INSTRUCTION
1182 TAD Savwa 4 RESTORE THE USER MO
7 MONITOR 2 IFDOS PAL 1A 06-APR-77 PAGE 10-2
7421 oL
1144 TAD SAVFL 7 RESTORE THE LINK
7004 RAL
7200 oA / CLEARR THE AC
1140 TAD SAvAC / NESTORE THE AC
3400 S | SAVPC / 60 EXECUTE THE INSTRUCTION
6434 HOT, [/ BAD SIN
Q% YA M5 BACK 7 BREAXPOINT INSTRUCTION
3140 RET, 0CA SAVAC / SAVE THE USER AC
OTF 7 SAVE THE USER FLAOS
3141 DCA SAvFL
7s21 7 SAVE THE USER MO
342 savmo
1134 1AD Savi 7 OET TME ORIGINAL INSTRUCTION
4 OCA 1 TIME / RESTORE IN “NEXT™
1133 Ti 2 / OET THE ORIGIMAL INSTRUCTION
S DCA | SAVE / RESTORE TQ "NEXTei"
7340 CLA CLL CWA 7 SET THE AC 10 -1
st TAD BACK 7 OET THE RETURN ADDRESS
3000 HWIC. DCA SAVPL / RESTORE TO THE USER PC
5741 HP L.l
SEL /00 TG THE MONITOR SHELL
::n EMP. CALL 7 Lt’vtn(NEXT ADDRESS INTO
’
1144 TAD TimE 7 THE ADDRESS INTO THE AC
8337 P HIC /rLAc(n msaw:»ms
/ THE ROU
4161 EmS, CALL 7 GET THE MEXT ADDRESS
7433 1400 7 INTO TIME

/ MONITOR 2

IFDOS PAL 1A O4-APR-77

PAOE 10

/ CROUSS THE PAOE BOUNDARY TO PACE

”

’

3105

#6340

143

00
8161
Jiee

7 MONITOR 2 1FDOS PAL 1A 0&-APR-T7 PAGE 11
TAD SavPC 7/ QET THE CURRENT ADDRESS
18 7 INCREMENT 1T
OCA 1 TIME 7 PLACE IT IN THE MEXT LOCATION
Tac 7 SET_THE AC 1O 0001
TAD YIME 7 INCREMENT THE MEXT LOCATION
S HIC 7 PLACE THE NEW ADDRESS IN SAVPC
KALL . A A0 AAL / SET THE AL TO 0002
Tap e 7/ BUMP THE RETURN ADDRESS BY 2
P EXECe? 7 60 TO THE EXEC ROUTINE WITH
7 THE ADDRESS OF THE RETURN
7 POINT OF THE SUBROUTINE CALLED.
7 MONITOR 2 1FDOS PAL 1A 06-APR-77 PAGE 12
/ THE PLACE ROUTINE
PLACE, XA SAVE ; FLACE TE DATA IN Save
TAD SAVPC i THE AD
™ 7 Sesr i 17 |s Locnnou 0000
RETURN / YES1 DO no LOAD AND RETURN
/ WITH THE AC CLEAR
TAD PUD / NOi ADD -
BSMA CLA 7/ TEST: 1§ m 'c > 177
P oS 7 YES: ok TO L
TAD 7 o1 oeT TE-Re
TAD KM143 7 ADD_-~143
M4 CLA 7 TEST: ls ch PC <143
JP .3 7 NDI DO NO
TAD SAVE 7 YES: OK 10
DCA 1 SAVPC 7 Loap To Tae usen HEMORY
RE 7 RETURN 1O THE PROGRAM
KM143. 7633 7 -143
/ THE FOLLOWING ROUTINES USE THE
7 PIE-UART INTERFACE
/ THE PIE-UART INSTRUCTION EQUATES
READ1 %4150
READ2w6170
WRITEI=bi61
WRITE2e6171
IP1es162
SKIP2eb163
$X1PIns 172
SKIP4=8173
RCRA=6164
WCRR=S | 65
WCRB=6 173
Whes |74
SFLAGI=4166
SFLAGI=S 178
CFLAG{=6157
CFLAGI=¢177

7
/ MONITOR 2 IFDOS PAL 1A Ob-APR-77 PAGE 12-1
SSTART+J40
/ THE PLE INITALIZE ROUTINE
INIE, CAF / CLEAR ALL FLAOS
/ CLEAR THE DISPLAY
TAD KCRA / GET THE
WCRA / WRITE [T TO THE PLE
QA L
TAD KCRB 7/ OET THME CRB WORD
WCRD / WRITE 1T 7O T™E PIE
. LA CLL
TAD KVR 7/ GET THE VECTOR HAMDLER PO.
R / LOQD 17 70 THE WC"Q !Dls'm
L / CLEAR THE AC
TAD KYTY 7/ OET THE UARY C(lﬁlﬁ. WORD
WRITE2 7 WRITE YO THE
CLL / CLEAR THE AC MD L 1N
RETURN / 60 BACK TO TME PROCRAM
KCRA, 7200
KCRE, 1360
XTTY, 7600
KVR, 0200

/ CROSS TO PAOE 8. THME LAST PAOE

SSTART+ 1 400
/ THE TTY
TALK. wiP2 ’
P - /
WRITEL .
’
DCA TIME s
’
RETURN ’

oUTPUT ROUTINE

SKIP ON CLEAR XMIT BUFFER
ANIT BFFER NOT CL(M VEV
WRITE THE AC TO THE UAR'

XPIT BUFFER

CLEAR THE AC THE
OLD CHARACTER IN Yl!‘
AETURN TQ THE PROCRAN

/ THE LISN ROUTINE TO OET A CHARAC TER

INTERSIIL

1FDOS PAL 1A 06-APR-77

7 MOMITOR 2
07603 6172 LISN. w3
07606 7000 NOF
07607 616 SELAGY
07610 6172 SK1PA
07613 310 P -
07412 4187 CFLAGL
07613 6162 READ. Sk1Ft
07614 3212 it}
07815 7200 cLa
07614 4160 READ|
07617 0221 AND TTYH
07820 4 RETUAN
07421 0377 TTYRM. 0377
/ MONITOR 2 1IFDOS PAL
’
’
’
.
’
’
‘
’
’
’
’
0156 LT=SAV)
0180 CHKSUM¥SAVY
0157 LAST«SAV4
0130 FIRSTTERP
0151 $SEC=BACK
0152 TMIRDwSTORE
0133 DATA2=SMIFT
0134 PC2vGAVi
07622 4161 BIN. AL
07623 #340 INPIE
07624 2180 DCA (MKSUM
0762% 3151 DCA SEC
07626 7040 e
07427 31%6 oA LT
07630 1371 YAD K200
07631 3157 A Last
07632 1374 TAD K102
07633 3130 DCA FIRST
07634 734G BECO, CLA (L CMA
07633 %3 DCA DATAZ
07636 3194 BEC. DCA PC2
07637 4181 CALL
07840 7609 LISN
07641 J14s DCA HOLD
07642 1144 TAD WOLD:
Q7643 1373 TAD ¥ RUB
07648 7700 SMA (LA
07645 %200 L U
07446 114y TAD HOL [
G447 1367 a0 g
/ MONITOR 2
Q7630 7630 $NA CLA
0763) 3342 P LTC
07632 114s TAD HOLD
07453 %Y OCA LAST
07634 113 TAD LT
07633 7440 $IA CLA
07436 323¢ P BEC
07637 1146 TAD
07640 1372 TAD KFD
07841 7700 SMA CLA
07462 5236 P BEC
07643 ll‘b TAD HOLD
7664 TAD CHKSUM
07643 3150 DCA CHxsum
0Teee 1190 . TAD FIRST
07647 0370 KLONG
07470 7440 KLIND. $IA CLA
ore71 9332 478
07672 2154 181 PC2
07673 3311 JP MORE
ore74 1 roL2. TAD
07673 1181 TAD SEC
07676 DCA SAVPC
07477 35324 BAD
07700 4161 MM CALL
07701 7608 LIsN
CALL
TALK
07704 1144 TAD TIME
07708 1373 TAD KRUD
07704 00 A CLA
o107 8237 NP BEG+)
or7i0 SR AU
07714 2133 MORE, 1S2 DATA2
07712 3318 P DL2
07713 114é TAD HOLD
07714 3192 DCA THIRD
7719 32% P BEC
07716 11% D2, TAD FIAST
07717 7002 S
[1151 TAD seC

PAGE 12-2

+ FROM THE TTY FEYBOARL

/ MESET THE START BIT SENSE FLAG

SET THE REALER RUN K|
“%T FOR THE FIRST ‘VNY T

\LEM VP(READER Rty FLAG

NN

NIY F(\ﬂ DATA READY FLAG

(LEAﬁ 1
Kﬂ[l "(W' BUFFER INTQ

NOSNENN

MSO WV THE UMWANTED BITS
GO BACH TO THE PROGHAM

TTY MasK

1A 06-APR-77 FAGE 13

THE EIN LOADEF FOR MONITOR

THIS PROGRAM LOADS TAPES IN BIN

FORMAT GENERATEC BY THIS MON!TOR

OR BY INTERSIL OR DEC ASSEMBLERS.

. mPM 111, PaLs.
OADER XG“OﬂE‘

AL FlELD lN’VWL"'ICN\

THOSE TAPES. [T ALSD ECHOS

AL CWA(VEF" BETWEEN RUBOUTS ON

THOSE T

THESE SYMBOLS ARE FOR THE BIN LOADER

THE LOADER ALZD USES HOLD AND SAVPC

RESET THE FIE-ART CARD
AND CLEAR CheSUM

CLEAR SET
<€T L‘ 10 7777

SET THE AC TO 200

EQUAL TO u6e

SEY THE AC
s SET DATA2

CLEAK PC2
GET THE FTRIT CHARACTER FROM TTy

¢ STORE IN HOLD

/ GET THE FIRST (HAR
s TEST: IS IT A RUROUT®
7 YES: GO TO A RUEOUT ROUTINE

¢ NO: GET THE “HAR
s FEST: 12 IT AN LT IMAR

IFDOS PAL 1A 04-APR-77 PAGE 13-1

7 YES: 00 TO THE LT ROUTINE
/ NDt STORE THE CHAR IN LAST

7 TESTI HAVE WE HAD AN LT YET®
/ NOI TONORE THE (HAR

. HAD AN LT SO (O AHES
’ YESY. I: e T & cm HELD‘

7 YEST IGNORE IT
/ NO: Or TO ADD TQ CHESUM

OET THE FIRST CHAR FROM THE
PREVIOUS PAIR OF CHARS
TEST: 1S IT AN ORIGIN?

NN

YES: 00 TO PC LOAD
mﬁntz IN THE MIDDLE OF A PC
NO: GO ON TO MORE

YES: OEY THE ADDRESS
COMBINE WITH Y’A‘D SECW HALF

PO

STORE THE NEW
00 TO CHAR UPDATE

BETWEEN RUBOUTS WE ECHO THE
CHARS READ

NN Nss s

GET THE CHAR FROM Y"!

TEST: IS 1T A RUBQUT™

IF A RUBOUT IT WiLL SEV AC TO 1ERQ
YES! 0O ON WITH THE LOADING

NOt CONTINUE TGO IGNORE CHARS

ARE WE IN THE HIDD.E OF

A DATA LOAD SEQUENC!

YES; (0 LOAD THE SECM PMV
NOt GET THE CHAR

LOAD TU THIRD

00 OET ANOTHER CHAR

OET THE FIRST CHAR

1TION
GET THE SECOND MALF

O N S L SN

NN

07774
977

4141
1

7300
1192
1%
1148
A%
5234
1%
9

7305

/ MONITOR 2

CL
TAD THIRD
DCA FIRST

AD HOL.
DCA SEC
P BECC
PCL, TAD FIRST
AND PHSK
LS
DCA SAVPC
OCA FIRST
HOLD
DCA THIRD

L1 DCA LT
T

TAD FIRST
PmSy

TAD CHrSUR
a
TAD FIRST
SE!

7 MONITOR 2

,

. RENTER PAGE #6

1F00S PAL

1FDOS PAL 1A O4-APR-77 PAGE 13-2

PLACE THE COMPLETE WORD
IN TME MEMORY

INCREMENT THE ADDRESS
CLEAR THE AC ANL LINK
MOVE UF ONE PAIR OF CHARS

NN

/ 00 GET ANGTHER (hAR

L0AD THE ORIGIN TO THE ADIRESS
MASK OUT THE CHANNEL 7 PUNLH

LOAD THE FIRST HALF 10 SAVP(
CLEAP FIRST
UPDATE THE CHAR

SET PC2 -

CLEAR LT
GET THE LAST CHAR RECE!VED
TEST: WAS THE LAST {HAR AN LT

~w

YES: GO GET ANOTHER CHAR

NO: END OF THE LOAD

COMPUTE THE (HYSUM. MASY ouT
STRAY BIT WHICH AFPEARS (N SOME
PaL-8 GENERATED TAPES.

PN

ADD TC THE ACCLMULATED M
NOW COMPENSATE FOR ADCIN
THE LAST TWD (HARS TWICE

STORE THE RESWLY IN THE AC
7 SET THE USER P TOQ 14C

7 60 TG HALY

7 THME TABLE OF (ONSTANTS

1R 0s-APR-77

PAGE 14

#START+1 305

CLA CLL e
6402

CALL

N IE

CLa cit A A
OCA BA

DCA sav'

CALL
TuTY

TAD HOLD2
AND HALF
TAD ORGIN
caLL
PUNCH

TAD HOLDZ
AND HALF
cALL

/ MONITOR 2

PUNCH

TAD 1 HOLD2
187 BACK.

DATAL

CLA CLL CMA RAL
DCA BACK
TAD HOLD2

TAD HOLLC
1S HOLDZ
NOP

$IA CLA
JMP DATAL

CHSUM. TAD SAVS
132 BACK

HALE, 0077
ORGIN.

PUNCH. CALL

T Y

IFDOS PAL 1A (6-APR-77

THIS l< THE MEMORY DUMP USER
PROGRAM. THE PROGRAM 1< VO BE USED
N \'NE USER RUN MCDE By THE VSER
T2 DUMP SECTIONS OF MEMORY OUT ONTO
PAPER TAPE IN THE RINARY “EIN
FORMAT FOR OFFLINE STORAGE.
THESE TAPES MAY LATER RE LNADED
THE BIN LOADER IN THE MONITOR PR
BY PRESSING CONTEL F('LL[‘HED BY 9‘(E€SIN(~
OSR (OPERATOR SYSTEM REST,

TO SET THE ADDRESS RANCE vF THE

FROM FIRST ™0 LAZT ANC A CH
TARE WILL END WITH ANGTHER
LEADER ' TRALER.

/ SET THE AL TQ 7777
DISAELE THE CF TIMEF

INITIALIZE THE FIE-ART (ARD

7 SET THE AC EQUAL T0 7776
PLACE THIS IN BACH
4 CLEAR THE CHECKSUM

7 PUNCH MUT LEADER/TRAILER

PUNCH THE DR

POSITION FOR 'HE FIR3T BIT:
MASK OUT THE ETTR

ADD THE CHANNEL 7 PUNLK
PUNCH IT ON THE TTY

~

GET THE SECOND MALF (F THE DRICIN
¢ PUNCH 1T

FAGE 14-1

GEY THE DATA WORD

PUNCH THE FIRIT HALF DR THE
SECOND HALF

: POSITION THE BIT:
mASK OUT THE BITS

PUNCH ON THE TTv

Nas s
L]
n
3
3

GET THE FIRST FLAC
TEST: 1S TMIS THE FiRST
S: GO BACK FOR THE SECONE WALF

<
m
o

© NC: REZET BAS TC 777

GET THE ALDFE:S EvINTER
NEGATE 17
ALD HE ENT ALTRE:
INCREMEN' TE ADDEE
SE HOLL. [D E0A
AFE THEY THE SAME -
NOT DONE YET. G0 ERCH

POINTER
PN

T THE CH SR
TND HALF

WA OUT THE EITS
PUNCH 0N THE TTy

GET THE FIRIT FLAG
DONE YET
o NOT YET

/ ALL DINE. PUNCH QUT LEADER - TRAILEF

© RESTORE THE CF BECUEST TIMEE
7 END 0F FROGE AR

THE CONSTANTS

GUTFUT THE & o THE TTv

GET THE (MARA'TER

TOMBINE WITh THE GE<) i

a0 AT TA

THE ERCRar

INn=RSIIL

7 MONITOR 2 IFDOS PAL 1A 08-APR-77 PAGE 14-2
6362 SHTARTIIS3

04362 3373 TWTY. TAD rmel s SET THE AL TO MINUC 6D
0eded 3143 DCA SAVE s PLACE 1N SAVE
CeMS 1374 Tap rLT 7 GET AN LT CHAR
4161 CALL 7 PUNCH IT ON THE TTy
06347 7600 TALK
06370 2143 151 save + DONE PUNCHING YET>
06371 3363 P-4 7 NaT YET
06272 %4 RE TURN 7 ALL DOME. RETURN TO SROGRAM

06372 7700 kM3, 7700
06378 0200 kLT, 0200

/ MONITOR 2 IFDOS PAL 1A O6-AFR-77 FAGE 1S
7243 DISP! Q134 FKCALLY 6043 basld
7244 01238 KCHE 7787 POINT
7245 KCRA 4297 PON

SGEseaRnnpEbRLREE
3

/ MONITOR 2 1FDOS PAL 1A O4-APR-77 PAGE 16
NO EARORS DETECTED
NO LINKS GENERATED
232 SYMROLS
&K MEMORY UTILIZED

8-37

CHAPTER 9
INTERCEPT JR. AUDIO CARD

| — ' DISPLAY
7-SEGMENT — - T I SE=TU | b2 CONTROL
DISPLAY @ LE . o]

AUDIO DRIVE

INTERRUPT -_ [T

SKIP
REQUEST

SPEAKER
AND
VOLUME
CONTROL

FIGURE 9-1

INTRODUCTION

The INTERCEPT JR. AUDIO MODULE, 6957-AUD/VIS, pictured in Fiqure 9-1,
is used in microprocessor tutorial courses developed by INTERSIL INC.

The user can "click" the speaker or produce tones by controlling the
rate at which the speaker clicks; the user can read a switch register
and load data to an LED display register in either binary or in both
binary and octal.

9-1

DISCUSSION

The AUDIO card makes use of the three unused I0OT instruction codes

64X1, 64X4 and 64X5 brought out to connector pins Y, C and 15
of the INTERCEPT JR. module.

The card should be plugged in with the LED display on top and the

speaker below using the card edge connector designated "to INTERCEPT
JUNIOR".

The switch register is connected to the DX bus via two 340098
three-state hex buffers. The LED binary register is driven by

three 74C175 quad D-Tlatches with their inputs connected to the DX
bus. The true outputs of the latches drive three 4511 BCD to 7
segment decoder drivers. The D input of each of the 4511's is
grounded so that the seven segment display can only display in octal.
The display can be blanked by pulling the blanking inputs on the
4511's low via the Display Control Switch Sps.

A1l the switch outputs are pulled up to Vcc via the 10K resistor pack.

I0OT 6401 along with DEVSEL and XTC drives a 4025 three input NOR so
that during IOTA.DEVSEL.XTC the 74C74 flip-flop is clocked by the
execution of this instruction. The flip-flop toggles every time it
is clocked as its Q output is connected back to the D input. This
turns the transistors in the push-pull driver alternately ON or OFF,
charging and discharging the 68 microfarad capacitor through the

speaker voice coil and producing an audible click.

IOT 6404 is also an output instruction and thus is gated with DEVSEL
and XTC to produce a load pulse (inverted by a 4069) to the three
quad D-Tatches connected to the DX bus. The latches will thus store
the contents_of the AC which are placed on the bus by the IM6100
during IOTA-DEVSEL-XTC.

I0T 6405 is an input instruction and is decoded along with DEVSEL and
XTC to produce a strobe pulse at IOTA.DEVSEL-XTC time. This pulse is
inverted by a 4069 and enables the tristate buffers onto the DX bus
and also turns ON the two 2N2222 transistors driving the Cg and Cj
lines. The IM6100 thus reads the DX bus during IOTA.DEVSEL-XTC and
loads the data into the accumulator.

The INTREQ and SKP Tlines to the IM6100 are multiplexed onto the same
line. The data read strobe generated by an IOT 6405 enables the SKP
line so that depression of the SKP switch will drive the SKP line
Tow. The INTREQ line is always enabled except during DEVSEL time.
Actually, the SKP T1ine is sampled only during DEVSEL-XTC, but for
simplicity, interrupt requests are disabled even during DEVSEL-XTC.
In any case, the INTREQ T1ine is sampled only during the last cycle
of an instruction execution during the first major state time.

The LINK bit drives an LED diode directly via a 4069.

9-2

HOEDINNOD 1043 401
30 S FARNN “id

PU——
NADD H3ILSI03Y € vaLH fliWwZly SS9l

BOLIINOY 206304 HOLIMS L0884y 95 v €0) O gy 1vnD'S
ssng ur 143os3inenigve () = Sovs ALALAALLLLLA

RIPLEELEIR |

£ CL2ANNCD
i0C240L

or o 6

ML 60Oy

[TTTTI
v

ERN

r o 6
1
29
2222ZNT o i)
€ r
o
EREFRVEIN-DY AN s o
-
9 7
— v -
L]
= el Pau fyo e
fic 1 Gl
Oo—¢
690700 6900GD zulv jc [1fo]s fe |8 Joiz 6 fujel
o1
% DL 1 668] .
HIvd HOLSISIY M0L NowsI3E eloly
||~| FLEN: N
HOLDINNGT
4 ld-id . o 305628
TV Y E
FI i D6 e
dizs S)
s 01y 5 80 (o
] [B LD DA mw I\
8 o ot
520007 S R
394 Iya vV —
v| o © ole .|.u
S 9 s 9)y
B
t PLA £ ‘ H
sz Lo
o 8 -
‘e
[3
“Jor
; | T
|._.| 44 1d £ 3
~ N 3 MG g
— v
' 3 ‘ L
wizs L2 T
g
“le H
o
BEIENT .ﬁ 104 9] fxo
e 1 I CE)
= 4 x
3 7 94 - x 5D
! T K 10 A X6 _
iy "
E:”m 3o o o 5 D)
— ¢ 4 X
2222NZ e w, 5]
S |
xe
Al
{1t
Sy Avigsia N S I I S S S I 1 eIS3y
vOvg
2D

2 JILVW3HIS QYYD OIANY "0 Ld3JYILNI @i Gu; < 3
SINGNY—4S69

CHAPTER 10

INTERCEPT JR CASSETTE INTERFACE CARD

INTRODUCT ION

The INTERCEPT JR AUDIO CASSETTE INTERFACE MODULE, 6954-ACl1 is pictured in

Figure 10-1.
PHASE LOCK
LOOP CLOCK
FILTER RECEIVER
PHASE LOCK
LOOP DATA
RECEIVER
DIGITAL
SINEWAVE
GENERATOR COMPARATOR
CRYSTAL
CONTROLLED
OSCILLATOR
AND DIVIDER NEGATIVE
VOLTAGE
CONVERTER
DIGITAL
BUS-UART
INTERFACE
OPTIONAL
RECORDER
POWER
CONTROL
DEVICE
ADDRESS
SELECT

Figure 10-1

The 6954 Cassette Interface module allows the Intercept Jr. user to store
programs on an inexpensive cassette tape recorder. The recording technique
used is a variation of the proposed 'Byte Magazine' standard. In addition
to this standard signal, a multiple of the data clock is recorded on the
tape. The data and the clock are recovered from the tape by using phaselock
loops. The use of phaselock loops makes the system insensitive to
amplitude variations, noise, and A.C. line interference. The self-clocking
feature allows the system to operate independent of tape speed variations.
Data is recorded and played back at 300 baud rate. Thus, approximately

200,000 characters may be recorded on a standard two hour cassette.

The record/playback system is shown in Figure 10-2.

The system can be subdivided into three main sections:
1. Transmitter section consisting of a clock, divider, clock gating,

digital frequency generator - mixer and low pass filter.

2. Receiver section consisting of two phaselock loops and a comparator.
3. DC-DC converter to generate -5v from the +5v Jr. supply.
4, Digital section composed of a UART and a PIE chip.

The transmitter section takes the serial data being transmitted from the

UART and converts it to standard frequency shift signals -- a highér frequency
(Mark) for a digital "1" and a lower frequency (Space) for a digital "0".

The ones and zeroes at the UART transmit line are converted to a series of
marks and spaces on the magnetic tape. A tape casette designed specifically
for a digital system would write ones and zeroes directly on the tape by

using a tape saturation techniques. The record system on an audio cassette

10-2

is not designed to operate in the saturation mode. Therefore, digital
information is best stored in the form of two different frequencies, both
within the frequency range of the recording system. This recording system
is similar to techniques used to transmit data over telephone lines.

Where telephone lines have phase distortion (harmonics arriving out of
phase with the fundamental frequency), tape systems have speed variation
problems. The speed variation problem in this system is resolved by re-

cording the clock with data on the tape.

The receiver section has two phaselock loops. One loop is locked to the
data mark and space frequencies. The DC control voltage for the Voltage
Controlled Oscillator (VCO) is sensed by a comparator circuit. As the

input frequency varies, so does the DC control voltage, as a result, the
comparator output is a one for the mark frequency and a zero for a space

frequency. The ones and zeroes are sent to the UART as received data.

Another PLL (phaselock loop) locks onto the clock signal and supplies the
UART with a receiver clock. Any speed variations in the tape recorder
are tracked by the data and clock PLLs, thereby making the system immune

to speed variation.

The digital section consists of a standard Intersil UART (Universal

Asynchronous Receiver Transmitter) and PIE (Parallel Interface Element).

10-3

THE RECORDER

Practically any cassette recorder can be used in this system. A number of
different brands of recorders have been successfully used to record and play-
back digital data. There may exist certain recorders whose circuitry is so
poor as to be unusable in this system. Some recorders may have excessive AC
hum which will create data errors. Sometimes the hum problem can be reduced by
reversing the line plug. If a recorder with hum problems has provisions for

batteries, you can run the unit from batteries to eliminate the hum problem.

The MIC output from the 6954-ACI board is a low-level signal which should be
connected to the microphone input jack of the recorder. Most recorders label
the microphone input "MIC". A shielded cable should always be used for the
MIC interconnection. Failure to use a shielded cable may cause noise to be
recorded along with the useful signal. Numerous jumper pads are provided

near the 6954 MIC jack to allow the user to tailor the output to any special
application. The 'from the factory' jumper set-up sets the output level to an
optimum level for most recorders. If you have a recorder with an 'AUX' input,
which is an input meant for a high-level signal, you may want to use the AUX
input instead of the MIC input. The use of the AUX input would only be
necessary in an extremely noisy environment. To create a high-level output
from the 6954 board, cut the trace between jumper pads 2 and 3 and then connect

pad 2 to pad 1. An even higher signal can be obtained by connecting pad 2 to
TP10.

Some recorders have a monitor feature in which the signal being recorded is
amplified and sent out on the earphone (EAR) jack during the recording process.
This may be a quality signal which can be used to test and set-up the receiver
portion of the board. Usually there is no volume control for this monitor
signal and in some cases it may not be of sufficient level or quality to be
used as a valid recciver signal. 1If a good monitor signal is not available, all
testing should be done in two passes -- the first to record a signal and the

second to play the signal back to the receiver section.

10-4

During data playback, the setting of the volume control is not critical. Unplug
the EAR plug on the recorder and adjust the volume to a normal listening level --
this position of the control can then be marked for future reference. If at

any time the system will work only for a narrow range of volume settings, a
system problem exists and should be debugged. If a scope is available, the
volume control should be adjusted so that a one volt peak-peak signal is

present at the EAR jack of the 6954 board.
Although inexpensive cassette cartridges are usable since tape quality is not
a significant factor, the mechanical quality of the better cassettes help reduce

jamming problems that cassette recorders experience.

A recorder that has a ''tape counter' feature is very useful for locating the

approximate position of data stored on a tape.

SOURCES OF NOISE INTERFERENCE

The possibility of either recording errors or playback errors exists when there
is an excessive amount of noise interference present. Possible sources of
noise in this system are ground loops, AC line interference, RF interference,

and supply voltage transients.

Ground loops are currents flowing through the ground traces, shields, and

recorder frame which may create false signals either on the board or in the
recorder. If an Intercept system has external equipment connected to it, im-
proper grounding techniques can create system problems. A good method for

dealing with grounding problems is to first draw a block diagram of all components
in the system and then draw all ground connections that are present. An analysis

can then be made of the path that ground currents must take.

AC line interference can be caused either by equipment connected to the system

or by proximity to sources of AC voltages. An AC problem caused by a piece

10-5

of peripheral equipment must usually be solved by eliminating the problem at
that particular piece of equipment. Interference caused by nearby AC sources is

caused by removal of the source or by shielding the ACI interface circuitry.

Strong RF fields near the interface circuitry can create problems. Remember
that the Intercept Jr. components are not in shielded boxes and any operational

situations where strong fields exist must be dealt with by shielding the circuitry.

Supply voltage transients are present when heavy loads are switched on and off.
Also when weak batteries are supplying the power, internal battery resistance
increases the possibility of transients. Power supply problems can be minimized
by using a line operated power source and by decoupling high current loads.

LEDs and TTY current loops are examples of high current loads.

6954 ACI BOARD

The 6954 board is designed to work with +5 volts and -5 volts. The +5 volts
are supplied by the Intercept Jr. batteries and the -5 volts are generated by

a voltage converter. The 6954 board should not be operated over a wide range
of supply voltages. If batteries are being used and they are being heavily
loaded, it may be necessary to use a line operated power supply to maintain a
more constant +5 volt supply voltage. If the supply voltage drops too low, the
phaselock loops (ICl and IC2) may have to be readjusted to correctly receive

data.

WRITING PROGRAMS FOR DATA TRANSFERS - USING TTY ADDRESSES

For each card in the system that uses a 6101 PIE chip, a unique address must
be assigned to that card so that I/O instructions can be directed to a
particular board. If a TTY interface is not being used, the address normally
used for the TTY can be assigned to the ACI board. The advantage of doing this
is that there are ROM programs that reference the TTY board address.

The ROM programs allow you to initialize the PIE, write data to the recorder,
and read data from the recorder simply by calling the existing programs from
ROM. If a TTY card and an ACI are both being used, a different address must
be assigned and the ROM routines cannot be used. A listing of the ROM

is in the Intercept Jr. manual. The pertinent routines are listed below

and can be used as a guide to writing your own program. Note that the I/0

instructions that address the standard TTY card must be modified for other

addresses.
/ THE PIE INITIALIZE ROUTINE
INPIE, CAF / CLEAR ALL FLAGS
6400 / CLEAR THE DISPLAY
TAD KCRA / GET THE CRA WORD
WCRA / LOAD IT TO CRA IN PIE
CLA CLL
TAD KCRB / GET THE CRB WORD
WCRB / LOAD IT TO THE CRB WORD IN PIE
CLA CLL
TAD KTTY / GET THE TTY-UART CONTROL WORD
WRITEZ2 / LOAD IT TO UART CONTROL WORD
CLA CLL /
WVR / WRITE ALL ZEROS INTO THE VECTOR WORD
DCA SAVS / CLEAR SAVS
RETURN / GO BACK TO THE PROGRAM
KCRA, 7200
KCRB, 1560
KTTY, 7600
/ THE PRINT TO TTY ROUTINE
TALK, SKIp2 / SKIP ON CLEAR XMIT BUFFER
JMP . -1 / XMIT BUFFER NOT YET CLEAR
WRITE1 / WRITE THE AC TO THE UART
DCA TIME / CLEAR THE AC AND STORE THE DATA
/ IN TIME FOR POSSIBLE RECOVERY
RETURN / GO BACK TO THE PROGRAM
/ LISN IS THE ROUTINE TO GET A
/ CHARACTER FROM THE TTY KEYBOARD
/ CR READER
READ, SKIiP1 / WAIT FOR DATA READY FLAG
JMP . -1
CLA / CLEAR THE AC
READ1 / READ THE UART BUFFER AND ERROR
/ FLAGS, CLEAR THE DATA READY FLAG
AND TTYM / CLEAR OUT THE UNWANTED BITS
RETURN / GO BACK TO THE PROGRAM
TTYM, 0377

10-7

USER ASSIGNED ADDRESS

The user should consult the 6101-PIE data sheet and thoroughly understand its

operation in order to write effective data transfer programs.

I/0 instructions are of the format

0 1 2 3 4 5 6 7 8 9 10 11

1 1 0 Address Control

Bits 3-7 are compared with the SEL3-SEL7 inputs of the PIE.

SEL3-SEL7 represent the PIE address to be selected. The standard teletype
address is SEL3 and SEL4 zero and SELS5, SEL6 § SEL7 a high logic level -- so
all TTY I/0 instructions are of the form 11000111XXXX, where the X's represent
the type of I/0 instruction to be implemented. The following are examples of
TTY I/0 instructions: WRITE2 (OCTAL 6171), READ1 (OCTAL 6160), and SKIP2
(OCTAL 6163).

WRITING A MEMORY WORD TO THE CASSETTE

Assume that we set the PIE address as follows:
SEL3=0
SEL4=0
SEL5=0
SEL6=1
SEL7=1

The WRITElL command is used to send an eight bit character out on the DX bus to
the UART where it is transmitted as serial data. Due to our choice of PIE
address, the octal code for WRITEl will be 6061. In addition to the WRITEL
command, we must use a SKIP2 command to form a waiting loop - the loop is
necessary since the UART may not be ready to transmit a character at all times.

A program segment which will write an eight bit word is:

10-8

0020 6063 LOOP, SKIP2

0021 5020 JMP LOOP
0022 6061 WRITE1

The program will cycle between the first two instructions until the UART is
ready to transmit a new character - at that time the program will skip the
second instruction and go to the WRITEl instruction. Note that only eight

bits can be transferred and it will take two transfers to write a 12 bit

memory word.

READING A MEMORY WORD FROM THE CASSETTE

The reading routine is very similar to the write routine and is shown below.

Note that the four most significant bits are masked off.

0030 6062 LOOP, SKIP1
0031 5030 JMP LOOP
0032 7200 CLA

0033 6060 READ1
0034 0040 AND MASK
0040 0377 MASK, 0377

INITIALIZING THE PIE

At the start of a program, the internal registers of the PIE chip must be
initialized. The ROM routine which does this has the label INPIE. If the
standard TTY address is not used, the I/0 instructions must be modified to

conform to the address being used.

10-9

THEORY OF RECEIVER SECTION OPERATION

IC1 is a 565 phaselock loop that locks on to the mark and space frequencies
from the cassette. The center frequency of the phaselock loop is controlled
by C4, R5, and Pl1. The center frequency is preset at the factory with P1.
Capacitor C5 is necessary to prevent oscillations. The signal from the tape
recorder is AC coupled through C1 filter. Pins 6 and 7 are the 565 output
terminals. Pin 6 is a reference DC voltage while pin 7 is a control voltage
that goes above and below the reference voltage--depending on whether a mark
or a space is being received. The control voltage passes through a low pass

filter. The filtered control voltage goes to pin 4 of IC3.

IC3 is a precision comparator which compares the ICI reference output with
IC1 control voltage. The output of the comparator at pin 9 is a one (5 volt)
level when a mark frequency is being received and is a zero when a space is

received.

IC2 is a 565 phaselock loop which acquires the recorded clock signal and

tracks any variations in clock speed. The composite signal (clock and data)

is applied to pin 2. Cl4 and R15 are set so that the PLL center frequency is
equal to the normal clock frequency. The phaselock loop VCO output at pins 4
and 5 supply the clock signal to a UART. When the PLL is locked onto the clock,

pins 4 and 5 represent recovered clock data.

The following test points are available in the receiver section:

TP1 MARK/SPACE CONTROL VOLTAGE
TP2 REFERENCE VOLTAGE

TP3 RECEIVED DIGITAL DATA

TP4 RECOVERED CLOCK SIGNAL

Figure 2 shows typical waveforms for the test points.

10-10

THEORY OF TRANSMITTER SECTION OPERATION

The transmitter section consists of IC4, IC5, IC8, ICY9 and IC10.

The circuit consisting of IC9 and a crystal oscillator is the main time base
from which the transmitted clock is derived and from which the mark and space
frequencies are derived. The oscillator output is at pin 5 at a frequency

of 2.4576 MHz. The oscillator signal is fed to pin 10 of IC10. 1IC10 is a
multistage divider chip that provides three different frequencies -- 19200 Hz
and 9600 Hz for the mark/space generation and 4800 Hz for the UART transmit
clock. The 4800 Hz signal is also supplied to a mixer (R18 and R22) and even-
tually recorded on the tape. The circuitry of IC5 is a multiplexer which

either sends 19200 Hz or 9600 Hz to the digital sinewave generator (IC4).

The counter, IC4, is used to digitally generate the mark/space sinewave
frequency. The outputs of IC4 are pins 3, 6 and 11. R19, R20, R21 and R22
comprise a mixer circuit -- as the counter outputs go high, they are mixed

with the composite signal across R22. Also appearing at R22 will be the clock
signal. The composite signal passes through an active filter (Q2 and associated
components). The output of the filter is divided down to an optimum record
signal and sent to the recorder through the "MIC" plug. Optional jumpers are

available to accomodate special recorder requirements.

The following test points are available in the transmitter section:

TP5 Composite Sinewave

TP7 19200 Hz Digital Signal
TP8 4800 Hz Digital Signal

TP9 9600 Hz Digital Singal

Figure 3 shows typical waveshapes. Note that the signal to the recorder is a
low level signal intended for the microphone input, not the auxiliary input.

Some recorders have an "AUX'" input, but all recorders have a "MIC" input.

10-11

D.C.-D.C. CONVERTER

IC13 is a Texas Instrument TL497 switching converter. ICl13 switches current
into L1 at a frequency determined by C30. As the current through L1 is switched
off, a negative voltage is present at pin 8 of IC13. CR1 passes this negative
pulse to C31 where it is filtered and sent to the circuits requiring -5 volts.
The voltage at the output is set by the resistor ratio of R32 and R33. R34 is

used as a current limit and to reduce noise on the +5 volt line.

CIRCUIT OPTIONS

The 6954-ACI board allows the user to implement a remote power ON/OFF control
to a recorder if desired. PIE flag Fl1 is used via a gate and transistor to
operate a DIP relay. The contacts are brought to the plug bracket. An

extra hole is provided on this bracket for a 2.5 mm plug. One way to use
this feature is to parallel the remote foot-switch or PAUSE switch available
on many recorders. Another possibility is to shut off all power to the
system on a user program decision. Optional resistor locations and jumper
pads have been provided in the filter output circuit to adjust voltage

levels. In most cases, the factory settings should be adequate.

10-12

APPENDIX A
INTERCEPT JR. PROGRAMMING FUNDAMENTALS

NUMBER SYSTEMS

INTERCEPT JR., as most digital computers, uses the binary system.
Representation of binary numbers by positional notation is
analogous to the common representation of decimal numbers by
assigning ten different "weights" to each position. Any number
of n digits may be written as the string of digits.

C C

¢ 1 Yo

n_zo . OC

n-1
where C's can range from 0 to 9.
This actually stands for

Cn-] followed by (n-1) zeros +
Cn—2 followed by (n-2) zeros +

Cn_3 followed by (n-3) zeros +

C, followed by 1 zero +

Co

n-1 n-2] 0
or C._4 (10) +C _, (10) + ..., (10) + ¢, (10)

For example, 1234 is 1000 + 200 + 30 + 4 or 1 X 105 + 2 X 10° +

3% 10" + 4.

Similarly, in the binary system, any number may be represented
by a string of coefficients

Bn-] Bn-2"'BO B]
which stands for
n-1 n-2 1 0
8,1 (2" + B, (277 4By (2) + 8y (2)

where the B's may be 0 or 1.

The "radix", or base of the binary system is 2, whereas it is 0
in the case of the decimal system.

A-1

In theory, binary numbers may be used to describe the condition
of these flip-flops.

A system with 12 flip-flops could be represented by a 12 bit
number, for example 1 0110011100 1, where each bit
represents the set or reset state of a particular flip-flop.
Binary numbers are unwieldy to handle because of the long strings
involved, so often a simplification is introduced.

Consider the numbers 0 through 15 written in their binary
equivalent,

23 22 21 2O

8 4 2 1

0 0 o 0 O
o 0 0 1 1
0 0 1 0 2
o o 1 1 3
c 1 0 0 4
o 1 0 1 5
o 1 1 0 &6
o 1 1 1 7
1 0 0 0 8
1 0 0 1 9
T 0 1 0 10
T 0 1 1 N
T 1 0 0 12
T 1 0 1 13
1 1 1 0 14
T 1 1 1 15

Observe that in the "units", or 20 position, the state changes, or
"toggles" most often, for example every time the number increments.
In the next or 21 position, the bits toggle every two increments,
and in the 22 position, every four times, etc.

Or, looking at this another way, the one bit groups 0 and 1
alternate every time, the two bit groups 00, 01, 10, 11 recur
every fourth time, the three bit groups

000)
001)
010)
011)
100)
101)
110)
111)

recur every eight times, and so on.

Thus, to shorten binary numbers, we could encode these groups.
The tradeoff is between the length of the number string, and the
number of symbols required.

A-3

Qur 12 bit number may now be represented by three of the above
codes:

1011 0011 1001
or B 3 9

So, we have doubled the number of symbols to sixteen but reduced
the Tength of our string only by one, from four to three. The
code itself has also become a little unwieldy because the number
of different symbols.

As a matter of fact, this representation by four bit groups is
known as the hexadecimal system (base 16 system) and is widely
used.

The system of representation with three bit groups encoded with
the eight symbols O through 7 is known as the octal number system
and is also in wide use.

We shall adopt the octal numbering system for INTERCEPT JR.

It should be evident by now that the choice is based purely on
convenience and consistency with the available literature as
almost all digital computers are fundamentally binary machines.

At this point, it is instructive to turn your machine ON. Press

the CNTRL key and the MEM key and then keep pressing the MEM

key. The address display will increment in an octal progression.
By watching the addresses increment, the user can become familiar
with the octal system.

To recapitulate, conversion from binary to octal is done by
taking groups of three bits, starting from the least significant
bit, filling in a zero or zeros to the most significant group,
if necessary, and writing down the octal equivalent for each
group.

Conversion from octal to binary is done by directly writing down
three bits from each octal number.

INTERCEPT JR. uses two's complement arithmetic in its processing
logic.

The processor performs binary addition between two operands but
binary subtraction is best done adding the "negative" of one
operand to the other. This requires an extra symbol to indicate
the sign of the number. To avoid this, a form of representation
known as two's complement has been devised to represent negative
numbers.

A-5

APPENDIX B
INTRODUCTION TO LOGIC

INTRODUCTION
This appendix briefly reviews truth tables as applied to simple
Togic elements, both combinatorial and sequential. Timing

diagrams and state diagrams are illustrated using flip-flops
as examples.,

TRUTH TABLES

AND FUNCTION
Symbol for AND gate

Output is true only if all inputs are true, that is,
input 1 AND input 2 AND...AND input N

Input 1 Input 2 Input N Output

—_——0 OO
OO0 —
O OO — -
OO0 O

1 1 all 1's 1 1

This table shows a conventional positive logic AND gate,
with 1 representing logic high or true, and 0 representing
logic low or false. Thus, only one combination of the
inputs gives a high output.

B-1

OR FUNCTION SYMBOL FOR OR GATE

Qutput is true if at lTeast one of the inputs is true, for
example Input 1 OR Input 2 OR...Input N OR any combination
of true inputs yields a true output.

Input 1 Input 2 Input N Output

o — OO0

0 0
T aeee 0
1 0
0 1

—_— —) — (D)

ooooo

Here, only one of the 2N possible input combinations
namely all 0's will yield a false or low output.

NOT FUNCTION

Symbol for inverter

A)

OR

B)

Output is logical inversion of input.

Input Qutput
1 0
0 1

The position of the "bubble" tells you what the active level

of the input is expected to be by the designer. Quite often,
it is drawn as in A above.

B-2

NAND FUNCTION

Symbol for NAND gate

A ——]

oO—0Oo >
OO —t —
——— o

This is the same as an AND gate followed by an inverter.

NOR FUNCTION

Symbol for NOR gate

A
C

B

A B C

0 0 1

0 1 0

1 0 0

1 1 0

This is the same as an OR gate followed by an inverter.

EXCLUSIVE-OR FUNCTION

Symbol for EX-OR gate

A

B C

— —0O O =

0
1
1
0

— O = O

Qutput is true if Input A OR B but not BOTH are true.
Note that this gate can be used to detect the fact that
the inputs are identical. Thus, it is used quite often
in digital comparators.

D-TYPE FLIP-FLOPS
Symbol

Preset

—Clock § D

Clear
TRUTH TABLE (1)

Input Qutput
D Clock Clear Preset Q Qq
X X 0 0 1 1
X X 0 1 0 1
X X 1 0 1 0
X 0 1] STABLE
X 1 1 1 STABLE
X ¥ 1 1 STABLE
0 A 1 1 0 1
1 4 1 1 1 0

The truth table for a D flip-flop is complicated
by the sequential nature of this logic device.
Strictly speaking, truth tables should represent
combinatorial logic properties only.

In this case, the truth table also shows the edge-
triggered action of the flip-flop with ¢ representing
the negative going edge and + the positive going
edge. 0 and 1 show stable levels.

B-4

The table is really a hybrid of a combinatorial
truth table and a state table.

This flip-flop is a synchronous storage element. In
other words, it stores data using a clock signal to
synchronize the operation. In this case, the device
is positive-going edge triggered, or simply, positive
edge triggered.

The bottom two lines show that as long as the clear
and present inputs are high, the positive clock edge
loads the flip-flop with the data at D such that the
Q output reflects the D input. The Q output is
always supposed to be the inverse of the Q input.

A1l other conditions of the clock--high, low, or
negative edge, have no effect and the outputs remain
stab;e (at the value loaded on the previous positive
edge).

The D flip-flop thus delays data by one clock period.
Note that during the preceding discussion, the clear
and preset inputs were assumed high.

These inputs are asynchronous, and so can change the
outputs regardless of the clock or data input.

The bubbles indicate active low operation.

When both asynchronous, or "direct" inputs are low,

both Q and Q go high, so this condition is normally
forbidden.

In sequential circuits, other time related parameters
are generally specified. Thus data inputs generally
have to meet setup and hold times with respect to

the active edge of the clock, or "interrogating"

edge, A setup time is the time the data must be present
before the active edge, and the hold time is the time
for which it must continue to be present--"held", after
the active edge in order for proper operation. Sequential
device operation can be much better understood using
another graphical technique known as a timing diagram.
Such diagrams bring out the time-sequential interactions
in these devices much more clearly. The next section
will deal with timing diagrams.

B-5

TIMING DIAGRAMS

Shown below is a timing diagram for a D flip-flop.

Preset ”

Clear —1J J
Clock | [I U L

Data

o B | [
S

Q

STATE DIAGRAMS

Sequential circuits inherently contain storage elements each of
which may be in one of two stable states. Each "state" of a
digital system, as explained in the section on truth tables,
could be represented by a binary number. The system changes
states in response to internal and/or external conditions.

The state transition may be synchronous to a clock pulse train
or asynchronous. Asynchronous sequential circuits will not be
covered in detail in this book, and we shall deal only with
clocked logic.

State tables and state transition diagrams are additional tools
of analysis and design that digital engineers use.

As an example, we shall show the state table and state transition
diagram for the J-K flip-flop.

Qn Jn Kn Qn+1
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

B-6

The transition, if any, from Qn to Qn+7 (Q at time tp and Q at
time tp+1) is triggered by the negative going edge of the clock.

In words, when J and K are zero, the outputs do not change. When
J and K are both one, the output toggles at every clock pulse

and when J and K are at opposite levels, Q follows J (and Q
follows K).

Another form of the state table shows this relationship:

Jn=0,Kn=0 Jn=0, Kn=] J =1, Kn=0 Jn=1, Kn=1

n
Present State Next State Next State Next State Next State
Qn Qn+1 Qn+1 Qn+1 Qn+1
0 0 0 1 1
1 1 0 1 0

The number of inputs and outputs in a digital system are not
related to the number of states. They only determine the number
of paths along which a change of state may occur. In this
specific case, the output is also the state.

(a op

The state diagram shows the different states of a digital system
and the conditions necessary to cause the system to change states.

Information that is not shown on a state transition diagram is
presented in other visual aids such as timing diagrams.

Thus, in general, a complex system must be studied with the aid

of many different tools in order to gain insight into the operation
of the system from many different angles.

B-7

Digital systems may be "hardwired" or programmable. Hardwired
digital systems have many logic devices scattered at random
and many operations are done in parallel.

This "random logic" consists of such standard SSI and MSI
functions as counters, multiplexers, decoders, latches, registers,
etc.

Programmable logic systems usually have denser, more regularly
arrayed chips such as ROMs, PROMs, RAMs, FPLAs, microprocessors,
etc. and substitute many sequential operations for a single
parallel operation, though this is not always the case.

Such systems replace the "randomness" in the logic with random
bit patterns in the memory components. Programmable Togic
systems are gaining popularity with the advent of inexpensive LSI
storage and processor devices.

B-8

APPENDIX C
OCTAL-DECIMAL INTEGER CONVERSION TABLE

.
o 1 2 3 4 5 & 71 L B S A ¢ 1 3 3 4 5 & 1
000 | 00 r o %001 oo 003 000n u:o 0?4:2 1000 | 0512 0513 0514 0515 0516 0817 08 | m:go “z:‘
to to 0000 | 0000 0001 D002 0003 0004 000S G00A 0007 16 0617 0518 0518 32000 | 1034 1025 1026 1037 1038 1029 1030 1031
0777 | 0811 ’ 0010 | 0008 0009 0010 0011 00L2 0013 0014 0015 AZ'Z m“md 1010 | 0520 0521 0522 0523 0524 0525 0526 0527 777 | 1838 2010 | 1032 1033 1034 1035 1036 1037 1039 1039
(Octal)l(Decimal) | 0020 | 0016 0017 0018 0019 0020 0021 0022 0023 (Octal)(Decimal) | 1020 | 0528 0520 0830 0831 0532 0833 0534 0535 (Octab{(Decimal] | 200 | 1040 1041 1042 1043 1044 1045 1046 1047
. 0030 | 0024 0025 0026 0027 0028 0U20 0030 0031 1030 | 0336 0337 0538 0539 0340 0541 0542 0M3 2080 | 1048 1040 1080 1051 1052 1053 1084 1085
| 0040 | 0032 0033 0U34 0035 0036 0037 0038 009 1040 | 0844 0345 0546 0347 0548 0549 0550 0851 2040 | 1056 1057 1058 1059 1060 1061 1082 1063
Octal Decimal | 0050 | 0040 0041 0042 0043 0044 0045 0046 0047 1080 | 0332 0553 0434 0855 0836 0557 0338 0659 | 2050 | 1064 1085 1065 1067 1068 1069 1070 1071
10000- 4096 | 0050 ‘ 0043 0049 0050 0051 0052 0US3 0034 00S5 1060 | 0360 0881 0862 0363 0364 0565 0368 0347 2060 | 1072 1073 1074 1075 1076 1077 1078 1079
:mml;;:: ;0070 ‘ 0056 00S7 003S 0059 0060 0061 0062 0063 1070 | 0368 0569 0570 0571 0372 0373 0574 0575 2070 1080 1081 1082 1083 1084 1085 1086 1087
f
40000-16384 0100 | 0064 0065 0066 DOG7 0068 0060 0070 OUTI ' 1100 | G576 0577 0578 0579 0380 081 0862 0583 | 2100 | 1088 1089 1090 1091 1092 1003 1094 1095
50000-20480 ‘ 0110 | 0072 0073 0074 0U75 0076 00T7 0078 007 | 1110 | 0384 0585 0586 0367 0388 0389 0360 0591 3110 | 1006 1007 1098 1009 1100 1101 1102 1103
000024576 | 0120 | 0080 0051 0OR2 00K3 0S4 0085 OUKG 0087 1120 | 0892 0503 US04 0595 0506 0307 0508 0399 | 2120 | 1104 1105 1106 1307 1108 1109 1110 1111
70000-28672 | 0130 | 0088 0059 0090 0091 0092 0U93 0US4 0095 1130 | 0600 0601 0602 0603 0604 0605 0608 0607 2130 | 1112 1113 1114 H15 116 1117 1118 1119
| 0140 | 0USH 0037 009X 0099 0100 101 0102 0103 1140 | 0808 0609 0610 0611 012 0613 06l4 0615 2140 | 1120 1131 1122 1123 1124 1125 1128 1127
| 0150 . 0L04 0105 D10 0107 0108 0103 0110 i1t 1150 | 0616 0617 0618 0619 0620 0621 0822 0423 2150 | 1128 1129 1130 1131 1132 1133 1134 1138
0160 [0112 0113 OL14 0115 0116 0117 OUIB 0119 | 60 | 0624 0625 0626 0627 0628 0629 0630 0631 2160 | 1136 1137 1138 1130 1140 1141 1142 1143
© 0170 | 0120 0121 0122 0123 0124 0125 0126 0127 | 170 | 0632 0633 0634 0635 0636 0637 0638 0639 | 2170 | 1144 1145 1146 1147 1148 1149 1150 1151
0200 1 0128 0129 0130 G131 0132 0133 0134 0135 | 1200 | 0640 0641 0642 0643 0644 0645 0646 0647 2200 | 1152 1153 1154 1155 1156 1157 1158 1159
0210 0136 0137 0138 0139 0140 0141 0142 0143 1210 | 0048 0649 0850 065! 0652 0653 0654 0685 2210 | 1160 1161 1162 1163 1164 1165 1166 1187
0220 ' OVAA 0145 0146 0147 OW48 0149 0150 0I5t ' 1220 | 0656 0657 0858 0650 0660 0561 0882 0863 2220 | 1168 1166 1170 1171 1172 1173 1174 1178
0230 0152 0153 OE54 OI55 0155 0157 015% 0159 1230 | 0664 0865 0666 0867 D668 0AGY 0670 0AT1 2230 | 1176 1177 1178 1179 1180 1181 1182 1183
| 0240 0160 0161 0182 0163 0164 OIES 0186 0167 1240 | 0672 0673 0874 0675 0676 0677 0A78 0670 2240 | 1184 1185 1188 1187 1188 1189 1190 1191
0250 : OL6S 0169 0170 0171 0172 0173 OF74 0175 | 1250 | 0680 0681 0882 04%3 0694 0885 0685 0687 2250 | 1192 1193 1194 1195 1196 1197 1198 1190
0260 © 0176 0177 0178 0170 0180 0151 0182 0153 | 1260 | 0683 0659 0690 0601 0692 0693 0894 0695 2260 | 1200 1201 1202 1208 1204 1205 1208 1207
020 1 Ol84 DI8S 0185 OIAT OIRS 0189 0190 0191 | 1270 | 0456 0697 0893 0899 0700 6701 0702 0703 2270 | 1208 1209 1210 1211 1212 1213 1214 1715
| 300 ;0192 0193 0194 Q195 019 0197 0198 0109 1300 | 0704 0705 0708 0707 0708 0709 0710 0711 2300 | 1216 1217 1218 1219 1220 1221 1222 1223
| 0310 | 0200 0201 0202 0203 0204 0205 0206 0207 1310 | 0712 0713 0714 0715 0716 0717 0718 0719 2310 | 1224 1226 1226 1227 1228 1329 1230 1231
! 0320 | 0208 0209 0210 0211 0212 0213 0214 0215 1320 | 0720 0721 0722 0723 0724 0725 0736 0727 2320 | 1232 1233 1234 1235 1236 1337 1238 1230
| 0330 | 0216 0217 0218 0219 0220 0221 0222 0223 1330 | 0728 0720 0730 0731 0732 0733 0734 0735 2330 | 1240 1241 1242 1243 1244 1245 1246 1247
i 0340 | 0224 0225 0226 0227 0228 0229 0230 0231 1340 | 0736 0737 0738 0739 0740 0741 0742 0743 | 3340 | 1248 1249 1250 1281 1252 1253 1254 1255
| 0350 ' 0232 0233 0234 0235 0236 0237 0238 0239 1350 | 0744 0745 0746 0747 0748 0749 0750 075} 2350 | 1256 1257 1258 1250 1260 1261 1262 1263
| 0360 0240 0241 0242 0243 0244 0245 0246 0247 | Lmo 0752 0753 0754 0756 0756 0757 0788 0780 2360 | 1264 1265 1266 1267 1268 1260 1270 1271
;om0 ‘I 0248 0249 0250 0251 0752 0253 0254 0285 | 1370 | 0760 0761 0702 0763 0764 0765 0768 0767 !0 | 1272 1273 1274 1275 1276 1277 1278 1279
0400 | 0256 0257 0253 0259 0260 0261 0262 0263 (1400 | 0766 0769 0770 0771 0772 0773 0774 0775 2400 | 1280 1281 1282 1283 1284 1285 1286 1287
0410 | 0264 0265 0266 0267 0268 0269 027G 0271 1410 | 0776 0777 0778 0779 0780 0781 0782 0782 2410 | 1268 1389 1200 1201 1292 1293 1204 1295
| 0420 | 0272 0273 0254 0215 0276 0217 0218 0279 | Mz | o7se 0785 0788 0787 0768 0789 U760 0701 2420 | 1296 1297 I%: 1299 1300 130t 1302 1303
| 0430 | 02H0 028t 0262 0283 0284 0285 0286 0287 | 1430 [0792 0793 0704 0795 0796 0797 0798 0799 2430 | 1304 1305 1306 1307 1308 1309 1310 1311
. 0440 . 028% 0285 0200 0291 0292 0293 0294 0295 1440 | 0800 D801 0802 0803 0804 0805 08OS 0807 2440 | 1312 1313 1314 1315 1316 1317 1318 1319
0450 | 0206 0297 0298 0209 0300 0301 0302 0303 | 1450 | 0S08 0809 0810 OS1i 0812 0§13 08i4 0815 2450 | 1320 1321 1322 1323 1324 1325 1326 1327
0480 ‘ 0304 0305 0306 0307 0308 0309 0310 0311 1460 | 0818 0817 0818 0819 0820 0821 0822 0823 2480 | 1328 1329 1330 1331 1332 1333 1334 1335
0470 | 0312 0313 0314 031% 0316 0317 0318 0319 1470 | 0824 0825 0826 U827 0828 0820 0R30 0831 470 | 1336 1337 1338 1330 1340 1343 1342 1343
{ 030 i 0320 0321 0322 0323 0324 0325 0320 0327 ' 1300 | 0832 OR33 0434 0835 0836 0837 0R38 0839 2500 | 1344 1345 1346 1347 1348 1349 1350 1351
0310 | 0325 0320 0330 0331 0332 0333 0334 0335 1510 | 0840 0B41 0842 0843 0B44 0845 0846 0847 2510 | 1352 1353 1354 1385 1356 1357 1358 1389
| 0520 | 0336 0337 0338 0339 0340 0341 0342 0343 1520 | 0848 0849 0850 0851 0852 0853 D854 0835 2520 | 1360 1361 1363 1363 1364 1365 1366 1367
! 0830 J 0344 0345 0346 0347 0345 0349 0350 0351 | 1530 | 0856 OBS7 0858 0850 0860 0861 0862 0863 2530 | 1368 1369 1370 1371 1372 1372 1374 1375
0540 0352 0353 0354 0355 0356 0357 0358 0359 1540 0864 0865 0566 0867 OR6S 0869 0870 0871 2540 1376 1377 1378 1379 1380 1381 1382 1383
" 0550 | 0360 0361 0362 0363 0364 0365 0368 0367 | 1850 | 0872 0A73 0874 0875 0876 0877 0878 0879 3560 | 1334 1385 1386 1387 1388 1389 1390 1391
i 0860 | 0368 0369 0370 0371 0372 0373 0374 0375 1560 | 0880 08B! 0882 0883 0884 0883 08S6 0887 2560 | 1392 1363 1394 1395 1396 1397 1398 1399
| 0s70 . 0376 0377 0378 0379 0380 0381 0382 0383 | 1570 | 0888 0889 0890 0891 0892 0893 0804 0895 2570 | 1400 1401 1402 1403 1404 1405 1406 1407
|
‘ 0800 0384 0385 0388 0387 0388 0389 0390 0391 1600 0896 0897 0%98 089% 0900 0901 0902 0803 2600 1408 1409 1410 1411 1412 1413 1414 1415
" 0610 | 0392 0393 0394 0305 0396 0397 0388 0399 ‘ 1610 | 0004 0805 0906 0007 090X 0D0Y 0910 0511 2610 | 1416 1417 1418 1419 1420 1421 1422 1423
| 0620 | 0400 0AOI 002 O4D3 BADA 04OS 0408 0407 | 1620 | 0912 0913 0914 0915 0416 09i7 091S 0919 2620 | 1424 1425 1426 1427 1428 1429 1430 1431
| 0830 | 0408 0409 OAI0 411 0412 0413 0414 0415 | 1630 | 0920 0921 0922 0923 0924 0925 0926 0927 2630 | 1432 1433 1434 1435 1436 1437 1438 1430
| 0840 | 0416 0417 04IR 0419 0420 0421 (422 0423 | | 1640 | 0925 0929 0930 0931 0932 0933 0934 0935 2640 | 1440 1441 142 1443 1444 1445 1446 1447
0850 | 0424 0425 0426 0427 0428 0429 0430 0431 | 1850 . 0036 0037 0638 0630 0G40 041 OM2 0943 2650 | 1448 1449 1450 1451 1452 1453 1454 1435
| 0860 | 0432 0433 0434 0435 0436 0437 0438 0439 1660 | 0944 0945 0046 0047 0048 0940 0950 0951 2660 | 1456 1457 1458 1450 1460 1461 1462 1463
" 0870 ' 0440 0441 0442 0443 0444 0445 0446 0447 ‘ 1670 | 0052 0033 0954 0955 0936 0957 0958 0959 2670 | 1464 1465 1466 1467 1468 1469 1470 1471
| 0700 | 044 0449 0450 0451 0452 0453 0454 0455 ‘ 1700 | 0960 0961 0962 0983 0964 0985 0906 0967 2700 1472 1473 1474 1475 1476 1477 1478 1479
0710 | 0436 0457 0458 0450 0460 0461 0462 0463 1710 | 0968 0969 0070 0971 0972 0973 0974 0975 2710 | 1460 1481 1482 1483 1484 1485 1485 1487
! 070 | 0484 0485 OAG6 D467 O4GB 0460 0470 04TL | 1720 | 0978 0977 0978 0070 09M0 0481 0952 0983 2720 | 1488 1489 1490 1491 1492 1493 1404 1495
| 0730 | G472 0473 0474 0475 0476 0477 D478 0479 1730 | 0984 0985 09B6 0987 09BS 098D 0990 099! 2730 | 1496 1497 1498 1499 1500 1501 1502 1503
| 0740 | 0450 0481 0482 0483 0484 0485 0486 0487 1740 | 0902 0993 0904 0995 0996 0997 0998 0999 2740 | 1504 1505 1506 1507 1508 1509 (510 1511
i 0750 | 0488 0480 0490 0491 0492 0493 0491 0495 1760 | 1000 1001 1002 1003 1004 1005 1008 1007 2750 | 1312 1513 1514 1515 1516 1517 1518 1519
, 0760 0496 0497 0408 0499 0500 0501 0502 0503 | 1780 1008 1009 1010 1011 1012 1013 1014 1015 2760 1520 1521 1522 1523 1524 1325 1526 1527
! o770 | 0304 0505 0506 0507 0508 0308 0810 05i1 ’ 1770 | 1016 1017 1018 1019 1020 1021 1022 1023 2770 | 1528 1520 1330 1531 1532 1533 1534 1835
H

C-1

3000 [1838
o to
ITIT | 2047
(Octal)| (Decimal)
6000 ! 3072
o te
8777 | 3883

(Octah)| (Decimal)

3000 | 1536 1537 1538 1530 1540 1541 1342 1543
010 1544 1545 1546 1547 1548 1549 1, 1551
3020 1852 1553 1854 1885 1566 1557 1558 1559
3030 1560 1361 1562 1563 1564 1565 1366 1567
3040 1568 1560 1570 1571 1872 1573 1574 1575
3050 1578 1577 1378 1579 1560 13581 1582 1583
3060 1584 1585 1586 1587 1588 1589 1500 1501
%70 1592 1593 1504 1595 1598 1507 1508 1509
3100 1600 1801 1602 1803 1604 1605 1806 1607
3110 1608 1609 1610 1611 1812 1613 1614 1813
3120 1616 1617 1618 1619 1620 1821 1622 1623
3130 1624 1625 1626 1627 1628 1029 1630 1631
340 1832 1633 1634 1038 1638 1837 1638 1839
3180 1640 1641 1642 1843 1844 1845 1646 1647
3160 1843 1840 1650 1851 1652 1653 1654 1835
3170 1656 1657 1638 1659 1660 1661 1662 1663
3200 1664 1665 1866 1687 1668 1860 1670 1671
3210 1872 1673 1674 1675 1676 1677 1678 1679
3110 168C 1681 1682 1883 1684 1685 1686 1687
nW 1688 1880 1890 1601 1682 1603 1604 1695
240 1606 1697 1808 18699 1700 1701 1702 1703
3280 1704 1708 1706 1707 1708 1708 1710 1711
3200 1712 1713 1734 1708 1716 1717 1718 1719
3370 1720 1731 1732 1723 1724 1725 1726 1727
2300 | 1728 1720 1730 1731 1732 1733 1734 1735
210 1738 1737 1738 1739 1740 1741 1742 1743
3320 1744 1745 1746 1747 1748 1749 1780 1751
3330 1782 1783 1754 1755 1756 1787 1758 175¢
M0 1760 1761 1762 1763 1764 1765 1768 1767
50 1768 1780 1770 1771 1772 1773 1774 177§
3360 | 1776 1777 1778 1779 1780 1781 1782 1783
3170 1784 1785 1768 1767 1788 1789 1700 1791
3400 1792 1793 1794 1795 1796 1797 1708 1799
410 1800 1801 1802 1803 1804 1805 1806 1807
3420 1806 1809 1810 1811 1812 1813 1814 1815
3430 1816 1817 1818 1819 1820 1821 1822 1823
440 1824 1825 1826 1827 1828 1829 1830 1831
3450 1832 1833 1834 1835 1836 1837 1838 1839
3460 1840 1841 1842 1843 1844 1845 1846 1847
70 1848 1849 1850 1851 1852 1883 1854 1888
3500 1856 1857 1858 1859 1860 1861 1862 1863
3510 1864 1885 1866 1867 1868 1869 1870 1871
as20 1872 1873 1874 1875 1876 1877 1878 1879
3830 1880 1881 1882 1883 1884 1885 1886 1887
540 1888 1880 1890 1991 1892 1893 1804 1805
3550 1896 1807 1898 1809 1000 1901 1902 1903
3560 1904 1905 1908 1907 1008 1908 1910 1911
3870 1912 1913 1914 1915 1916 1017 1918 1919
1920 1921 1922 1923 1024 1925 1926 1927
3810 1928 1929 1930 1931 1932 1933 1934 1038
3620 1936 1937 1938 1939 1040 1941 1842 1943
3630 1044 1045 (946 1047 1048 1949 1950 1951
3640 1952 1953 1954 1955 1956 1957 1958 1859
3650 1960 1961 1962 1063 1964 1965 1066 1967
3660 1968 1069 1970 1971 1072 1073 1974 1978
3870 1876 1077 1978 1979 1980 198! 1982 1983
3700 1984 1985 1986 1987 1988 1989 1980 1991
ane 1992 1993 1994 1995 1996 1997 198 1999
3720 | 2000 2001 2002 2003 2004 2005 2006 2007
70 2008 2009 2010 2011 2012 2013 2014 2015 .
3740 2018 2017 2018 3019 2020 202 2022 2023
3750 2024 3025 2026 2027 2028 2020 2030 203!
3760 2032 2033 3034 2035 2036 2037 2038 2039
3770 | 2040 2041 2042 2043 2044 2045 2040 2047
[L 2 3 4 5 8 7
6000 3072 3073 3074 3075 3076 3077 3078 3079
8010 3040 3081 3082 3083 3084 3085 3086 3087
6020 3088 3089 3000 3091 3092 3093 3004 3095
6030 3096 3097 3088 3099 3100 3101 3102 3103
6040 3104 3105 3106 3307 3108 3100 3t10 3111
6050 3112 3113 3114 3115 36 3117 318 349
6060 3120 3121 3122 3123 3124 3125 3126 3127
6070 3128 3128 3130 3131 3132 3133 3134 3135
6100 3136 3137 3138 3133 2140 3141 3142 3143
6110 3144 3145 3146 3147 3148 3149 3150 3158
6120 3152 3153 3154 3155 3156 3157 3158 3159
6130 3160 3161 3162 3163 3164 3165 3166 3167
6140 3168 3169 3170 317¢ 3172 3173 3174 3178
6150 3176 3177 3178 3179 3180 31K1 3182 3183
160 3184 3185 3186 3187 3iBR 3189 3190 3191
6170 3192 3193 3194 3105 3198 3197 3198 3194
6200 3200 3201 3202 3203 3204 3205 3206 3207
6210 320% 3209 3210 3201 3212 3213 3214 3215
6220 3216 3217 3218 3219 3220 3221 3222 3223
6230 3224 3225 3226 3227 322x 3229 3230 3231
6240 4232 3233 3234 3235 3236 3237 3238 3239
6250 3240 3241 3442 3243 3234 3245 3246 3247
6260 3248 3249 3250 3250 3252 3253 3234 3255
6270 3256 3257 325X 3256 3260 3261 3262 3263
£300 3264 3265 3266 3267 3268 3260 3270 3NTY
6310 3272 3273 3274 3275 3276 3277 3274 3279
6320 3280 3281 3282 32M3 3284 3285 3286 3287
4330 3288 3289 3290 3291 3292 3293 3294 3245
6340 3296 3297 3208 3299 3300 3304 3302 3603
6350 3304 3305 3308 3307 J30A 3309 3310 3311
6360 3312 3313 3314 3315 3316 3317 3318 3319
#370 3320 3321 3322 3323 3324 3325 3326 3327
#400 3328 3329 3330 333! 3332 3333 3334 3335
6410 3330 333% A340 3341 3342 3343
6420 3344 44 3350 3351
6430 3352 5 3358 3359
f440 3360 33 3366 3367
6450 336m 3300 3374 3375
65450 3 T3S 3IN2 33%3
B0 3354 3385 NG 53 3385 33¥9 3390 3391
6500 3392 33u3 3394 3395 3396 3307 33us 339y
6510 3400 3401 3402 3403 3404 3405 3406 3407
6520 3405 3409 3410 3411 3412 3413 3414 3415
6530 3416 3417 341% 3419 3420 3421 3422 3423
6540 3424 3425 3426 3427 342% 3429 3430 343!
6350 3432 3433 344 3435 3436 3437 3434 3439
B560 3440 3441 3442 3443 2444 3445 3446 44T
6570 3445 3449 3450 3451 3452 3453 3454 S5
600 3458 3430 3460 451 3462 3463
6610 346 467 3dbn 3464 3470 3471
8620 3474 3475 34T6 34T 34IN 34TH
6630 3462 3483 3484 3485]
6640 3491 3492 3483
6650 3400 3500 3501 3
6660 i 3507 350% 3504 1
6670 3515 3516 3517 351N 3s51v
6700 3520 3521 3522 3523 3524 3525 3526 3527
5710 3525 3529 3530 13531 3532 3333
4720 3536 3537 3538 3539 3540 3541 3
6730 3544 3545 3546 3547 354N 3549
8740 1552 3553 3554 3555 3556 13557 3
6750 A560 3361 3562 3563 3564 3RS)
6760 3568 3569 3570 3571 3572 3573
770 3576 3577 3SR 3579 3380 35Nt 3582 13583

4000 . 2048
o to
4777 | 2589

Qctal) | (Decimal)

4000
4010
4020
4030
4040
4050

4070

4100
4110
4120
4130
4140
4150
41680
470

4200
4210
4220
4230
4240
4250

4270

2048

2072

2344
2360

2368
2378
284
2362
2400
2408
M6
2424

432

2448
2458
2464
72
2480
2488

2496
2512
2520
2528

2544
2852

2049
2057
2088
2073
208!
2089
2097
2108

213
nn
2129
2137
2145
2153
2161
2169

2381

2360
2317
2385
2393
2401
2409
U7
2425

2433
441
2449
2457
2465
473
2481
489

2497
2508
2313
2524
2520
2537
2545
2583

2050
2058
2066
2074
2082
2090
2098
2106

2114
022
2130
2138
246
2154
2162
2170

2178
2188
2194
2202
2210
2218
2226
234

2242
2250
2258
2266
2274
2282
2290
2298

2306
214
2322
2330
2338
23468
354
2362

370
278
2386
2394
2402
2410
2418
2426

434
2442
2450
2458
2466
24N
2482
2490

2498
2506
2514
2522
2530
2538
2548
2554

2051
2059
2087
2075
2083
2091
2099
2107

2145
2123
an
2138
247
288
2163
an

179
2187
2195
2203
21
219
2227
2238

2243

2403
4n
219
2427

U35
2443
s
2450
2467
78
2453
2481

2499
2507
2515
2523
2531
2839
2847
2585

2052
2060
2068
2076
2084
2092
2100
2108

2116
2124
2132
2140
2148
2156
2164
27

2180
2188
2196
2204
2212
2220
2228
2236

2244
2282
2260
2268
2276
2284
2292
2300

2308
2318
2324
2332
20
2348
2356
2364

nn
2380
23R8
2396
2404
2412
2420
428

2436
244
2452
2480
2468
176
2484
2492

2053 2054 2055

2061

2062

2063

2069 2070 2071

2077
2085
2003
2101
2108

273

2181
2189
2197
2208
2213
2221
2229
2237

2245
2253
2261
2269
277
2285
29
23u1

2308
217
2328
2333
2341
249
2357
2368

237
38
2389
2397
2405
2413
2421
2429

2078
2086
2004
2102
2110

218
2126
234
2142
2150
2138
2166
274

2182
2190
2198
2206
214
2222
2230
2238

2246
2254
2262
2270
2278
2286
2204
2302

110

2070

2527
2538

2543
2561
nw

5000 | 2580
to to
5777 |
(Octal)|(Decimal)
7000 | 3584
to to
w7 4085
(Octal)l(Decimat)

3u
3936 34

3944
3us2
3960

3u6s
3
Jusd
w2
4000
400%
4016
4024

4032
4040
4048
4056
4064
4072
4080
HURN

2945 3
3953
Jael

3904

Jwl
401
4Ky
wir
4028

403
4041
404
4057
4065
4073
4081
4089

a2

3udn

3unl

4970
307
Aong
Jud
4002
i
a0is
02

4034
042
4050
4058
Autin
4074
40X2
4080

K

5000 2560 2361 2562 2583 2564 2565 2566 2567
3010 2568 2569 2570 2571 2572 2573 2574 2575
5020 2576 2577 2578 2579 2580 2581 2582 2383
5030 2584 2585 2586 2587 2588 2580 2500 2501
5040 2592 2503 2594 2505 2596 2597 2508 2500
5050 2600 2601 2602 2603 2604 2605 2606 2607
5060 2008 2609 2610 2611 2612 2613 2614 2615
5070 2816 2617 2618 2619 2620 2621 2622 2623
$100 2624 2625 2626 2627 2628 2629 2630 2631
S0 2632 2633 2634 2835 2636 2637 2638 2639
5120 2640 2641 2642 2643 2644 2045 2646 2647
5130 2648 2049 2650 2AS1 2652 2653 2654 2635
5140 2658 2657 2A5H 2659 2660 2661 2662 2663
S50 26R4 2685 2664 2667 2668 2688 2670 2671
5160 2672 2673 2674 2675 2678 2677 2878 2679
s170 2680 2681 2682 2683 2084 2685 266 2687
i
5200 | 2688 26R9 2600 2691 2692 2093 2604 2605
210 2696 2697 200K 2699 2700 2701 2702 2703
5220 2704 2705 2706 2707 2708 2709 27i0 2711
5230 2712 2713 2714 2718 2716 2717 2718 2719
5240 2720 2721 2722 2723 2724 2728 272 2777
5250 | 2728 2729 2730 2731 2732 2733 2T 2138
5260 27362737 2738 2719 2740 2741 2742 2743
s210 2744 2745 2748 2047 2748 2740 2730 2151
3300 2752 2153 2754 2755 2786 2757 2758 2789
5310 2760 2781 2762 27R3 27h4 2785 2766 27R7
3320 | 2768 2760 2770 2770 2772 2773 24 207S
5330 | 2776 2777 2778 2779 27RO 2781 2782 7R3
5340 | 2784 2785 2798 2787 2788 27R9 2700 2791
5350 2792 2793 2794 2798 2796 2797 2794 2799
5360 2800 2801 2802 2803 2804 2805 2806 2807
370 2808 2809 2810 2811 2812 2813 2814 2815
5400 2818 2817 2818 2819 2820 2821 2822 2823
3410 | 2624 2825 2826 2827 2828 2629 2830 253
5420 2832 2833 2834 2435 2836 2837 2838 2839
5430 2840 2841 2842 2943 2844 2845 2846 2847
5440 | 2848 2840 2850 285t 2852 2853 2854 2885
5450 26858 2857 2858 2850 2460 2861 2862 2863
5480 2864 2965 286A 2867 2R68 2860 2870 2871
5470 2872 2873 2874 2875 2878 2877 2878 2879
3500 26880 2881 2882 2883 2884 2885 2886 2887
3510 | 288% 2889 2690 269t 2892 2963 2804 2805
5520 | 2806 2897 2808 2898 2900 200t 2002 2003
3830 2904 2005 2006 2007 2008 2000 2910 2611
5540 2012 2013 2914 2913 2018 2917 2918 2010
5550 2020 2021 2922 2923 2924 2925 2026 2027
5560 2928 2020 2930 2931 2032 2033 2034 2935
5570 2036 2637 2938 2039 2040 2041 2047 2043
5600 2044 2045 2040 2047 2948 2949 2050 2951
5010 2052 2083 2934 2055 2036 2957 2958 2959
3620 2060 2001 2962 2063 2064 2065 2068 2967
5430 2068 2080 2970 2971 2972 2073 2974 2975
5840 2076 2007 Y97R 2979 2980 2081 2082 2983
5450 29R4 2085 2094 2087 20R% 2089 2900 2001
3480 2992 2903 2994 2995 2996 2007 2008 2000
3470 3000 3001 3002 3003 3004 3005 3006 3007
5700 3008 3009 3010 3011 3012 3013 3014 3015
sno 3018 3017 3018 3019 3020 3021 3022 3073
5720 3024 3025 3026 3027 3028 3029 3030 303
5730 | 3032 3033 3034 3035 3036 3037 303% 3039
5740 3040 3041 3042 3043 3044 3045 1045 3047
5750 3043 3040 3050 3051 3082 3053 3054 3035
si60 3054 3057 2058 3059 3080 3041 3062 3083
770 3064 3065 3066 3047 3068 3049 3070 3071
o 1 2 3 4 5 & 7
7000 3584 3585 35R6 3587 3588 3589 3590 3591
7010 3502 3503 3594 3505 3596 3597 3598 3590
7020 3600 3601 3602 3603 3604 3605 3606 3607
7030 3608 3609 3610 3611 3812 3613 3614 3615
7040 3818 3617 3618 3619 3620 362 3622 3623
7050 3624 2625 3626 1627 3628 3629 3630 3831
7060 | 3632 3633 3634 3635 3636 3637 3638 1839
7070 3640 2041 3642 3643 3644 3645 3646 2647
7100 3648 3640 3650 3651 3652 3651 3654 3585
7110 | 3656 2057 2658 2650 3660 3661 3662 3663
7120 3664 3665 3666 3667 3668 3669 3670 367
7130 3672 3673 3674 3675 3676 3677 367K 3479
7140 3680 3881 3682 3683 3684 3685 3686 3687
7150 3688 2880 2690 3691 3692 3693 3604 3695
7160 3608 3697 3698 3809 3700 3701 3702 3703
7170 | 3704 3705 3706 3707 3708 3709 3ITI0 371
1200 3712 3713 3714 3718 3716 3717 378 37
7210 3720 3721 3722 3723 3724 3725 3726
7220 3728 3729 3730 3731 3732 3733 374 3735
7230 3736 3737 3738 3739 3740 374t 3742 3743
7240 3744 3745 3748 3747 3IT4R 3749 3750 3750
7250 3752 3753 3754 3785 3736 3757 3iSK 3759
7260 3760 3761 3762 3763 3764 3765 3766 3767
1270 3788 3769 3770 3771 3772 3773 3774 37T,
7300 | 3778 3777 3778 3779 3780 3781 3782 37K3
7310 3784 3785 3786 3787 378K 3789 3790 371
7320 | 3792 3893 3794 3795 3786 3797 3798 3700
7330 ; 3800 3801 3802 3803 3804 3805 3806 3NO7
7340 3808 3809 3870 381) 3812 3B13 3814 K15
7350 3818 3817 3A18 3B19 3820 3821 3IR22 3IRAI
7360 382¢ 3825 3826 3827 3828 3A29 3330 3831
7370 3832 3833 3834 3835 3438 3IRIT 3RIN 3839
17400 | 3540 3nd1 3482 3643 3844 3845 3846 34T
TOTAND | 3NN IS49 3850 3851 3KS2 3853 3854 3NS5
TH20 | 2856 3857 3aSy BNSU 3NG0 IS61 3nn2 3w63
TA30 | 3564 NG5 3nGG 36T 3NAN NG 3870 38T
T440 | 3872 3573 384 3875 3aTG 38T 38TN 79
T450 | 3NN0 351 3Na2 3NN3 QR4 AnNS INNG INT
7480 | 38N 3880 3390 3561 3892 3843 394 3N9S
1 3806 3sgT 3sus 3N9% 3000 3901 3802 3903
3904 3905 3906 3907 W09 3910 3v1)
e 3914 3418 3936 3917 3 919

3823 3425 3
3031 3032 a3
Ju39 3040 341
IHN M
3056 3087
3u64 Sucs

REETIKR

3955
3ua3

3uss
3atis

Bt
auty
8T
ung
+HH3
400
401y
4027

R
Jusg
oxs
3uan
4004
42
1020
4028

307
Jant
Rt
At
4005
43
w021
H

4 3075
SERRINY
Faup bawl
Auus 3oud
4006 #0007
PUFEFIES
4022 4023
4030 4031

035
W43
4081 4082
4084 4060
4067 4068 406
4075 4076 4uTT
4083 AN 40N
4091 4082 4003

4034
4044

o7
HHS
153
Jul

403 4049
S04 4047
4054 4055
4052 4063
4070 w71
4078 4070
4US6 4UST

409 4095

APPENDIX D
INSTRUCTION SUMMARY
AND
BIT ASSIGNMENTS

BASIC INSTRUCTIONS
OCTAL NO. OF STATES
MNEMONIC CODE OPERATION DIR IND AUTO
AND 0000 Logical AND 10 15 16
TAD 1000 Binary ADD 10 15 16
ISZ 2000 Increment, and skip if zero 16 21 22
DCA 3000 Deposit and clear AC 11 16 17
JMS 4000 Jump to subroutine i1 16 17
JMP 5000 Jump 10 15 16
10T 6000 InVout transfer 17 - —
OPR 7000 Operate 10/15° — —
0 1 2 3 4 5 8 ’ 8 s o *For ROYTATES
MEMORY T T T T T T T T and OSR
OP CODE 0-5 A | MP ADDRESS
REFERENCE rcoocos | w [we | awess
INSTRUCTION (I PAGE -
T RELATIVE ADDRESS
FORMA INDIRECT ADDRESSING
DIRECT
1 INDIRECT
L~ MEMORY PAGE
0 PAGEO
1 CURRENT PAGE
PROCESSOR IOT INSTRUCTIONS
OCTAL
MNEMONIC CODE OPERATION NO. OF STATES
SKON 6000 Skip if interruption on 17
ION 6001 Interrupt turn on 17
IOF 6002 Interrupt turn off 17
SRQ 6003 Skip if INT request 17
GTF 6004 Get flags 17
RTF 6005 Return flags 17
SGT 6006 Operation is determined by external devices, if any 17
CAF 6007 Clear all flags 17
BIT ASSIGNMENTS —+— 'ttt L 0 2 0
1 1 0 DEVICE SELECTION CONTROL
IOT L 1 | 1 | 1 1 | 1 Il

D-1

GROUP [OPERATE MICROINSTRUCTIONS

OCTAL LOG NO. OF
MNEMONIC COO0E OPERATION SEQ. STATES
NOP 7000 No operation 1 10
1AC 7001 Increment accumulator 3 10
RAL 7004 Rotate accumulator left 4 15
RTL 7006 Rotate two left 4 15
RAR 7010 Rotate accumulator right 4 15
ATA 7012 Rotate two right 4 15
B8sw 7002 Byte swap 4 15
CML 7020 Complement link 2 10
CMA 7040 Complement accumulator 2 10
Cla 7041 Complement and increment accumulator 23 10
CLL 7100 Clear link 1 10
CLL RAL 7104 Clear link—rotate accum. left 1,4 15
CLLRTL 7106 Clear link—rotate two left 14 15
CLL RAR 7110 Clear link—rotate accum. right 14 15
CLLRTR 7112 Clear link—rotate two right 14 15
STL 7120 Set the link 1.2 10
CLA 7200 Clear accumulator 1 10
CLAIAC 7201 Clear accumulator -—Increment accumulator 13 10
GLT 7204 Get the link 1,4 15
CLACLL 7300 Clear accumulator—clear link 1 10
STA 7240 Set the accumulator 12 10
BIT ASSIGNMENTS 0 . 1 . 2 k] 4 5 6 ’ [9 © 1"
GROUP 1 [. ,J|[OJCMICH[MICML HLL]AC]
BSW IF BITS
8389 ARE O
AND BIT 10 (5 1
LOGICAL SEQUENCES
1-CLA CLL
2-CMA. CML
3--I1AC
4—RAR. RAL. ATR. RTL. BSW
GROUP 2 OPERATE MICROINSTRUCTIONS
OCTAL LOG NO. OF
MNEMONIC CODE OPERATION SEQ STATES
NOP 7400 No operation 1 10
HLT 7402 alt 3 10
QSR 7404 Or with switch register 3 15
SKP 7410 Skip 1 10
SNL 7420 Skip on non-zero link 1 10
Szl 7430 Skip on zero link 1 10
SZA 7440 Skip on zero accumuiator 1 10
SNA 7450 Skip on non-zero accumulator 1 10
SZA SNL 7460 Skip on zero accum, or skip on non-zero
link, or both 1 10
SNA SZL 7470 Skip on non-zero accum. and skip on
zero link 1 10
SMA 7500 Skip on minus accumulator 1 10
SPA 7510 Skip on positive accumulator 1 10
SMA SNL 7520 Skip on minus accum. or skip on
non-zero link or both 1 10
SPA SzZL 7530 Skip on positive accum. and skip on
zero link 1 10
SMA SZA 7540 Skip on minus accum. or skip on
zero accum. or both 1 10
SPA SNA 7550 Skip on positive accum. and skip on
non-zero accum. 1 10
SMASZASNL 7560 Skip on minus accum. or skip on
2ero accum. or skip on non-zero fink
or all 1 10
SPA SNA SZL 7570 Skip on positive accum. and skip on
non-zero accum. and skip on zero link 1 10
CLA 7600 Clear accumulator 2 10
LAS 7604 Load accumuiator with switch register 13 15
SZA CLA 7640 Skip on zero accum. then clear accum. 12 10
SNA CLA 7650 Skip an non-zero accum. then clear
accumulator 12 10
SMA CLA 7700 Skip on minus accum. then clear
accumulator 1,2 10
SPA CLA 7710 Skip on positive accum. then clear
accumulator 12 10
BIT ASSIGNMENTS 0 . 1 . . 3 1 5 6 7 [9 10 1
sma | sza | sn [o
GROUP 2 I 1) 1 . |l 1 [cu\ T WIST - osn]nu[uJ
LOGICAL SEQUENCES
1Bt 81s Zero) SMA or SZA or SNL
(Bt 815 Dnel SPA and SNA and SZL
Z LA
3 ’(C)‘SR HTL
GROUP 3 OPERATE MICROINSTRUCTIONS
OCTAL LOG NO. OF
MNEMONIC CODE OPERATION SEQ STATES
NOP 7401 No operation 3 10
MQL 7421 MQ register load 2 10
MQA 7501 MQ register into accumulator 2 10
Swp 7521 Swap accum. and MQ register 3 10
CLA 7601 Clear accumulator 1
CAM 7621 Clear accum. and MQ register 3 10
ACL 7701 Clear accum. and load MQ register
into accumulator 3 10
CLA SWP 7720 Clear accum. and swap accum. and
MQ register 3 10
u 4 3 4 b & 7) 9 14 "
BIT ASSIGNMENTS ' . . ,
GROUP 3 [T 7] Tl T ‘
e i | | A A A

LOGICAL SEQUENCE
1 ClA

2- MOA ML
3 ALL OTHERS

D~2

Oont Care

APPENDIX E
GLOSSARY

ABSOLUTE ADDRESS: A binary number that is permanently assigned
as the address of a memory storage location.

ACCESS TIME: The time required to locate an off-line storage
location.

ACCESSING DATA: The process of locating the off-line storage
lTocation with which data is to be transferred.

ACCUMULATOR: A 12-bit register in which the result of an
operation is formed; abbreviation: AC.

ADDRESS: A Tabel, name, or number which designates a Tocation
where information is stored.

ADDRESSING: The term given to the act of selecting a word in
memory.

ALGORITHM: A prescribed set of well-defined rules or processes
for the solution of a problem in a finite number of steps.

ALPHANUMERIC: Pertaining to a character set that contains both
letters and numerals, and usually other characters.

ARGUMENT :
1. A variable or constant which is given in the call of a
subroutine as information to it.
2. A variable upon whose value the value of a function depends.
3. The known reference factor necessary to find an item in a
table or array (i.e. the index).

ARITHEMETIC AND LOGIC UNIT (ALU): The unit which performs both
arithmetic and logic operations.

ARITHMETIC UNIT: The component of a computer where arithmetic
and logical operations are performed.

ASCII: An abbreviation for American Standard Code for Information
Interchange.

ASSEMBLE: To translate from a symbolic program to a binary
program by substituting binary operation codes for symbolic
operation codes and absolute or relocatable addresses for
symbolic addresses.

ASSEMBLER: A program which translates symbolic op-codes into
machine language and assigns memory locations for variables and
constants.

AUTO-INDEXING: When one of the absolute locations from 0010
through 0017 is addressed indirectly, the content of that
lTocation is incremented by one, rewritten in that same location,
and used as the effective address of the current instruction.

E-1

AUXILLARY STORAGE: Storage that supplements memory such as disk
or tape.

BASE ADDRESS: A given address from which an absolute address is
derived by combination with a relative address, synonymous
with address constant.

BINARY: Pertaining to the number of system with a radix of two.

BINARY CODE: A code that makes use of exactly two distinct
characters, 0 and 1.

BIT: A binary digit. In the IM6100 microprocessor each word is
composed of 12 bits.

BLOCK: A set of consecutive machine words, characters, or
digits handled as a unit, particularly with reference to I/0.

BOOTSTRAP: A technique or device designed to bring a program
into the computer from an input device.

BRANCH: A point in a routine where one of two or more choices
is made under control of the routine.

BUFFER: A storage area.

BUG: A mistake in the design or implementation of a program
resulting in erroneous results.

BYTE: A group of binary digits usually operated upon as a
unit. ‘

CALL: To transfer control to a specified routine.

CALLING SEQUENCE: A specified set of instructions and data
necessary to set up and call a given routine.

CENTRAL PROCESSING UNIT: The unit of a computing system that
includes the circuits controlling the interpretation and
execution of instructions--the computer proper, excluding
I/0 and other peripheral devices.

CHARACTER: A single letter, numeral, or symbol used to
represent information.

CLEAR: To erase the contents of a storage location by
replacing the contents, normally with zeros or spaces; to
set to zero.

CODING: To write instructions for a computer using symbols

meaningful to the computer, or to an assembler, compiler
or other language processor,

E-2

COMMAND: A user order to a computer system, usually given
through a Teletype keyboard.

COMMAND DECODER: That part of a computer system which
interprets used commands. Also called command-string
decoder.

COMPATIBILITY: The ability of an instruction or source
language to be used on more than one computer.

COMPILE: To produce a binary-coded program from a program
written in source (symbolic) language, by selecting
appropriate subroutines from a subroutine library, as
directed by the instructions or other symbols of the
source program. The Tinkage is supplied for combining
the subroutines into a workable program, and the sub-
routine and linkage are translated into binary code.

COMPILER: A program which translates statements and
formulas written in a source language into a machine
language program, e.g. a FORTRAN Compiler. Usually
generates more than one machine instruction for each
statement.

COMPLEMENT: (One's) To replace all 0 bits with 1 bits
and vice versa. (Two's) To form the one's complement
and add 1.

CONDITIONAL ASSEMBLY: Assembly of certain parts of a
symbolic program only if certain conditions have been met.

CONDITIONAL SKIP: Depending upon whether a condition within
the program is met, control may transfer to another point
in the program.

CONSOLE: Usually the external front side of a device where
controls and indicators are available for manual
operation of the device.

CONVERT:
1. To change numerical data from one radix to another.
2. To transfer data from one recorded format to another.

CORE MEMORY: The main high-speed storage of a computer in
which binary data is represented by the switching polarity
of magnetic cores.

COUNT: The successive increase or decrease of a cumulative
total of the number to times an event occurs.

COUNTER: A register or storage location (variable) used to
represent the number of occurrences of an operation.

CURRENT LOCATION COUNTER: A counter kept by an assembler to
determine the address assigned to an instruction or constant
being assembled.

CURRENT PAGE: The page of memory "pointed to" or addressed by
the Program Counter. The page we are on.

CYCLE TIME: The length of time it takes the computer to
reference one word of memory.

DATA: A general term used to denote any or all facts, numbers,
letters and symbols. It connotes basic elements of
information which can be processed or produced by a computer.

DATA BREAK: A facility which permits I/0 transfers to occur on
a cycle-stealing basis without disturbing program execution.

DEBUG: To detect, locate and correct mistakes in a program.

DEVICE FLAGS: One-bit registers which record the current
status of a device.

DIGITAL COMPUTER: A device that operates on discrete data,
performing sequences of arithmetic and logical operations on
this data.

DIRECT ADDRESS: An address that specifies the location of an
instruction operand.

DOUBLE PRECISION: Pertaining to the use of two computer words
to represent one number. In the IM6100 a double precision
result is stored in 24 bits.

DUMP: To copy the contents of all or part of core memory,
usually onto an external storage medium.

EFFECTIVE ADDRESS: The address actually used in the execution
of a computer instruction.

EXECUTE: To carry out an instruction or run a program on the
computer.

EXTERNAL STORAGE: A separate facility or device on which data
usable by the computer is stored (such as paper tape, tape
or disk.

FIELD:
1. One or more characters treated as a unit.
2. A specified area of a record used for a single type of
data.
3. A division of memory on a IM6100 computer referring to
a 4K section of core.

E-4

FILE: A collection of related records treated as a unit.

FLAG: A variable or register used to record the status
of a program or device. In the Tatter case, also called
a device flag.

FLIP-FLOP: A device with two stable states,

FLOATING POINT: A number system in which the position of
the radix point is indicated by one part of the number
(the exponent) and another part represents the significant
digits (the mantissa), I/0.

FLOWCHART: A graphical representation of the operations
required to carry out a data processing operation.

HARDWARE: Physical equipment, e.g., mechanical, electrical
or electronic devices.

HEAD: A component that reads, records or erases data on
a storage device.

INDIRECT ADDRESS: An address in a computer instruction which
indicates a Tocation where the address of the referenced
operand is to be found.

INITIALIZE: To set counters, switches, and addresses to zero
or other starting values at the beginning of, or at pre-
scribed points in, a computer routine.

INSTRUCTION: A command which causes the computer or system to
perform an operation. Usually one line of a source program.

INSTRUCTION FETCH (IFETCH): The act of completing an instruction
address to memory and returning to the Microprocessor with the
instruction. :

INSTRUCTION REGISTER (IR): The register which holds the
instruction when it is obtained, or received, from memory.

INTERNAL STORAGE: The storage facilities forming an integral
physical part of the computer and directly controlled by the
computer. Also called main memory.

INTERPRETER: A program that translates and executes source
language statements at run time.

1/0: Abbreviation for input/output.

E-5

JOB: A unit of code which solves a problem, i.e. a program and
all its related subroutines and data.

JUMP: A departure from the normal sequence of executing
instructions in a computer.

K: An abbreviation for the prefix kilo, i.e. 1000 in decimal
notation.

LABEL: One or more characters used to identify a source
language statement or line.

LANGUAGE, ASSEMBLY: The machine-oriented programming language
used by an assembly system.

LANGUAGE, COMPUTER: A systematic means of communicating
instructions and information to the computer.

LANGUAGE, MACHINE: Information that can be directly processed
by the computer, expressed in binary notation.

LANGUAGE, SOURCE: A computer language such as PAL III or
FOCAL in which programs are written and which require
extensive translation in order to be executed by the computer.

LEADER: The blank section of tape at the beginning of the tape.
LEAST SIGNIFICANT DIGIT: The right-most digit of a number.

LIBRARY ROUTINES: A collection of standard routines which can
be incorporated into larger programs.

LINE FEED: The Teletype operation which advances the paper by
one line.

LINE NUMBER: In source languages such as FOCAL, BASIC, and
FORTRAN, a number which begins a Tine of the source program
for purposes of identification. A numeric label.

LINK:

1. A one-bit register in the IM6100.

2. An address pointer generated automatically by the PAL-D
or MACR(O-8 Assembler to indirectly address an off-page
symbol.

3. An address pointer to the next element of a list, or
the next block number of a file.

LIST:
1. A set of items.
2. To print out a listing on the Tine printer or Teletype.

LOAD: To place data into internal storage.

E-6

LOCATION: A place in storage or memory where a unit of data or
an instruction may be stored.

LOOP: A sequence of instructions that is executed repeatedly
until a terminal condition prevails.

MACHINE LANGUAGE PROGRAMMING: In this text, synonymous with
assembly language programming. This term is also used to mean
the actual binary machine instructions.

MACRO INSTRUCTION: An idinstruction in a source language that is
equivalent to a specified sequence of machine instructions.

MANUAL INPUT: The entry of data by hand into a device at the
time of processing.

MANUAL OPERATION: The processing of data in a system by
direct manual techniques.

MASK: A bit pattern which selects those bits from a word of
data which are to be used in some subsequent operation.

MASS STORAGE: Pertaining to a device such as disk or tape
which stores large amounts of data readily accessible to
the central processing unit.

MATRIX: A rectangular array of elements. Any table can be
considered a matrix.

MEMORY:
1. The alterable storage in a computer.
2. Pertaining to a device in which data can be stored
and from which it can be retrieved.

MEMORY ADDRESS REGISTER (MAR): The register which contains
the address where information is to be read from memory or
written (stored) into memory.

MEMORY PAGING: A system by which a memory is subdivided in order
to permit addressing with a Timited number of binary bits.

MEMORY PROTECTION: A method of preventing the contents of some
part of main memory from being destroyed or altered.

MICROCOMPUTER: A complete small computing system that usually
sells for less than $5,000 and whose main processor building
blocks are made of semiconductor integrated circuits. In
function and structure it is similar to a minicomputer, with
the main difference being price, size, speed and computing
power,

E-7

MICROPROCESSOR: The semiconductor central processing unit (CPU)
and one of the principal components of the microcomputer. The
elements of the microprocessor are frequently contained on a
single chip or within the same package but sometimes
distributed over several chips. Microprocessors can contain
registers, an arithmetic logic unit, a PLA, and associated
timing and control Togic.

MINICOMPUTER: A computer whose main frame sells for less than
$25,000. Usually it is a parallel binary system with 8, 12
16, 18, or 24-bit word lengths incorporating semiconductor
or magnetic memory offering 4K words to 32K words of storage.
A naked minicomputer is one without cabinet, console and
power supplies and consists of as little as a single PC
card selling for Tess than $1,000.

MONITOR: The master control program that observes, supervises,
controls or verifies the operation of a system.

MQ REGISTER: A register which is program accessible and
interacts with the Accumulator.

NESTING:
1. Including a program loop inside loop. Special rules
apply to the nesting of FORTRAN DO-loops.
2. Algebraic nesting, such as (A+B* (C+D)), where
execution proceeds from the innermost to the outermost
level,

NORMALIZE: To adjust the exponent and mantissa of a floating-
point number so that the mantissa appears in a prescribed
format.

OBJECT PROGRAM: The binary coded program which is the output
after translation of a source language program.

OCTAL: Pertaining to the number system with a radix of eight.

OFF-LINE: Pertaining to equipment or devices not under
direct control of the computer, or processes performed
on such devices.

ON-LINE: Pertaining to equipment or devices under direct
control of the computer and to programs which respond
directly and immediately to user commands.

OPERAND:
1. A quantity which is affected, manipulated or operated
upon.

2. The address, or symbolic name, portion of an assembly
language instruction.

E-8

OPERATOR: The symbol or code which indicates an action (or
operation) to be performed, e.g. + or TAD.

OR: (Inclusive) A logical operation such that the result
is true if either or both operands are true, and false
if both operands are false. (Exclusive) A logical operation
such that the result is true if either operand is true,
and false if either or both operands are false. When
neither case is specifically indicated, Inclusive OR is
assumed.

ORIGIN: The absolute address of the beginning of a section
of code.

OUTPUT: Information transferred from the internal storage
of a computer to output devices or external storage.

OVERFLOW: A condition that occurs when a mathematical
operation yields a result whose magnitude is larger than
the program is capable of handling.

PAGE: A 128-word section of IM6100 memory beginning at an
address which is a multiple of 200.

PASS: One complete cycle during which a body of data is
processed. An assembler usually requires two passes
during which a source program is translated into binary
code.

PATCH: To modify a routine in a rough or expedient way.

PERIPHERAL EQUIPMENT: 1In a data processing system, any unit -
of equipment distinct from the central processing unit
which may provide the system with outside storage or
communication.

POINTER ADDRESS: Address of a memory location containing
the actual (effective) address of desired data.

PRIORITY INTERRUPT: An interrupt which is given preference
over other interrupts within the system.

PROCEDURE: The course of action taken for the solution of
a problem.

PROGRAM COUNTER (PC): The register which contains, at any
given time, the address in memory of the next instruction.

PROGRAMMED LOGIC ARRAY (PLA): That section of the

Microprocessor which correctly sequences the Microprocessor
for the appropriate instruction.

E-9

PSEUDO-0OP: See Pseudo-operation.

PSEUDO-OPERATION: An instruction to the assembler; an
operation code that is not part of the computer's
hardware command repertoire.

PUSHDOWN LIST: A list that is constructed and maintained
so that the next item to be retrieved is the item most
recently stored in the list.

QUEUE: A waiting list. In time-sharing, the monitor
maintains a queue of user programs waiting for processing
time.

RADIX: The base of a number system; the number of digits
symbols required by a number system.

RANDOM ACCESS: A storage device in which the address-
ability of data is effectively independent of the
location of the data. Synonymous with direct access.

RANDOM ACCESS MEMORY: A memory whose content can be pre-
determined, stored indefinitely, changed at will and
retrieved at random

READ ONLY MEMORY: A memory whose content, once predeterm1ned,
is permanent and can not be changed.

REAL-TIME: Pertaining to computation performed while the
related physical process is taking place so that results
of the computation can be used in guiding the physical
process.

RECORD: A collection of related items of data treated as
a unit.

RECURSIVE SUBROUTINE: A subroutine capable of calling itself.

REGISTER: A device capable of storing a specified amount of
data, usually one word.

RELATIVE ADDRESS: The number that specified the difference
between the actual address and a base address.

RELOCATABLE: Used to describe a routine whose instructions
are written so that they can be located and executed in
different parts of core memory.

RESPONSE TIME: Time between initialing an operation from a
remote terminal and obtaining the result. Includes
transmission time to and from the computer, processing time
and access time for files employed.

RESTART: To resume execution of a program.

ROUTINE: A set of instructions arranged in proper sequence
to cause the computer to perform a desired task. A program
or subprogram.

RUN: A single, continuous execution of a program.

SEGMENT:
1. That part of a long program which may be resident
in memory at any one time.
2. To divide a program into two or more segments or to
store part of a routine on an external storage device
to be brought into core as needed.

SERTAL ACCESS: Pertaining to the sequential or consecutive
transmission of data to or from memory, as with paper tape:
contract with random access.

SHIFT: A movement of bits to the left or right frequently
performed in the accumulator.

SIMULATE: To represent the function of a device, system or
program with another device, system or program.

SINGLE STEP: Operation of a computer in such a manner that
only one instruction is executed each time the computer
is started.

SOFTWARE: The collection of programs and routines associated
with a computer.

SOURCE LANGUAGE: See Language, source.

SOURCE PROGRAM: A computer program written in a source
language.

STATEMENT: An expression or instruction in source language.

STORAGE ALLOCATION: The assignment of blocks of data and
instructions to specified blocks of storage.

STORAGE CAPACITY: The amount of data that can be contained
in a storage device.

STORAGE DEVICE: A device in which data can be entered,
retained and retrieved.

STORE: To enter data into a storage device.

STRING: A connected sequence of entities such as characters
in a command string.

SUBROUTINE, CLOSED: A subroutine not stored in the main part
of a program, such a subroutine is normally called or
entered with a JMS instruction and provision is made to
return control to the main routine at the end of the sub-
routine.

SUBROUTINE, OPEN: A subroutine that must be relocated and
inserted into a routine at each place it is used.

SUBSCRIPT: A number or set of numbers used to specify a
particular item in an array.

SWAPPING: In a time-sharing environment, the action of
either temporarily bringing a user program into core or
storing it on the system device. '

SWITCH: A device or programming technique for making
selections.

SYMBOL TABLE: A table in which symbols and their corresponding
values are recorded.

SYMBOLIC ADDRESS: A set of characters used to specify a
memory location within a program.

SYMBOLIC EDITOR: A system library program which helps users
in the preparation and modification of source language
programs by adding, changing or deleting lines of text.

SYSTEM: A combination of software and hardware which performs
specific processing operations.,

TABLE: A collection of data stored for ease of reference,
generally as an array.

TEMPORARY REGISTER (TEMP): A register which is used primarily
as a latch for the result and ALU operation before it is
sent to the destination register to avoid race conditions.

TEMPORARY STORAGE: Storage locations reserved for immediate
results.

TERMINAL: A peripheral device in a system through which data
can enter or leave the computer.

TIMESHARING: A method of allocating central processor time
and other computer resources to multiple users so that the
computer, in effect, processes a number of programs
simultaneously.

TIME QUANTUM: In time-sharing, a unit of time allotted to
each user by the monitor.

TOGGLE: To use switches to enter data into the computer memory .
TRANSLATE: To convert from one language to another.
TRUNCATION: The reduction of precision by dropping one or more

of the least significant digits, e.g. 3.141592 truncated to
four decimal digits is 3.141,

UNDERFLOW: A condition.that occurs when a floating point
operation yields a result whose magnitude is smaller than
the program is capable of expressing.

USER: Programmer or operator of a computer.

VARIABLE: A symbol whose value changes during execution of
a program.

WORD: With the IM6100, a 12-bit unit of data which may be
stored in one addressable location.

WRITE: To transfer information from memory to a peripheral
device or to auxiliary storage.

ZERO PAGE: The first page in the subdivided memory.

ZOMBIE: Appearance assumed by programmer attempting to debug
undocumented object code.

CHARACTER CODES

8-bit 6-bit
ASCII
CODE CODE
240 40
241 41
242 42
243 43
244 44
245 45
246 46
247 47
250 50
251 51
252 52
253 53
254 54
255 55
256 56
257 57
260 60
261 61
262 62
263 63
264 64
265 65
266 66
267 67
270 70
271 71
272 72
273 73
274 74
275 75
276 76
277 77

APPENDIX F
ASCIT CHARACTER CODES

CHARACTER REMARKS
REPRESENTATION
space (non-printing)
! exclamation point
" quotation marks
number sign
$ dollar sign
% percent
& ampersand
! apostrophe or acute accent
(opening parenthesis
) closing parenthesis
* asterisk
+ plus
s comma
- minus sign or hyphen
. period or decimal point
/ slash
0
1
2
3
4
5
6
7
8
9
: colon
H semicolon
< less than
= equals
> greater than
5

F-1

question mark

8-bit 6-bit CHARACTER REMARKS

ASCII REPRESENTATION
CODE CODE
300 00 0 at sign'
301 01 A
302 0?2 B
303 03 C
304 04 D
305 05 E
306 06 F
307 07 G
310 10 H
311 1 I
312 12 J
313 13 K
314 14 L
315 15 M
316 16 N
317 17 0
320 20 P
321 21 Q
322 22 R
323 23 S
324 24 T
325 25 U
326 26)
327 27 W
330 30 X
331 31 Y
332 32 Z
333 33 C opening bracket, SHIFT/K
334 34 \ backslash, SHIFT/L
335 35] closing bracket, SHIFT/M
336 36 + up arrow
337 37 « back arrow?
Footnotes:

(1) In 6-bit code, 008 represents CARRIAGE RETURN
(2) In 6-bit code, 37g represents TAB

F-2

CONTROL CODES

8-bit

ASCII

CODE
000
200
203

207
211
212

213
214
215

217

225
232

233

375
376

377

CHARACTER
NAME

null
leader/trailer

CTRL/C

BELL
TAB
LINE FEED

VT
FORM
RETURN

CTRL/0

CTRL/U
CTRL/Z

ESC

ALTMODE
PREFIX

RUBOUT

(1)

REMARKS

Ignored in ASCII input

Leader/trailer code precedes and .
follows the data portion of binary files

IFDOS break character, forces return
to Keyboard Monitor, echoed as 4C

CTRL/G
CTRL/I, horizontal tabulation

Used as a control character by the
Command Decoder and ODT

CTRL/K, vertical tabulation
CTRL/L, form feed

Carriage return, generally echoed as
carriage return followed by a line feed

Break Character, used conventionally to
suppress Teletype output, echoed as 40

Delete current input line, echoes as +U

End-of-File character for all ASCII and
binary files (in relocatable binary files
CTRL/Z is not a terminator if it occurs
before the trailer code)

Escape replaces ALTMODE on some terminals
Considered equivalent to ALTMODE

Special break character for Teletype input

PREFIX replaces ALTMODE on some
terminals. Considered equivalent to
ALTMODE

Key is labeled DELETE on some terminals
Deletes the previous character typed

(1) IFDOS break character--does not affect INTERCEPT JR. MONITOR
(2) OCTAL DEBUGGING TECHNIQUE program as supplied on IM6312 ROM
(3) Applies to IFDOS (INTERSIL FLOPPY DISK OPERATING SYSTEM)

APPENDIX G

LOADING CONSTANTS INTO THE ACCUMULATOR

MNEMONIC DECIMAL
CONSTANT
K0000 = 0
K00O01 = 1
K0002 = 2
K0002 = 2
K0003 = 3
K0004 = 4
K0006 = 6
KO100 = 64
K2000 = 1024
K3777 = 2047
K4000 = -0
K5777 = -1025
K6000 = -1024
K7775 = -3
K7776 = -2
K7777 = -1

OCTAL

CODE

7300
7301
7305
(or)
7326
7325
7307
7327
7203
7332
7350
7330
7352
7333
7346
7344
7340

G-1

INSTRUCTIONS COMBINED

CLA
CLA
CLA

CLA
CLA
CLA
CLA
CLA
CLA
CLA
CLA
CLA
CLA
CLA
CLA
CLA

CLL
CLL
CLL

CLL
CLL
CLL
CLL
IAC
CLL
CLL
CLL
CLL
CLL
CLL
CLL
CLL

IAC
IAC

CML
CML
IAC
CML
BSW
CML
CMA
CML
CMA
CML
CMA
CMA
CMA

RAL

RTL
IAC
RTL
IAC

RTR
RAR
RAR
RTR
IAC
RTL
RAL

RAL

RTL

RTL

APPENDIX H

OPERATION OF THE PHASELOCK LOOP

INTRODUCTION

The phaselock Toop (PLL) is an analog circuit that is available as a single
integrated circuit but is in fact a system composed of a few different
analog circuits combined together on one chip. The detailed analysis of

a PLL uses the mathematics of servomechanism systems. Although there are
times that mathematical analysis is desirable, it is not needed to gain

a basic understanding of PLL operation. If the following description of
PLL operation is studied carefully, the reader will gain the required
knowledge to apply the PLL to new designs and to understand how the PLL
operates in existing systems., Figure 1 shows the block diagram of a PLL
system.

Phase Low Pass
Input Comparator Error Voltage o Filter

Voltage
Controlled |g—
‘0SC. OQutputl Oscillator Control Voltage

(vco)

Figure 1

The phase of an input signal and an internal frequency are compared at
the phase comparator. Any phase difference between the input signal

and the internal frequency produces an error voltage at the output of

the phase comparator. The error voltage is filtered by a low-pass

filter and is appiied as a control voltage to the voltage controlled
oscillator (VCO). The VCO is an oscillator whose frequency is controlled
by a voltage. The control voltage changes the frequency of the
oscillator so as to track the input signal frequency.

A better understanding of PLL operation can be acquired by considering
the phase comparator, the low-pass filter, and the VCO as separate
elements--each with its own input and output. The individual components

can then be analyzed as a closed loop system

H-1

PHASE COMPARATOR

The type of phase comparator that is easiest to understand is the type
which has a sinewave input and a squarewave VCO internal frequency.
Sinewave input and squarewave VCO is a common PLL configuration. When
other types of signals are used, the principies are the same but the
waveshapes are harder to visualize. Referring to figure 2, this type

VCo

™
Comparator Qutout
N { o Phase Error
_:\Y;\;jT\\k;f\‘:\;f\KLN:r\;:;/}x‘ Phase Lead

—_ - Phase Lag

Figure 2

of phase comparator acts as a switchable inverter--on the positive half
of the VCO the phase comparator acts as a noninverting amplifier. During
the negative half of the VCO cycle, the phase comparator is effectively
an inverting amplifier. Note in the waveshapes that there exists a 900
phase shift between the VCO frequency and the input frequency. If the
relative phase of the two signals tries to change, the average positive
or negative value of the output will shift. A measure of the sensitivity
of a comparator is expressed as a gain value equal to:

Change in average output voltage = dv
Change in relative phase dg

LOW PASS FILTER

The low-pass filter takes the phase comparator output and smooths it out

to be applied as a d.c. voltage to the VCO. Although many types of

filters can be used, the single resistor-capacitor pair is the most frequently
used filter. The valves used in the filter are seldom critical. If the

H-2

low pass filter has to long of a time constant, the PLL will be slow

to Tock up and will not lock on the desired range of input signals. If
the time constant is too short, the PLL may lock on unwanted signals or
this VCO will have excessive phase jitter.

VOLTAGE CONTROLLED OSCILLATOR

The VCO is an oscillator whose output frequency is determined by a control
voltage. A lower d.c. voltage generates a lower frequency and visa versa.
A figure of merit of a VCO is its ability to convert voltage changes into
frequency changes. The VCO gain is expressed as:

Change in output frequency
Change in control voltage

THE COMPLETE PLL

Refer to figure 1 to see how the individual components are interconnected
to form a closed loop PLL system. As the input signal changes phase or
frequency, an error voltage will be generated which changes the VCO
frequency so that it is again in lock with the input.

The following terms are frequently used to describe PLL characteristics:

Capture range (fc)

The range of input frequencies which when applied to the PLL
will cause it to lock on to the input signal.

Lock range (f)

Once the PLL has locked on to an input signal, the lock range
is the frequency band over which the PLL will remain locked.
The lock range is always greater than the captive range.

Center frequency (f,)

The frequency of the VCO when no input signal is applied.
APPLICATIONS OF THE PLL

The PLL can be used as an FM detector. As the frequency of the input
varies, the control voltage to the VCO will follow the frequency changes--
therefore the useful output in this case is the control voltage.

The PLL can be used to generate a clean digital signal from a low level
input signal. The output signal from the PLL will now be the VCO output.

Frequency multiplication can be accomplished by dividing the VCO
frequency before it is applied to the phase comparator, thus.the VCO
will be an exact multiple of the input frequency as long as the PLL is
locked.

H-3

There are numerous applications of PLL's and there exist PLL's
designed for analog, R.F., and digital applications.

REFERENCES FOR FURTHER STUDY

1. Gardner, F.M., Phaselock Techniques, (Wiley 1966)

2. Viterbi, A.J., Principles of Coherent Communication, (McGraw 1966)

3. National Semiconductor Applications Note AN-46, June 1971

4, Signetics Linear Phase Locked Loops Applications Book, 1972

H-4

INTERSIL

CMOS/LSI
1146100 CMOS MICROPROCESSOR
: ENGINEERING BULLETIN
REMOTE DATA STATION DCEB@@T

IRTRODUCTION

The remote data station (RDS) board is capable of monitoring a number of
different D.C. measurement channels under the control of a microprocessor.
The D.C. voltages are converted to a digital format and sent as serial
data to the microprocessor. The microprocessor determines which channel
is to be measured and when the measurement cycle is to begin. The RDS
and microprocessor system communicate via a 4-wire current loop or any
other form of 2-way link. When a reading is desired, the microprocessor
sends a signal which selects the appropriate channel and simultaneously
starts the measurement cycle. After the measurement is complete, the
digital value of the D.C. voltage is sent to the microprocessor. The
RDS/microprocessor pair is also capable of selecting measurement rate,
transmitting and receiving digital control signals, and receiving over/
underrange information. Data received by the microprocessor can be used
for any of the following operations or any combination of them:

Print measured data

Perform arithmetic on data

Make decisions based on data value
Digital control of process functions

W —
» s o

Figure 1 is a block diagram of a hasic RDS/microprocessor system. A
number of D.C. voltages can be sequentially measured by the RDS.

Digital input and output signals are also available which are transmitted
to and received from the microprocessor.

MEASUREMENT SITE CONTROL SITE

(e | [h

(et
‘ TRANS.
1 REMOTE ~1 1IM6100
D.C. —————1 pata MICROPRC-
Volt.< -———————1 STATION CESSOR
] " REC. SYSTEM
e
_ y, _ Y,

FIGURE 1
BASIC SYSTEM DIAGRAM

I-1

Figure 2 is a block diagram of an RDS board. The IH5060 Analog Multi-
plexer takes one of the D.C. measurement lines and connects it to the
input of the A-D converter. The line selected is determined by the
control lines coming from the UART. The A-D converter changes the D.C.
voltage at its input to binary coded decimal digits. The operation of
the IH5060 and 8052A/7103A A-D pair is discussed in the Intersil Analog
Products Catalog, Volume I and II. The IM6402 UART takes the converted
data and sends it out as serial data to the microprocessor. The receive
portion of the UART is used by the microprocessor to determine which
channel is selected. An Intersil 7209 oscillator is used as a clock for
both the A-D converter and the UART. The 4020 divider provides the
necessary frequencies. Transistor circuitry is provided to develop

and receive the 20 mA current loops for the communications link.
Variations of this link could be RS-232 signals or Modem signals for
landline, microwave or RF transmission. The RDS board must be provided
with 5 volt T 15 volt power connections.

I
20 ma.
IHS060 8052A/7103A DATA IM6402 XMIT
l\\ 16 Channel Precision _j A4 UART
multiplexer A-D Conv.
D.C. -l 20 ma
1~ rec - [¢
CONTROL
N

XTA_L__E_ 7209 4020

e2zza

t Oscillator Divider

S EE—

FIGURE 2
RDS BLOCK DIAGRAM

I-2

DEMONSTRATION SYSTEM

The demonstration system is a remote data station that measures pressure
and transmits the pressure information to the Intercept Jr. microprocessor
system,

Three optional cards are plugged into the Intercept Jr.; a serial 1/0
card which is used to communicate with the RDS, a PROM (Programmable
Read-Only Memory) card that contains the RDS control program, and a
visual display board. The batteries in the Jr. module supply power to
both units. The voltage measured from the pressure transducer will light
LEDs on the visual display board. The display will represent the
transducer offset voltage, ambient pressure voltage, and any pressure
voltage generated by squeezing the air bulb. The display format is as
follows:

AUDY1IS RBOARD LEDSs

000000000000

CHANNEL MSD- Beo coote LSO - Beco cope

SELECTED

I-3

DEMONSTRATION SYSTEM WAVESHAPES

Figure 3 shows the key signals present in the demonstration system.
When an RDS reading is requested by the program, a UART TBRL (Transmit
Buffer Register Load) signal causes the serial transmit data to be
sent to the RDS UART. After the RDS UART receives the serial word, an
A-D converter cycle is started. After the A-D cycle is complete, the
RDS UART transmits five digits to the microprocessor. Strobe pulses
from the A-D converter initiate the transmission of each of the five
digits. The data format for each digit is shown below:

space [D4 o3 o2 o) —+-2RKD {4+ M+K

N\ P v

STARY TIGIT CovE DATA CRAPRAKCTOR SYTQO® R¥\(S

I-4

1

R —

Binary vALuE aF patA DEIT RMINMES WHICH
'Y CuanNELBSECLECTED,

TIME AFTER CONVERSION

MICROPROCESSOR UART “"TBRL"

UART SERIAL TRANSMIT DATA

RDS UART "RD"

A-D CONVERTER “BUSY"

RDS UART "RRD"

A-D CONVERTER INTEGRATIONS

D5

D3

1
w

r t '

FIGURE 3
SYSTEM ©TGNALS

’

—— A-D CONVERTER STROBES

Dy =1

__ _ SERIAL TRANSMIT DATA
[} 1] [|

‘RDS DEMONSTRATION FROGRAM MAY 9. 1977 IFDC: PAL 1A 13-MAY-77 FAGE

#2000
4141
0100
0101
7445
7444
7o01
£404

/RIDE DEMONSTRATION FPROGRAM MAY 9, 1977

g
4
!
s

.\. ~ NN, .\' . ._\. ., ~, . .\‘ ~. . .

fon
L

e N T N
L0 NG O B L fd
[} - [] - 1 3 -

—~ e *

!.J :-‘ L]

SN
bt bt e

;

DEMONSTRATION FROGRAM

THIS DEMO FROGRAM READ: A 0L C. VOLTAGE
FrRODUCED BY A PREZSURE TRANSDUCER AND
LDISPLAYZ THE MEASURED VALUE AT THE
MICROFROCEZSOR SITE.

THE VALUE DISFLAYED 1% THE SiUM OF
TRANZDUCER OQFFZET, AMEIENT PRESE-
URE. AND APFLIED BlLE FRESSURE.
AESOLUTE PREZSURE CAN BE DERIVED BY
SUETRACTING THE TRANSDUCER OFFSET
FROM THE READIMG. GUAGE PRESIURE

CAN EE CALCULATED EBY SUETRACTING

THE AMEIENT PRESSURE READING FrROF

THE MEASURELD VALLE,

DFERATIMNG INSTRUCTIONS

EATTERIES IN THE INTERCEFT JF. SUFFLY POWER
T2 BOTH UNITS, IMSTALL BATTERIEES.

ROV FOWER SWITCH ON,

JR. RESET SWITCH TO STOR,

JR. FOWER SWITCH ON

JR.ORESET SWlITCH To UP POSITION

FREZS CNTRL KEY.

FRESS ZETPC KEY.

FRESE THE FOLLOWING KEYS IN SEOUENSE: 2 O O 0,
FREZZ CNTRL KEY.

FEEZZ RLN KEY.

CHANGE READING BY PRESSING PRETSURE RULE.
NOFRMAL READING WITH MO BIULE FRESSURE SHOULD EE
APPROYIMATELY | S0 UOLTE,

(YK
f O

JORIGIN AND' EGUGTE STATEMENTS

4

;

#2000
CALL=4141
COUNT=0100
VALIIE=0101
INFIE=744%
TALK=T7444
READ=7501
DIZF=,404

SINITIALIZATION

I-6

i

/RDS DEMONSTRATION FROGRAM MAY 9,

QZ004
Q2005
OZ004
02007
Q2010
02011
2oL

O2013

- - e

-y e,
1A .,C;
o il e o

LRI MY
DZ027
20200

o - - -

oo ras

041

7201
L4072
4141
7445

T 20
4141
T446
F200
2100
2100
=51

e e an

700

02!
T10E
7104
2101
414!
7501
Oz4]
1101
A£404
4141
7501

D204

0017

.'/.

1977

SDIzABLE CONTROL PANEL
JINITIALIZE FIE CHIP

#SELECT CHANNEL AND DELAY

¥4
LOOF: ©LA
CALL

TaLE:

oA

157 COUNT
JME i
NOF

.'/'
JETART MEASUREMENT CYCLE
) cLA

TALL

TALH

JRECEIVE MEASURED DATA

MEsE
RTL
S7L
VALLE

READ

ANL MASK

TaD Val g
LISF

CALL

REAL

JAME LOOF

‘CONSTANT:

. 'I.
Y
g
/
N4
s
/
s
/
/!

MASE: 0017

SOUTRUT A JONTROL WORD

STIME DELAY LO0F

SOUTRLT p CONTEOL WORD

JSREAD TS
SREOD D4

FREAT D2

JERIFT BITS LEFT
STeEMPORARY STORAGE
SresD D
FETRIF OFF VALUE ZITS

JADD TO FREVICUE CHARACTER
SOTSPLAY ON AUDVIS BOARD
FREAD DI

SCONTINUE LOOPING

IFDOS FAL 14 13-MAY~77

PAGE

-7

i-1

/RDS DEMONSTRATION FROGRAM MAY 9, 1977 IFDOS PAL 1A 13-MAY-77 PAGE 2

CALL 4141
COUNT 0100
DISF 4404
INPIE 7445
LOOP 2004
MASEK 2041
READF 7301
TALE. 7444
VALUE 01061
/ROS DEMONSTRATION FPROGRAM MAY 9, 1977 IFDOS PAL 1A 13-MAY-77 PAGE 3

NO ERRORS DETECTED
NO LINKS GENERATED
9 SYMBOLS

5K MEMORY UTILIZED

I-8

A FACTORY PROCESS EXAMPLE

In this example (figure 4) we have a factory process in which a

mixture is maintained at a constant pH and temperature. The pH is
adjusted by adding either chemical A or chemical B to the mixture.

An electric heater is used to heat the mixture. A pH sensor converts

the mixture pH value to a D.C. voltage and a temperature sensor

generates a voltage proportional to the temperature. The levels of

both chemical A and B are monitored by sensors which convert the

levels to a proportional D.C. voltage. The RDS board accepts all

sensor outputs, converts the information to a serial data format and
transmits the data to the microprocessor system. The microprocessor
continuously monitors the value of pH, if the pH goes beyond an allowable
range, the microprocessor sends control signals to the RDS which activate
values for either chemical A or chemical B. Similarly, when the temp-
erature exceeds the preset bounds, the microprocessor sends control
signals which either increase or decrease the amount of power applied

to the heater element. The microprocessor has the ability to correct
certain sensor errors, do self-calibration routines, and to run trouble-
shooting programs which aid maintenance personnel in correcting
production problems. The microprocessor system can either be located
next to the RDS or placed some distance away. This flexibility allows
the process system designer to place the RDS at the location most suitable
to the manufacturing process.

METHODS OF COMMUNICATING WITH THE MICROPROCESSOR

Figure 5 shows the method used on the demonstration unit to communicate
with the microprocessor system. A logic one is represented by a 20 mA
current (mark), and a logic zero is represented by the absence of a
current (space). Figure 12 shows a voltage level link using RS-232
standard signals. For transmission over a significant distance, it is
possible to convert the digital signals to sinewave frequencigs and
transmit the data over landline or radio links. Figure 33 shows a MODEM
link. The digital signal is fed to the MODEM (Modulator-Demodulator)
which converts a logic one to an audio frequency and a logic zero to

a lower audio frequency. The MODEM then sends the audio signal out for
transmission over telephone lines or some form of RF link. The RF link
could either be a microwave, high-frequency radio, or any other form

of radio transmission. At the receive end, the MODEM takes the
-received audio and converts it back to digital ones and zeros and sends
the data to the microprocessor system.

I-9

OL-1I

SSED0¥d XYOLOVA V
AEL 1N E

SOUTT TOIJUOd Tw3ITHYQ =
S9UTT JuswPIMsEIW °*H°d =

SSUTT TOI3uod Te3THTP

]
NOMCGM!E

, *duagy
, IOSUas D

_ I—:& _

JALVIH

DINIXIN

- 9AYea ﬁOMUGOA V
mIIsis p————y Say

O0T9HI | otow
_ uomcvwr q
_ I8A3T™) TYOIWEHD

(

dATEA TOI3UOD /

ZTTeInau

_ J0osuas — ¥

_ TaA3T [TVOIWIHD

20 ma., transmitt loop

20 ma, receive loop

FIGURE 5
CURRENT LOOP

RS 232 transmitt

IM6100
SYSTEM

common

RS 232 Receive

FIGURE 6
RS-232

IM6100
SYSTEM

RDS

output
voltage

LANDLINE,
> MICROWAVE,

MODEM RADIO LINK
7
FIGURE 7
MODEM LINK
10 —{-
5 et

out.error

MODEM r'- IM6100
SYSTEM

-—=transducer output

FIGURE 14

TRANSDUCER CURVE

QUANTITY BEING MEASURED

I-12

100

IMPROVING TRANSDUCER CHARACTERISTICS

The RDS/microprocessor pair is capable of measuring transducer signals

and applying correction factors to reduce sources of transducer errors.
Offset, nonlinearity, and temperature drift are three of the more
prominent transducer errors. Figure 14 is a generalized transfer
characteristic of a transducer. An offset error is the amount of output
voltage present when the input quantity is at its zero reference. Without
a microprocessor it is necessary to use active circuits to remove this
offset. The microprocessor system is capable of storing the offset

value and subtracting it from all measurements. This procedure of storing
error values and correcting received data can also be used to correct
nonlinearity errors. Depending on the accuracy required and memory
available, errors at various points along the transfer characteristic

are stored. During a data measurement, the error for that particular
reading is referenced and the error is subtracted out. If power or

space requirements restrict the ability to hold the transducer at a
constant temperature, the microprocessor can make a temperature reading
and correct the transducer as required.

THEORY OF DEMONSTRATION SYSTEM

Reference should be made to figure 9 for the following description. The
demonstration board is a simplified version of a complete 16-channel

data acquisition system. This board is capable of measuring up to 4

D.C. channels.

IC1 is a sixteen channel analog multiplexer. The D.C. inputs are
present on pins 19-20. The channel to be selected is determined by

the digital inputs on pins 15-17. The output of the multiplexer is
available at pin 28 and is sent through R8 to the input of the precision
A-D converter pair consisting of IC2 and IC3. The output of the A-D
converter is in the form of multiplexed BCD characters. The BCD value
is available at IC2 pins 20 to 23 and the digit selected is determined
by the signals at pins 24 to 27. Both the BCD information and the digit
select information is sent to the UART (1C4) to be transmitted as serial
data. When the UART receives serial data from the microprocessor, an
analog channel is selected and the A-D converter is commanded to start

a measurement cycle. At the end of the measurement cycle the data on T1
through T8 (IC4 pins 26 to 33) is transmitted to the microprocessor.

IC6 is an Intersil 7209 oscillator. The 4020 is a divider which provides
the clock for both the A-D converter and for the UART. The 20 mA loop
current is generated by a 2N3638 and associated components. The 20 mA
received signal is converted to standard CMOS levels by the 4069, pins
12 and 13. A complete description of the Intersil parts is available in
the Analog Products Catalog and the IM6100 Microprocessor Booklet.

JILVWIHIS SaY

6 J¥N9I4 =
“ = —
——c
s]
L]
= = = = = 3 (e
——?
m int an Jnt ant n
*——1
SH- :H S-H S.H) — ¢
« o0 g - v
] ER
2
_ %\ 4049
— ant § -
T o e £33 ,
AN wwoz 9t s
==z 6C2eMd1 T AGe - @
o > .
Nm\ - 5% s | st ‘H|l v [ast
Zux 9°es1 ne9
w\ m@ I3}
o]
0 M_~ ; 9 001 T anat
. 3 1 [22)
ase 50, t 23] n89
LiWswvey oz L suouft ase || [
s= L1 oy a3 {1
S 9 i 2 . - H .
5o et f WIIALT 0N WOLY TV XS e ster Aste i LR
¥ 2981 p— z3
L Jopr—
o o1 s T
824 cun, L
3 200w Jusd b &
o o T
i v s
3 v suguf b o
€ a g 1
14 4By it
ML td Fel:t) M 21
i e 0
T md o ?bm\
i " e [2 .
&0 unf— 321 " .
% 310N I, ‘_llIhl' ASe
Lo 56
== == =g P
ast- @
olx
0
400¢
™ .
s M
o N
] 3¢ —
w I INT- SSWdA® 43— - s>] GCRTVET] TouVEE A0} Ase Fn.x? b O 3d
\ 4 NI IND+ V) 39— 10 Z-¥ IONYAY 3 = q 124 W
Sl anse 100 a2 . H g W xonfs e awlt
34 S0 Ast a5t 19005 ¥ 90 TvNY w i - B :
nz VIS0 3 50 oW inent 0T R\ " =]'s orske-
9 951 2 ¥ 33w 4 ane- 143 :mﬁ
4 1 0], 6
n 2 av .E” i n- o fis o s
v I
1 " FELELE R - SHAYS ososur € mFI
T 89 o0 Ast-J ——as51- s et
va et O - RH —Hos stspP— mn\
n L mm "“ox\teu H T ant- 2 sisfi— .
4 20 Atlavioaf— H an 92 H =2 L o
% — 210 %6/910 52 as1- ——
T 3 A 1 2
—) | T 13 *— 82
01 s 14001 212 veolL 21 ant 001
o
ASe it}
WILEIANGY /¥ MOISIITH Ase Y361 LT 90 vy
t] =z = =%

I-14

APPENDIX J
KEY BOARD TENNIS PROGRAM WITH INTERCEPT JR.

DEMO PROGRAM: “PING”

IN ‘PING’, THE PLAYER PLAYS AGAINST THE
MACHINE. THE COMPUTER “SERVES” FROM THE
LEFT, AND THE “BALL” TRAVELS ALONG THE
LED’'S UNTIL IT REACHES BIT 11, THE
RIGHTMOST LED.

IF THE PLAYER PRESSES THE YELLOW BUTTON
(IAC), THE BALL WILL BE RETURNED WITH A
‘CLICK'. THE MACHINE WILL RETURN THE BALL
AND THE SEQUENCE IS REPEATED.

IN ORDER TO ADD EXCITEMENT TO THE GAME,
EACH TIME THE PLAYER RETURNS THE BALL, IT
SPEEDS UP.

WHEN THE PLAYER MISSES, BY PRESSING THE
BUTTON TOO SOON OR TOO LATE, THE MACHINE
BUZZES, DELAYS, THEN SERVES AT THE
SLOWEST RATE.

HAVE FUN!

(NOTE: THE CONTENTS OF LOCATION 0262
DETERMINE THE ORIGINAL SPEED OF THE BALL,
AND LOCATION 0263 DETERMINES HOW FAST IT
SPEEDS UP)

“PING”

ADDRESS, CONTENTS, ADDRESS, CONTENTS, ADDRESS, CONTENTS,
0201 7300 0223 7320 0245 1263
0202 1262 0224 6404 0246 3264
0203 3264 0225 6401 0247 7004
0204 7330 0226 2265 0250 3265
0205 6401 0227 5223 0251 1264
0206 6404 0230 7010 0252 3266
0207 3265 0231 2265 0253 1265
0210 1264 0232 5231 0254 6404
0211 3266 0233 7440 0255 7450
0212 7604 0234 5230 0256 5204
0213 7440 0235 5201 0257 2266
0214 5236 0236 6401 0260 5255
0215 2266 0237 7300 0261 5247
0216 5212 0240 1265 0262 0000
0217 1265 0241 7010 0263 1000
0220 7010 0242 7440 0264 —
0221 7440 0243 5223 0265 —
0222 5206 0244 1264 0266 —

J-2

FLOWCHART FOR KEYBOARD

TENNIS PROGRAM WITH INTERCEPT
JR.

START

i 'ROUTINE TO DISPLAY
[TIMER OFF j SCORES.

. CLICK SPEAKER

CLICKED
FOR 1.5 SEC
?
YES
L ROTATE A BALL IN DISPLAY

SERVER SELECTED
?
YES

T (BRING BALL TO SERVER'S SIDE j

WAS BALL SERVED
?
YES

SHIFT A BALL ONE PLACE TO
THE OPPONENT DIRECTION

Y

ADD +1TO
THE HITTER’S
SCORE

CHANGE DIRECTION
& BALL SPEED

DID BALL
REACH GOAL?
NO

ADD +1TO ACCORDING TO WHERE
THE *> ITISHIT.
OPPONENT'S
SCORE L DISPLAY WHERE BALL IS. J I

!

WAS BALL
HIT BY OPPONENT
?
YES

WASIT

IN LEGAL REGION
?

NO YES

J-3

goo2e
eoe2!
8822
00823
00924
soe2s
#0926
s00827
20030
20031
#0032
00833
98834
68033
90836
99637
90049
Ty
#8842

80843
88844
88645
20046
280a7
egase
[1LY
8952
g0e8s3
60084
geess
saesé
eoes?
02860
[L1]]]
enes2
0080863
80064
88065
82066
eoes7
os0Th
9871
80872
#0873

8074
soe7s
00876
resr?
fale0

64089
648l
6402
6484

0020
poee
1300
7604
T804
7430
S840
1884
7628
5428
7148
3120
T684
7640
5833
2020
Sa20
780
Jiae
5@33

(111
7300
a7
1124
4974
1116
J121
1117
3122
3117
1128
4974
1116
7186
7866
111
1133
4196
1117
7106
7986
1122
1132
4186
5443

osee
Ti00
1127
7420
5123

/KEY BOARD TENN1S VWITH INTERCEPT JR.

RULES:

NNNANNNNNNNNNNNUNNNNNNNNNN

DEFINITIONS:
VRITED= 6408 /WRITE DISPLAY.
CLICK=64#] /CLICK SPEAKER.
TIMER= 6402 /TIMER ON OR OFF.
WRITES= 6404 /WRITE DISPLAY OF 1/0 BRD.

/ SUBPRO GRAM S

*«20

KEY» [/70 DETECT KEY BOARD.
CLA CLL .
LAS /LOAD AC WITH SRe
RAL /CTR=4008.
SZL /CTR KEY PRESSED?
JMP 1D@ /YES.
RAL /1AC=2@808.
SNL CLA /1AC KEY PRESSED?
JMP 1 KEY /NEITHER PRESSED.
CLL CMA /PUT ALL 1°S IN AC.
DCA ID /1D=} FOR IAC PLAYER.

GO, LAS /STOP FURTHER EXECUTION
SZA CLA /UNTIL KEY 1S RELEASED.
JMP -2
18Z KEY /T0 GET OUT OF VWAITING LOOP.
JMP 1 KEY

108, CLL CLA
PCA ID /1D=® FOR CTR PLAYER.
JMP G0 /RETURN.

/

/

SHO W, [/SUBROUTINE TO DISPLAY SCORES:
CLA CLL
DCA DI1GIT2 /CLEAR REGISTER DIGIT2.
TAD SCORE!} /BRING IAC PLAYER'S SCORE.
JMS DECIML /CONVERT OCTAL TO DECIMAL.
TAD DIGITI! /1ST DECIMAL DIGIT.
DCA SAVE! /STORE IT IN SAVE!.
TAD DIGIT2 /STORE 2ND DECIMAL DIGIT
DCA SAVEI® /IN SAVE}@.
DCA DIGIT2 /CLEAR DIGIT2.
TAD SCORE2 /BRING CTR PLAYER'S SCORE.
JMS DECIML /CONVERT IT INTO DECIMAL NO.
TAD DIGITI /SHIFT 1ST DECIMAL NO. INTO
CLL RTL /2ND BITE FROM RIGHT.
RTL ’
TAD SAVEI /JOIN TO IAC PLAYER'S SCORE.
TAD Kad@0 /SET BIT #9 TO DISPLAY THEM.
JMS DELAY /D1SPLAY 1ST DECIMAL DIGITS
TAD DIGIT2 /0F BOTH PLAYER'S SCORES.
CLL RTL /SHIFT 2ND DECIMAL NO-.
RTL
TAD SAVE!@ /JOIN TO lAC PLAYER'S SCORE.
TAD K2080 /SET BIT #1.
JNS DELAY /D1SPLAY 2ND DECIMAL DIGITS
JMP 1 SHOW /0F BOTH SCORES & RETUMN.

/

/

DECIML, @ /SUBROUTINE TO CONVERT OCTAL TO DECIMAL.
CLL /KILL LINK BIT.
TAD M12 /ACw=~12.
SNL /N0 MORE 2ND DECIMAL DIGITS?
JMP OUT /1F NOT, OUTPUT RESULTS.

START AT LOCATION #2@0.

SINCE JR IS WAITING FOR SIGN OF STARTER.
PRESS JAC OR CTR WHCIHEVER STARTS FIRST
TO PREPARE FOR SERVICE.

THEN, SERVE THE BALL BY PRESSING THE KEY.
THE OPPONENT MUST PRESS KEY BEFORE BALL
HITTING THE SIDE BUT IN THE NEAREST 2 BITS
NOT TO LOSE POINTS.

SCORE 1S +1 FOR ONE SUCCESSFUL GOAL AND
+]1 BY THE OPPONENT'S FAULT. THE HIGHEST
SCORE WHICH CAN BE HANDLED 15 99.

J-4

ee1e1 2117 152 DIGIT2 /1F YES, COUNT THE DIGITS.

selig2 3078 JMP DECIML+! /EXHAUST 1OTH DIGIT.
#9163 1138 OUT, TAD Plg /ADD 10 TO COMPENSATE.
88104 3116 DCA DIGITI /STORE IT.
80105 Sa7a JMP 1 DECIML
/
/
f@l86 0000 DELAY, 8 /SUBROUTINE TO DISPLAY & DELAY TINME.
80107 6a0o VRITED /DISPLAY AC CONTENTS.
gai11e 73ee CLA CLL
#a11t 1131 TAD MT7300 /T0 COUNT Si2.
go112 3123 DCA TEMP
#8113 2123 1SZ TEMP /COMPLETED COUNTING?
églia 5113 JMP .+ -1 /NOT YET.
29115 5506 JMP 1 DELAY /YES.
/
/
/DATA (1)
/
e0l116 oeao DIGITI, @
20117 po0e D1GIT2, @
06120 0000 1D,]
es121 o000 SAVElLl, @
eal22 o000 SAVEl®, @
69123 o080 TEMP,]
¢o124 o008 SCORE1, #
00125 o009 SCORE2, @
88126 7774 M4, -4
80127 17766 Ml12, =12
09138 o012 P12, @et2
206131 7909 M70008, 70280
o132 2000 Keoeos, 2000
89133 4000 Kaged, 408
e8134 7709 K7708, 7780

/PROGRAM FOR GAME STARTS HERE:
0280 «200 /STARTING ADDRESS.

ge208 7301 CLA CLL 1AC /AC=] FOR TIMER OFF.
20201 64082 TIMER /AC MUST BE @ FOR TIMER ON.
g9202 72889 CLA

09283 3124 DCA SCORE!L /INITIAL SCORE.

20204 3125 DCA SCORE2

#8205 1134 DISPLY, TAD K7788 /CLICK SPEAKER 64 TIMES
#9286 23361 DCA COUNT 7IN 1.5 SEC FOR STARTING SIGN.
002087 6401 CLICK

ap218 4843 JHMS SHOW /T0 KEEP DISPLAYINGe
20211 2361 1SZ COWNT

es212 52087 JHMP + -3

08213 7301 CLa CLL 1AC /AC= .

20214 6404 RLEFT, VWRITES /DISPLAY AC.

28218 3362 DCA SR /SAVE DISPLAY BIT.

20216 4355 JMS BOARD /CHECK KEY COMMAND.
88217 4a8a3 JMS SHOW /748 MS TIME DELAY

00220 4A04a3 JMS SHOV /T0 KEEP DISPLAYING.
00221 1362 TAD SR /BRING DISPLAY BIT BACK.
20222 7804 RAL /SRIFT LEFT ONE.

80223 Ta2e SNL /REACHED TO EDGE?

so22a S214 JMP RLEFT /NOT YET.

89225 7010 RAR /YES.

#9226 6404 RRIGHT, WRITES /DI SPLAY.

20227 23362 DCA SR /SAVE 1T.

09230 43385 JMS BOARD /CHECK KEY INPUT.

906231 4843 JMS SHOV /7486 MS TIME DELAY TO
00232 a#al JMS SHOW /D1SPLAY.

#6233 1362 TAD SR

#0234 7819 RAR /SHIFT RIGHT ONE.

80238 7420 SNL /REACHED TO EDGE?

20236 5226 JMP RRIGHT /1F NOT» KEEP SHIFTING.
8237 7884 RAL /1F YES, CHANGE DIRECTION.
09248 5214 JMP RLEFT

03241 1120 START, TAD 1D /CHCK WHICH PLAYER FIRST.
P0242 7650 SNA CLA /THE FOLLOVING ROUTINE
90243 5251 JMP e+ 46 /BRINGS BALL TO THE
#0244 7101 CLL IAC /PLAYER'S SIDE.

00245 6484 WRITES

po246 3262 DCA SR /SAVE DISPLAY BIT.

98247 1364 TAD LEFT /LEFTsRAL.

00258 5255 JMP ¢35

egest 1133 TAD RA990

0902352 6aPa VRITES

80253 3362 DCA SR /SAVE DI1SPLAY BIT.

80254 1365 TAD RIGHT /RIGHTsRAR.

20258 3266 DCA ROTATE /DEFINE SHIFT DIRECTION.
00256 4020 JMS KEY /GAME STARTED?

90257 5261 JMP . +2 /NOT YET.

80260 5263 JMP ++3 /YES, STARTED.

20261 4043 JMS SHOV /TO0 KEEP DI SPLAYING.
#9262 5256 JMP .+ -4 /CHECK KEY AGAIN.

90263 127a TAD SPEED+1 /INITIALIZE SPEED.

0264 3273 DCA SPEED

J-5

208265
08266
88267
8ez2179
ee271
@v272
69273
e0274
20275
20276
ae211?
ge3ee
@031
20302
083083
20324
29305
8g306
22307
gelle
808311
20312
28313
2e314
@031s
80316
98317
09320
eo321
88322
29323
98324
%8328
29326
00327
ee330
89331
29332
29333
20334
29338
93336
008337
90340
o034l
28342
80343
090344
20348
08346
80347
82350
80351
28382
29383

203354

8935S
98356
09337
#0360

882361
00362
990363
90364
#8368

#8366

1362
eoeg
7430
534l
64084
3362
a4l
4243
4043
40842
4043
4929
5265
1120
7640
5321
1362
1131
7440
5314
1131
3273
53230
7710
$3s51
1363
3273
5338
1362
1126
7459
5311
1708
5351
5316
1128
7638
5338
1364
$336
1365
3266
7100
5265
7386
1128
7658
5347
2124
5205
2123
5285
1120
7048
3120

5342

0088
4820
5788
524l

(11
o8ee
$276
7084
7018

7800

TAD SR /BRING DISPLAY BIT TO SHIFT.
ROTATE, @ /RAL OR RAR 1S STORED HERE.
SZL /SUCCEEDED TO GOAL?
JMP SCORE /1F YES» SCORE & CLICK.
WRITES /D1SPLAY NEW SHIFTED BIT.
DCA SR /SAVE DISPLAY BIT.
SPEED, JMS SHOW /TH1S 1S ONLY FOR SERVER.
‘JMS SHOW /728 MS TIME DELAY.
JMS SHOW /28 MS.
JMS SHOW /20 MSe.
JMS SHOW /FASTEST=A4@ MS, SLOVEST=13@ MS.
JMS KEY /O0PPONENT KEY PRESSED?
JMP ROTATE-1 /NOT YET, SO KEEP SHIFTING.
TAD 1D
SZA CLA /WHICH PLAYER RECEIVED BALL?
JMP CTR /CTR SI1DE.
TAD SR /1AC SIDE.
TAD M78868 /DETERMINE RETURN SPEED.
SZA /HIT BALL AT 2ND BIT?
JMP Al /NO.
EASY, TAD M74040 /1F YES, GIVE EASY BALL.
DCA SPEED /M730@8="NOP".
JMP CHANGE /RETURN THE BALL.
Als SPA CLA /1S 1T FAULT OR BEST BIT?
JMP FAULT /HIT IN WRONG REGION.
DFFCLT, TAD JMPDFF /1T WAS BEST HIT. SO, RETURN
DCA SPEED /BALL FASTEST.
JMP CHANGE
CTR, TAD SR
TAD Ma /ACm=4.
SNA /RIT AT 2ND BIT.
JMP EASY /YES.
SMA CLA /1S IT FAULT HIT?
JMP FAULT /YESe
JMP DFFCLT /NO., 1T WAS BEST HIT.
CHANGE, TAD ID /CHANGE DIRECTION.
SNA CLA
JMP «+3
TAD LEFT
JMP «+2
TAD RIGHT
DCA ROTATE /DEFINE NEVW DIRECTION.
CLL /CLEAR USELESS LINK BIT.
JMP ROTATE-1 /SHIFT TO THE DIRECTION.
SCORE, CLA CLL
TAD 1D
SNA CLA /VHICH SCORED?
JMP «+3
1SZ SCORE! /1AC SIDE.
JMP DISPLY
1SZ SCORE2 /CTR SIDE.
JMP DISPLY
FAULT, TAD ID /CHECK WHO WAS AGAINST RULE.
CMA /GIVE POINT TO THE OPPONENT.
DCA ID
JMP SCORE+1
/
BOARD, @ /SUBROUTINE BOARDe.
JMS KEY /CHECK KEY.
JMP I BOARD , /1F NO INPUT, RETURN TO LOOP.
JMP START /1F SIGN, START GAME.
/ ;
/
/DATA (2):
/
COWT, @
SR, [}
JMPDFF, 35276
LEFT, 1884
RIGHT., 7010
/
/
NOP

J-6

Al
BOARD
CHANGE
CLICK
COWT
CTR
DECIML
DELAY
DFFCLT
DIGITI
DlGIT2
DISPLY
EASY
FAULT
g0

Ip

1086
JMPDFF
KEY
K2080
Kag0od
K7708
LEFT
Mi2

M4
M7800
ouT
Pl2
RIGHT
RLEFT
ROTATE
RRIGHT
SAVE!
SAVELD
SCORE
SCORE!L
SCORE2
SHOW
SPEED
SR
START
TIMP
TIMER
WVRITED
VRITES

8314
8358
9339
6481
0361
8321
2074
9106
8316
8116
8117
020s
#2311
83s1
#8233
o120
8040
8363
8820
@132
2133
0134
8364
0127
0126
2131
2103
@138
8365
8214
2266
8226
2121
al122
8341
etea
g12s
2043
8273
8y62
8241
#123
6ape
6400
6404

J-7

APPENDIX K

OCTAL DEBUGGING TECHNIQUE ROM

IM6312-001 CMOS OCTAL DEBUGGING TECHNIQUE (0ODT) ROM

The 635003 version of the INTERSIL ODT ROM may be used in the
INTERCEPT JR. in place of the IM6312-002 MONITOR ROM. With

the addition of a 6953-PIEART serial I/0 board and a 110 baud
ASCII terminal, the ODT program provides the user an easy way
to enter, edit and execute programs in the INTERCEPT JR. from
a terminal.

Upon operating the RESET switch, the following sequence is

executed:

1772
7773
7774
7775
7776
7777

7301
6400
6402
5776
6000
5372

CLA CLL IAC /SET AC TO 0001

6400 /CLEAR INTERCEPT JR. DISPLAY
6402 /TURN OFF CP TIMER

JMP. +1 /GO TO START OF 0ODT

INIT /START ADDRESS OF 0DT

JMP.-5 /ENTRY POINT FOR CP REQUEST

This results in a blanked display, disabled CP timer and ODT
running in control panel memory. ODT may be run in main memory
(thus allowing all instructions to work normally) by entering
the following instructions through the terminal and executing

them:

0200
0201

0202
0203

6407
6001

5603
7777

IOT RUN /RESET CP FF AFTER

ION /EXECUTING NEXT INSTRUCTION
JMP . +1 /GO TO JR

1777 /INITIALTZATION SEQUENCE

INTERSIL ODT requires a RUN/HLT switch and manipulation of
punch ON/OFF switch for proper tape punch operation so it
is recommended that the MONITOR ROM memory dump routines be

used to punch tape.

INTERSIL ODT also contains commands for

working with multiple fields. These commands have no effect
in the INTERCEPT JR. which does not contain hardware for

A11 other ODT functions will run properly
with INTERCEPT JR. hardware.

handling fields.

The following is a summary of the keyboard commands used with

ODT:

nnnn/

Open location designated by octal number
nnnn. When a location is opened, its
content is printed and may be altered.

Reopen Tatest opened location.

K-1

CR
LF

(SHIFT/0)

(SHIFT/N)

nnnnG

nnnnB

nnnnW

I

nnnn ; mmmmpP

Closes location

Closes location, then opens next
sequential location

Closes location and opens indirect

reference (content of location taken

as an address, and new location is opened)
Closes location and opens new location
referenced when contents of old Tocation

are treated as a memory reference instruction
Begin executing program at nnnn

Set breakpoint at nnnn

Resume execution (continue after breakpoint)
Examine/modify AC, MQ, L

Open search mask, lower bound upper bound

Search memory between specified bounds for
octal value nnnn

Punch header/trailer

Punch binary memory image defined by limits
nnnn and mmmm

Punch checksum and trailer

Load BIN tape from tape reader and print
checksum at end of load

For complete documentation, consult the INTERSIL CMOS Family Sampler
Manual and Change Notice SAMPLR 001 in Appendix L.

-1

57.
S 8.
59.
6C.
61,
673,
6u.
65.
€6.
67.
68.
€9.

e7.

Fle

95.

7.

3e.

99.
1cr.
101,
102,
102,
104,
105,
106,
107,
163,
11¢,
111,
LI
113,
114,

ODT LISTING

BEGIN PASS 2

P N
DN E WN 2O O0 DN EWN -

-
~d

NN - e
PN - OO0 ®

LS, S)
wr B oW

26

W w W B N
w = O R ~J

3n

oW W
~

F oo
[« VOIS <]

N EE T FEEERD &
OOVITADNEWN -

T Gy n
AW E W

0000
0000
0005

6000

6160
6161
6171
6162
6163
6165
6175
6174
6166
6167
6176
6177
6172
6173

0020
0021

/ODT-F VERSION 5 TAFE 1

/CDT-F

/OCTAL DEBUGGING TECHNICUE PROGRAM
/WITH CAPACITY FOR HANCLINE€ FIELDS
/AND BROKEN INTO ROM ANLC RAM SECTIONS

/ CCMMANDS ARE THE SAME AS FOR LEC ODT PLUS

N. —-- SET CURRENT FIEDD TO FIELD N

(CUBRENT FIELD IS SAME AS INSTRUCTION FIELD)
A<CLF><LF> -- OPENS A RECISTER EQUIVALENT TO ¥
A<LF><LF><LF> -~ OPENS A REQISTER CONTAINING DATA FIELD
THESE COMMANDS HAVE NO EFFECT OB PRODUCE HARMXBSS GABBAGE
ON IM6100 SYSTEMS ANC OTEER SYSTEMS WHICH DO NOT HAVE
EMA CAPABILITY.

NONNNNNN

L. ~- LOAD FROM THE TAPEF READER USING BIN FORMAT
(WILL IGNORE CHANGE FIELD CHARACTERS)
TO USE COMMAND, GIVE AN @ AFTER THE PROMET THEN FLACE TAFE
IN READFR ON LEADER-TRAILER AND START THE TAFE BEADER.
THE BIN TAPE WILL BEF REAT INTOC THE CURRENT FIELD AND
THE CHECKSUM WILL BE PRINTED OUT ON THE TTY FGLLOWING
THE END OF THE LOQAD.

NNNNNNN

/ ¥%kkx% DEFINITIONS #*%%#

F1=0 /FYELL OUT-F 1S IN
F1a=00 /FIELD OBT-F IS IN, IN BITS 6-8
ZPAT=5 /FIRST ATCBESS FOR TWO WOBRDS CF BREAKPQINT
/LINKAGE IN FIELD OF PROGRAM 10 BE DEBUGGED
START=6000 /STARTING IOCATION FOR ODT~F
/ THE I/0 INSTRUCTIONS
RUART=6160
WUAERT=6161
WITY=6171
SKPDR=6162
SKPTBR=6163
WCRA=6 165
WCRE=6175
WVR=6174

SFLAG1=6 166

CFLAG1=6187

SFLAG3=6176

CFLAGI=6177

SKIP3=6172

SKIPU=6173

JTHE FCLLOWING DEFINE LOCATIONS OF VARIABLES
/ALL VARIABLES ARE IN PAGE O

TEMNF=20 /TEMPOBARY STORAGE

TEMP2=21 " /MORE TEMPOBARY STORAGE’

T XIAN3ddY

¢-1

57
58
59
6¢C
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
77
78
79
8¢
81
82
83
B4
85
a6
87
88
89
an
91
Q2
93
94
95
96
97
a8
39
1N
101
102
103
104
165
106
107
108
109
110
111
112
113
114
115
116
117

0023
0024
0025
0026
0027
00 30
0031
0032
0033
0034
0035
0036
0037
0040
0041
0042
0025
00u3
004y
0045
0046

0047
0050
0051
0052
0053
0054
0055

0056
0061
0062
0063

0066
0067

TOTE=23
WORD=24
SCHAR=125
SPNTER=26
CAD=27
CADF=30
OCALF=31
SHUT=32
TRAD=33
TRADF=34
CONT=35
IFSAVE=36
INS=37
ADDR=40
DF1=41
JADR=42
JADR1=25
GOADR=U3
NCONT=4b
KEEP=45
CHKSUM=U46

ACSAVE=U4T
LSAVE=50
MOSAVE=51
DFSAVE=52
MASK=53
LIMLO=54
LIMEI=55

/THE SUBRCUTINE
J/CALLY, O

/ PUSHJ
/RETRN1, PCPJ
/STACK, STACK1

/ACTENMF, 0
CALL1=t6
RETRN1=61
STACK=62
ACTEMP=63

/DIGIT COUNT
/NUMPER REAC BY COMMAND SCANNEP

/CHAR

INPUT BY COMMAND SCANNER

/POINTER INTO COMMAND TABLE
/CURRENT ALLCRESS

/CURRENT EIELD

/CLD CADF VALUE

/OPEN~-

SHOT FLAG (- 1=SHUT,0=OFEN)

/ADDRESS BREAKPOINT IS AT

/FIELL BREAKPOINT IS IN

/ADDRESS TC CONTINUE FROM

/FIELC TO CONTINUE WITH
/INSTRUCTICN TO BE SIMULATED
/EPFECTIVE ADDRESS OF INS

/FIELD OF INS OPERAND

/PLACE FOR RAM PROGRAM TO FETUBN TO
/FUTURE JALR VYALUE

/ENTRY POINT TO RAY FROGHBAM

/NO OF TIMES TO CONTINUE PAST BKPT (ONES CEELMNT)

/PLACE TO SAVE BRFAKPOINT CONTENTS
/PAPER TAPF CHECKSUM
/THE FCLLCWING LOCATIONS MAY BE EXAMINED BY ODTI-F USERS

/SAVE
/SAVE
/SAVE
/SAVE
/YASK

CATA FIELD
FOF ¥QRD SEARCH

/LOWER BGUNL FOR #4CRD SEARCH
/TPPER BGUND FOR WORD SEARCH
LINKAGE LOCATIONS WILL LOOK LIKE
/LINKAKGE TG PUSHJ ROUTIKE

/ JHP I .+1

/LINKAGE TO POPJ RCUTINE
/STACK PCINTER
/ © ~-- PUNCH CURRENT FIELD IN BIN FORFIT

/SAVE

AC

/THE BREAKEGINT RETURMN BINKAGE LOCATIONS WILL LOOK LIKE
/IN FIELD PROG TO DEBUG IS IN, AT ZPAT:

/ZPAT, CIF P1A

JUE ZPATH

/
/IN FLELD F1:

JLPATY, Jup I .41

Va BKET
ZPATI=64

JRAY PRCGRAM LOCATIONS. TEESE LOCATIONS ARE MODIFIED BY
JGETCALC, SETCAD AND CDO ROUTINES AND THEN EXECTIED FOR
/CHANGING FIELDS AND SIMULATING INSTRUCTION EXECUTION

/DFSET1,0 /CDF INS FOR MEMORY REFERENGE

/NEWINS, 0 /INSTRUCTION TO SINULATE

/ SKp

/ ISZ JADR/SIMULATE SKIP

/IFSET, 0 /CIF INSTRUCTION

JDFSET, 0 /CDF INSTRUCTION

/7 JMP I JADR /EACK TC RGM OR PROGEAM TO BE DEBUGGED
DFSET1=66

NEWINS=67

€-1

166
167
168
169
170
171
172
173
174
175
176
177
178

6000
6001
6002
6003
6004
5005
£206
6007
€010
0011
0012
5013
5014
5015
6216
6917
6320
6021
6022
6023
6024
=025
6024
6027
€G30
50131
6032
6933
6034
6035
6036
6037
6040
6041
6042
6043

5044
6045
6046
60u7
6050
6051
6052
6053
6054
6055
6056
6057
6060

0072
0073

0074

6000

7200
1245
3057
1246
3060
1247
3061
1250
3062
1251
3C70
1252
3071
1253
31074
1254
3964
255
10645
7040
3052
3030
1256
n165
7300
1257
6175
7330
1260
0171
7300
3031
3046
4056
6400
S644

6200
5460
6061
6072
0074
7410
2042
5442
5465
7236
7200
1560
7600

IFSET=72

JFIRST LCCATION OF RETURN ALDRESS STACK

DFSET=73
STACK1=T74
PAUSE

/ODT~-F VERSION 5 TAPE
/ ****% FIRST ROM PAQE

*START

-~

£

/ *¥%%«%%x TNITIALIZE ROUTINE &&*%*

INIT, CLA
TAD SUB1

DCA CALL1+1
TAD SUB2

DCA CALL1+2
TAD 5iB3

DCA RETEN1
TAD STACKI
DCA STACK
TAD RAMI

DCA NEWINS+1
TAD RAN2

DCA NEWINS+2
TaD RAM3

CCA DFSET#!
TAD TRAP3
DCA ZPATI
TAD TRAPU
DCA ZPAT1+1
CNA

DCA DESAVE
DCA CADF

TAD KCRA
WCRA

CIA CLL

TAD KCREB
WCRB

CLA CLL

TAD KTTY
WITY

CIA CLL

DCA QCADF
DCA CHKSUNM
CALL

CELF

JMP I PCREAD
/ **% CONSTANTS
PCREAD, READ

suB1, JMP I CALL1+2
sus2, FUSHJ

SUB3, PGPJ

STACKI, STACK1

RAM1, SKP

RAM2, ISZ JADR
RAM3, J¥P [JADR
TRAP3, JMP I ZPAT1+1
TRAP4, ~ BKPT

KCRA, 7200

KCRE, 15690

KTTY, 7600

INITH,

/INIT SUBRQUTINE LINKAGE

/INIT BRAYM FROGRAM LOCATIONS

/INIT BKPT JUMP LINKAGE

/SET DFSAVE TO "UNDEFPINED™ VALUE

/START IN FIELD O

/CLEAR CHECKSUM
/JTYPE CR,LF

/GD TO COMPFAND SCANNER

/ *¥%x% CALL AND RETURN ROUTINES #*x&*
/JMS WILL NCT WORK IN A ROM SINCE THE FIRST WOBD OF THE

v-1

237,
23¢.
239.
240,
241,
242.
243,
244,
2u5,
246.
2u7,
248,
249,
2¢0.
251

252.
253,
254,
255.
2€6.
257.
258,
259,
260,
261,
2¢€2.
263.
2€4,
265.
26¢6.
267,
2€8.
269,
277,
271,
272.
273.
274,
275,
276.
277,
278,
279.
280,
2R,
282,
2813,
284,
28¢5,
2946,
287.
288,
289,
290.
291,
292,
2912,
294,
295,
25¢.
297.

179
180
181
182
183
184
185
186
187
188
189
190
191
192
133
194
195
196
197
193
199
200
201
202
203
204
208
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

2135
236
237
238

6061
6062
6063
6064
6065
6066
6067
6070
6071

6072
6073
6074
6075
6076

6077
6100
€101

6102
6103
6104
6105
610€

6107
6110
6111
6112
6113

6114
6115
6116
6117
6120
6121
6122
6123
81204
6125
6126

4056
5461

3063
2062
1056
7001
3462
1456
3056
1063
5456

3063
1462
3056
7060
1062

3062
1063
5456

6161
6163
5303
7200
5461

3020
1334
3023
1020
7004

7004
7006
3020
10290
0335
1340
4056
6102
1020
2023
5314

/SUBROUTINE CANNOT BE WRITIEN WITH THE RETURN ADDRESS.SSS.
/HERCE, A SUBROUTINE IS CALLED BY

/ CALL

/ <SUBROUTINE NAME>

/ANLT RETURNED FROM BY

/ RETURN

/WHERE

CALI=JMS CALL? /CALL SUBRCUTINE OECGDE
RETURN=JME I RETRN1 /RETURN FR0OM SUBROUTINE OPCODE
/CALL THE POLLOWING ROUTINES THROUGH THE SUBROUTINE
/LINKAGE IN PAGE ZERO (SEE TAPE 1)

/ROUTINE TO CALL A SUEROUTINE AND FUSH

/RETURN ALCDRESS ON STACK

PUSHJ, DCA ACTENF JSAVE aC

1sz STACK /UETATE STACK PTR

TAD CALL1 /CGET USER RETURN ADDPRESS

IAC /INCREMENT PAST ARCUMENT

DCa I STACK /PUT IT ON STACK

TAD I CALL1 /GET USER ENTRY ADDRESS

DCA CALL?1 /PUT IT IN CALL

TAD ACTEME /RESTORE AC

JME I CALLY' /GG TO USER ROUTINE
/ROUTINE 10 RETURN FROM A SUBROUTINE, POPPING BRETURN ALDRESS
/OFF STACK
POPJ, DCa ACTEME /SAVE AC

TAD I STACK /GET RETURN ADDRESS

DCA CALL1 /SAVE IT IN CALL1

CMA CML /-1 IN AC, COMPLEMENT L

TAD STACK /LCECREMENT STACK PIR

/ (CAEKRY RESTORES L)

DCA STACK /RESTORE UPLDATED STACK ETIR.

TAD ACTEMP /RESTORE AC

JNP I CALL1 /RFTURN

/ ¥*%%kx DRINT SUBROUTINES ##*x#
/SUEROUTINE TO TYPE A CHARACHTER
/CHAR ASSUMED IN AC

TYPE, WUART /OUTPUT CHAR TO TTY
SKPTBR /READY GOR NEXT CHAR?
JMP =1 /LCCP IF NOT
CLA /CLEAR AC

RETURN /RETURN
/SUBROUTHNE TO PRINT A NUMEER
/PRINT CONTENTS OF AC IN OCTAL FOLLOWED BY A SPACQE

PNU M, DCA TEMP /SAVE NUMBER
TAD M4 /INITIALIZE COUNT OF DIGITS
DCA TOTE / PRINTED
TAD TEMP /GET BACK NUMBER
BAL /FIRST SEIFT INTO LINK
/L00P 4 TIMES -, PRINT A CIGIT
PNU M2, RAL /SHIFT AC,L THREE LEFT
RIL
DCa TEMP ' /SBVE NUMBER
TAD TEMP /GET IT BACK
AND pP7 /ISOLATE DIGIT
TAD P260 /CCNVERT TG ASCII
CALL; TYPE /TYPE 1T OUT
TAD TEXP JCGET BACK AC (NOTE L SPILL SAME)
ISz TOTE /FOURTH ITEBATION?
JMP PNUN2 JLOOP IF NGT.

/PRINT A SPACE b

G-1

3ce,

239
2490
241

242
243
244
245
246
247
2u8
249
250
251
252
25

254
255
256
257
258
259
260
261
262
263
264
265
266

6127
6130
6131
6132
6133

6134
6135
6136
6137
6140

6200
6201
6202
6203

6204
6205
6206
6207
6210
6211

6212
6213
6214

6215
6216
6217

6229
5221
6222

6223

6224
6225
6226
62217
6230
6231

6232
6233
6234

7200
1337
4056
6102
5461

7774
0007
0007
0240
0260

6200

7200
3024
1333
3023

6162
5204
7200
6160
0336
3025

1025
4056
6102

1025
1332
7500

5235
1334
7510

5235

3020
1024
7104
7006
1020
3024

2223
5204
5337

CLA
TAD P240 /GET ASCII CODE FOR SPACE
CALL; TYPE /JTYPE IT OUT

FETURN /RETURN
/ ¥*%x CONSTANTS

N, -4
?7, 7

7

P280, 240
P260, 260
PAUSE

/ODT~F VERSION 5 TAPE 3

/ ¥%%%xx SECCND ROM PAGE

*START+200

J kx*k® COMMAND SCANNER *%#sx

/THE CCMMAND SCANNER INPUTS A COMMAND OF THE FCRM
/(<NUMBER>)<)>) <CHAR> (WHERE THE NUMBER IS OPITONAL).
/IT STCRES THE NUMBER IN "RORD" ANL JUMPS TO THE
/ROUTINE ASSOCIATED WITH ThRE CHARACHTER.

/JINITIALIZE NUMBER SCANNIER

REAT, CLaA

DCA WOED /SET WORD TG ZERO
TAD SMS
DCA TOTE /SET TOTE TC -5

/INPUT A CHAR

READY, SKPDR #/CEAR 1IN INPUT BUFFEER?

JMP -1 /LCOP IF NOT
CLA; RUART /PUT CHAR INTO AC
AND KO0377; DCA SCLAR /SAVE CHAR
/ECHC CHAS ON TTY
TAD SCHAR JRETRIEVE CHAR
CALL
TIPE /TYPE IT OOT

/NUYBEF SCANNER
/SEE IF SCHAR IS OCTAL DIGIT

TAD SCHAR /CET CHAR ("0"=260,"7"=267)
TAD SM270 /SUB 27C ("C"=-1G,"Tn=-1)
SMA /1% AC NOT BEG, THEN CHAR HAS
/CODE GTR THAN THAT OF DIGIT
JMP READ2 /S0 GO TO CHAR HANDLER.
TAD SP10 JALD 1C ("Cn=0,"7"=7)
SER /1¢ AC NEG, THEN CHAS HAS
JCCEE LESS THAN THAT OF DIGIT

JME READ2 7SO0 GO TC CHAR HANDLER

/ADD DIGIT TO PARTIAL NUMBER IN WORD
DCA TEMP /SAVE DIGII
TAD WORD /GET NUMBER SO FAR
CLL RAL /SEIFT AC LEFT THREE BIES
RTL
TAD TEMP s/AED IN NEW DIGIT
DCA WORD /SAVE RESULT IN WORD

/JCHECK PCE TOO MANY BIGITS, RETURN TO CHAR RDR
ISZ TOTE /5 DIGITS TYPED?
JMP READ1 /NO - GET NEXT CHAR
J¥P ERROR /YES - 60 TO ERROB

JCHAR SCANNER
/PIND INPUT CHAR IN TRABLET AND JUMP TO THE
/ASSOCIATED ROUTINE IN TABRE2

9-1

359. 297 /INITIALKZE SEARCH LOOP

360, 298 6235 7200 READ2, CLA
361. 299 6236 1256 TAD BLIST /GET PTR TO BEGIN QF TABLE1
362, 300 €237 3026 DCA SPNTER ZINIT PTR INTO TABIE1

363. 301 /SEARCH LOOP

364, 302 6240 1426 READ3, TAD I SPNTER /GET CHAR FROM TABLE1

36°5. 303 6241 2026 ISZ SPNTER /PCINT SPNTER AT NEX1 CHaR
366. 304 6242 7510 SEA /SKIP IF NGT END OF TABLEI
367. 305 J (TABLE1 FOLLOWED BY NEG #)
3€8. 308 6243 5337 JME ERROR 7CEAR NOT IN TABLE1 - ERROE
369, 307 6244 7041 CIA /NEGATE TABLE CHAR

370, 308 6245 1025 TAD SCHAR /AED INPUT CHAR

371, 309 6246 7640 SZh CLA 75UM ZERO IF CHARS SAME, SKIP
372. 310 /1F SO

373. 311 6247 5240 JMP READ3 JOYHERWISE, CONTINUE LGQP
374, 312 /JUBP TO ASSOCIATED ROUTINE IN TABLE2

378, 313 6250 1026 TAD SPNTER JGET PTR INTO TABLE1

37€. 314 / (SPNTR NOW POINTS CNE PBAST
377, 315 / MATCHING CHAB).

378, 316 6251 1257 TAD LTABL JCCNVERT INTO PTR INTO TABLE2
379, 317 6252 3020 LCA TEMP /PUT TABLEZ ENTRY

380, 318 6253 1420 TAD I TEMP J INTO AC

381. 319 6254 3020 DCA TEMP /JUNP TO LGC POINTED TO
ez, 320 6255 5420 JKP I TEMP 7 EY TABLE ENTRY

383, 321 6256 6260 BLIST, TABLE? /PCINTER TQ BEGINNIG OF TABLE!
384, 322 6257 0022 LTABL, TABLE2-TABLE1-1 SCCNSTANT 10 GET CGRRESPGNDING
385. 323 / LOC IN TABLE2

3€6, 324 J **% COHMAND SCANNER TAELE ®%*

387, 325 /EACH ENTRY IN TABLE! CONTAINS A CHAR,

3ge, 326 /THE CCRRESPONDING ENTRY IN TABLE2 CONTAINS A

389. 327 /PROCEDURE ASSOCIATED WITH THAT CHAR.

396. 323 6260 0215 TABLEY, 215 / CR

191, 329 6261 0212 212 / LF

392, 330 6262 0257 257 ;s

353, 331 6263 0256 256 / -

394, 332 6264 0301 304 / A

9%, 333 6265 0215 315 /M

39¢, 134 6266 0337 337 /-

397. 335 6267 0336 336 /

3q8, 2136 6270 0302 302 / B

399. 337 6271 0307 307 /G

aco, 338 6272 0303 303 /c

unt, 333 6273 0327 327 /W

402, 380 6274 0320 320 /P

403, 341 6275 0305 305 / E

4ch, 352 6276 0324 324 /T

405, 343 6277 0321 321 /0

406, 344 6300 0273 273 /i

407, 345 §301 0314 314 7L

40R, 346 6302 7777 -1 /TABLE FOLLOWED BY NEG NUMBER

409. 347 6303 6616 TABLE2, CRDO

41¢, 3u8 €304 6625 LEDC

411, 389 6305 6601 sLDC

412, 350 6306 6654 DCT DO

413, 351 6307 6727 ADO

uty, 352 6310 6730 800

415, 2153 6311 6715 BADO

41§, 354 6312 667C GADO

417, 355 6313 7215 BDC

gte. 356 6314 7200 GDO

419, 157 6315 7000 cDo

~J

4206,
421,
422,
423,
424,
425,
u2e.
427.
42€8.
429,
u3c,
421,
432,
4313,
43y,
435,
436,
437,
43¢e.
439.
4uc.
441,
uu2,
a43.
quy,
4us,
uu6.
G4u7.
448,
qu3,
4sc,

358
359
360
361
362
363
364
365
3166
367
368
369
37¢C
371
372
373
374
375
376
377
378
379
380
381
382
343
8y
3185

413

6316
6317
6320
6321
6322
6323
6324

6332
6333
6334
6335
6336

6337
€340
6341
6342
6343
6344
6345

6400
6401
6402
6403
6404
6405
6406
6407
6410

6411
6412
6413

641y
6415
6416

6417
6420
6421
6422

7303
7502
7464
7471
7454
7451
7576

6332

7510
7773
0010
0277
0377

6337

7200
1335
u0se
6102
4056
6400
5200

6400

1257
4056
6102
1256
4056
6102
7040
3032
5461

2032
7410
5461

4056
6423
S5u61

1024
4056
6ul2
5461

*START#332

/ **% CONSTANTS
sM270, =270

5M5, -5

sp10, 10

sp277, 277
E0377, 0377;PAUSE

*START#+337

/ %%x%%x ELEROR HANDLER #**
/JTYPE "2" AND RETURN TO
ERRCR, CLA

TAD SP277

CALL

TYPE

CALL

CRLF

JMP READ

/ODT-F VERSION 5 TAPE
/ ¥**¥%% THIRD ROM PAGE
*START+400
/ ¥%%%% EYAMINE DEPOQSIT
/SUBROUTINE TO TYPE CR,
CRLF, TAD TP215

CALL

TYPE

TAD Tp212

CALL

TYPE

CHMA

DCA SHUT

RETURN
/SUBROUTINE TC CLOSE REG
/SEE IF REG ALREADY SHUT
CLOSE, ISZ SHUT

SKP

RETURN
/SEE IF VALUE TYPED IN

CALL

NTY PED

RETURN
/STCRE TYFED VALUE IN RE

TAD MORD

CALL

SETCAD

RETURN

*E¥
COMMAND SCANNER

/GET QUESTION MARK
/TYPE IT OUI

/TYPE CB,LE

ROUTINES *#%%x
LF AND SHUT REGISTER
JCET CR

JTYPZ IT
/GET LP

/TYPE IT
JSET AC TO -1
/STORE IN SHUT
/RETURN

/SKIP IF SHUT=-1

/RETURN IF REG ALREALDY SHUT
/SEE IF NUMBER TYPED
/RETURN IF NOT

4

/GET NEW VALUE

/STORE IT IN CAD
/RETURN '

-1

481,
4e2,
483.
484,
485.
4e6.
u37.
4ge,
489,
490,
491,
492,
4913,
4ou.
495.
4<6.
497,
498,
499,
50C.
501.
502.
503.
c0u.
505.
5C6.
507.
508.
509.

o}
"

-2 0w A
o .

ARG NS RS AV N, R
.

[N SRV

413
420
421
u22
423
424
425
426
w27
428
429
430
431
432
433
434
u3s
436
437
438
439

473
474
475
u76
477
u7e
479

6423
6u2u
6425
6426
6427
6430

6431
6u32
6433
6434
6435
6436

6437
6440
6441

6442
6443
644y
64U
6uub
6uu7
6650

6451
6452
6453
6usY

€455
6U56
6457
6460
6461
6462
6463
646U
6465
6466
6467
6470
6471
6472
6473
6uTy
6475
6476
6477

1023
7041
1255
7640
2462
5461

10130
1260
3073
1261
3042
5073

1427
6201
5461

3020
1030
1260
3073
1262
3042
5073

1020
3427
6201
56461

7773
0212
0215
6201
6437
6451
6172
7000
6166
6172
5266
6167
6162
5271
7200
6160
0277
5461
0377

6600

/SUBROUTINE TO SEE IF NUMBER HAS BEEN TYPED
/SKIP CN FETURN IF ANY NUMEER HAS BEEN TYPED SINCE
/LAST COMMAND

NTYPED, TAD TOTE JIDTE IS - INITIALLY, AND
CIA / INCREMENTED ONLY IF A NUMBER
TAD THM5 / 1S TYPED
SZA CLA /SKIP IF TOTE=-5

ISZ I STACK
RETURN

s INCREMENT RETURN ADDR

/SUBROUTINE TO GET CONTENTS OF CURRENT LOCATION
/NEW CONTENTS RETURNED IR &C

GETCAD, TAD CADF /GF¥T PIELD CF CURRENT 10QC

TAD TP6201 /ALD IN "CLF" INSTRUCTIION

DCA DFSET /STORE 1T 1IN RAM PROGEAM

TAD PGTCD1 /SET RAM PBOG TO RETURN TO GETCD1

DCA JADR

JMP DFSET /JEXECUTE RAM PROGRAM - CHANGE FIELD

/TO THAT OF CURRENT LOCATION

GETCD1, TAD I CAD /GET CONTENTS OF CURRENT LOC

CCF F1A /RESTORE DATA FIELD

RETURN /BETURN

/SUBROUTINE TO SEI CONTENTS OF CURRENT LOCATEON
/NEW CONTENTS PASSED IN AC

SETCAD, DCA TEMP JSAVE AC
TAD CADF /GET PIELD OF CURRENT 10OC
TAD TP6201 JALD IN "CDF® INSTEUCTION
LCA DFSET /RIORE IT 1IN RANM
TAD PSTCD? JSET RAM PRCG TO RETURN TO SETCD1
DCA JaDR
JMP DFSET /EXECUTE RAM PROGRAN - CHANGE FIELD
7TO THAT OF CURKENT LOCATION
SETCDY, TAD TEMP /BESTORE AC
DCA I CAD /SET CURRENT LOC TG NEW VALUE
CDF Fia ZRESTORE DATA FIELD
RETURN /RETURN
/ **% CONSTANTS
™S, -5
TP212, 212
TP215, 215
TP6201, 6201
PGTCD1, GETCD1
PSTCD1, SETCD1
LISN, SKIP3 / THE TTY LISN ROUTINE FOR THE BIN
NCP / LOADER
SFLAG1 / SET READER RUN
SKIE3
JMP -1
CFLAG1
SKPDR
Jup -1
cia
RUART
AND TTYH
SETURN
TTYN, 0377

/ODI~-F VERSION 5 TAPE £

/) ¥*%x% EXYAMINE/DEPOSIT ROUTINES - CONTINUBD #*%x%x
/ *%*%x FCURTH ROM PAGE

*START+600

/TRANSFER ADDRESS TO COMMANAMAND SCANNER

6-1

542,
543,
syt
545,
546,
547,
S4 €.
549,
5¢0,
551.
5€2.
5¢%3.
554,
555.
556.
557.
558,
559.
56C.
61,
562,
563.
€L,
565,
5€€.
567.
5¢8.
569.
g70.,
571.
572.
]7:

£74.
572,
576,
577,
578,
579,
580,
°81.
582.
583.
S84,
595,
5E6.
587.
SEE.
589.
539,
591,
5¢2.
593,
5%4.,
595,
5¢€,
597.
598,
559.
6CC,
601,
602,

480
481
482
483
48y
485
486
487

N
N
-

(SN

NN,

IV RWRVWEWEWE SN NIV SN SR I
TN E WM SO D@D E W

AT o DN

N s
W tad
D~

539
540

6600

6601
6602
6603
6604
6605
6606
6607

6610
6611
6612
6613
6614
6615

6615
6617
6620
6621
6622
6623
6624

6625
6526
6627
6€30
6631
6632
6633
6634
6635
6636
6637
6640
6641
6642
6643
66UL

6645
66U6
6647
6650
6651
6652
€653

6654
6655
6656
6657
£650

6200

1031
3030
4056
6423
5210
1024
3027

3032
4056
6431
40586
6107
5600

4056
6411
1031
3030
4056
6400
5600

4056
U1l
134y
4056
6102
4056
6102
2027
7000
10390
7041
1031
7650
5245
4056
1347

1027
4056
6107
1345
4056
6102
5210

1024
7104
7006
3030
1030

coMu, READ

/SLASH HANDLER

/OPEN LOCATION "“CADF".,"CALY
/JIF NUMBER TYPED, SET CAEL
SLDbC, TAD OCADF

DCA CADF

CALL

NTYPED /SEE IF NUMBER TYPED

JMP SLDO? /N0 NUM TYFED, LEAVE CAD ALONE
TAD WORD /ELSE GET NUM TYPED

DCA CAD /AND SET CAD TO IT

/TYPE CONTENTS OF “CADF"."(AD"
SLpol1, DCA SHUT /SET REGISEER STATUS TC "OPEN"

CALL

GETCAD JGET CONTENIS OF CURRENT LOC
CALL

ENDHM JTYPE IT OUT

JMP 1 COoHNM JRETURN TO COMMAND SCANNER

/CR HANDLEP
/CLOSE LOCATION
CRDC, CALL

CLOSE /CLOSE LOCATION
TAD OCADF

DCA CADF

CALL

CRLF /TYPE CR, LF

JME I COMM /GET NEXT CCMMAND

/LF HANDLER
JCLOSE LOCATICN AND OPEN NEXT LOCATION
LFDO, CALL

CLOSE /CLCSE LOCATION

TAD SPZ215 /GET CR

CALL

TYPE /TYPE IT

CALL

TYPE /TYPE A NULL (GIVES TIMB FOR CR)
IsZ CAD /POINT CAD AT NEXT LOC

NQP /IN CASE ISZ SKIPS

TAL CADF /CCXPARE CURRENT AND SAVED FIELDS
CIA

TAD OCADF

SNA CLA /CIFFERENT?

JMP LFDOI /N0 , GC ON

CALL /YES - PRINT FIELD

FPFIELD

/THE FOLLOWING IS AN ENTRY POINT FOR ANY ROUTIINE
/THAT TYPES OUT WHAT LOCATION IT IS OPENING,

LFDCY, TAD CAD /GET CAL

CALL

PNUNM /TYPE IT OUT

TAD SPZ57 JGET ASCII FOR "/"

CALL

TYPE JTYPE IT OUT

JMp SLbOY /REST IS LIKE OPEN REG ROUTINE
/. HAMNDLEGR

/SET FIELL OF CURRENT LOCATION
DCTDO, TAD WGRD /GET FIELD SPEC FRCM WGRD

CLL RAL /FIELD SPEC INTO BITS €-8
RTL

pDCA CADF /STORE IT AS CURBENT FIELD
TAL CADF

01-1

sS4
S42
5u3
564
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566

6661
6662
6663
6664
6665
6666
6667

6670
6671
6672
6673
€674
6675
6676
5677
6700
6701
6702
6703
6704
6705
6706
€707
6719
6711
6712
6713
6714

671%
6716
6717
6720
6721
6722
6723
6724
6725
6726

6727
6730
6731
6732
6733
€73u
6735
6736
6737
6740
6741

6742
6743
6744
€745

3031
1052
7700
5600
1030
3052
5600

4056
6411
4056
6400
4056
6431
3020
1031
3030
1020
0342
3021
1020
0343
7650
5312
1027
0351
1021
3027
5245

4056
6411
4056
6400
u0s56
6431
3027
1031
3030
5245

1337
1340
3027
1030
3031
1341
3030
5210
7774
0053
0000

0177
0200
0215
0257

CCA OCADF
TAD DFSAVE
SMA CLA
JEp I ComM
TAL CADF
DCA DFSAVE
JMP I COMM
/ HANPDLER

/CUESAVE INITIALIZED?

/YES - RETORN
/NC ~ INIT DFSAVE TO CAD#

/GET NEXT COMMAND

/PRETEND CAT IS A MEMORY REFERENCE INS AND QEEN

/LCCATION EEFERENCED.
UADO, CALL

CLOSF

CaL:t

CFLE

CAaLL
GELAD

CCA TEMP
TAD OCADF
LCA CADF
TAD TENMP
AND SP177
CCA TEMP2
TAD TEMF
AND SP200
SNA CLA
JMe UADO1Y
TAD CAD

AND SP7600
UADOY, TAD TEMP2
DCA CAD
JUP LFDO1
/ HANDLEF
/OPEN LOC PCINTED AT BY
BADC, CALL
CLOSE
CALL
CKLF
CALL
GETCAD
DCA CAD
TAD OCADF
DCA CADF
JNP LFDO1
/ A,M, T HANDLER
/OPEN LOC CONTAINING AC,
ap9, TAD ADDR?
¥DO, TAL ADDR2
DCA CAD
TAL CADF
DCA OCADF
TAD ADDRU
DCA CADF
JKP SLDO1
ADDR1, ACSAVE-MASK
ADDE2, MBSK
ADDRY4, F1A
/ **% CONSTANTS
sP177, 177
spP200, 200
$P215, 215
sp257, 257

IGNORE I BIT.

/CLOSE LOCATION
/TYPE CR,LF

/GET CONTENIS
/SAVE THEM IN TEMP

/GET BACK CCNTENTS
JISCLATE PAGE ADDR BITS
JAND SAVE THEL IN TEMNPZ
JGET CONTENTS AGALN
JISOLATE PAGE ZERO BIT
/REFERENCE TO PAGE ZERC?
JYES - SKIF NEXT CCDE
JNC - GET CURRENT ADR
JISOLATE PAGE NUMBER
JBALD IN PAGE ADDR

/PUT INTO CAD

/REST LIKE LF

CUERENT LOC
/CLOSE CUREENT LOC
/JTYPE CK,LF
/GET CONTENTIS OF CURRLNT LOC
/MAKE IT INTO NEW LOC
/REST LIKE L¥F
MASK, OR INSTRUCTION FIELD
/CIT REGISTER ADDRESS - ACSAVE

/0F MASK
/PUT INTO CAD

/REST LIKE SLASH

11-1

6E4,
6€S,
666.
667.
668,
669.
670.
671.
672,
673.
674,
675.
676.
677.
678.
679.
680.
681,
682,
683,
684,
685,
6€6.
687.
hee,
689.
6¢C.
691.
€92.
€93,
624,
695,
6¢6.
697.
698,
693,
7c0.
701,
702,
703.
7Cu4.
705,
706,
707.
ICce.
709.
710,
711,
712,

74,

602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
€20
621
622
623
624
625
626
627
€28
629
630
631
632
623
€34
€35
636
637
638
618
640
641
Hu2
643
6Ll
645
6U6
647
648
649
6590
451
552
653
654
655
€56
657
658
656
660
661
Hh6h2

6746
6747
6750
6751

7000
7001
7002
7003
7004
7005
7006

7007
7010
7011
7012
7013
7014
7015
7016
7017
7020
7021
7022
7023
7024
7025
7026
7027
7030
7031
7032

7032
7034
7035
7036
7037
7040
7041
7042
7043
704y
7045
7046

7047
7050
7051
7052
7053

0260
0400
6201
7600

7000

1031
3030
4056
6400
1024
7040
30uy

1035
3027
1036
3030
4056
6431
3037
2035
1035
3025
1037
7100
1346
7620
5233
1037
3067
1334
3043
5740

1037
0342
3040
1037
Q3u4
7650
5247
7040
1035
0351
1040
3040

1036
3041
1037
0345
7650

CONT2, TAD IFSAVE

sp260, 260
SP4QC, 400
SP6201, 6201
Sp7600, 7600
PAUSE
/ODT~-F VERSION 5 TAPE €
/ **%%%x BFEAKPOINT/CONTINUE ROUTINES **%¢*
/ *%%%x FIFTH ROM PACE
*START+1000
/ C HANDLER
/CONTINUE EXECUTION OF PROCRAMN
cDo, TAD OCADF
DCA CADF
CALL
CELF
TAD WORD /SET CONTINUE COUNT TO
CHA / ETERATE PAST BREAKEOINZ
DCA NCONT / SPECIFIEL NUMBER OB TIMES
/SIMULATE EXECUTION OF ThE INSTRUCTION IN
/LOCATION CONTF.CONT
/HANDLE ICT OR OPERATE INSTRUCTION
CONTO, TAD CONT /SET CADF.CAD TO CONTF.CONT

DCA CAD
TAD IFSAVE /I&SAVE IS CONTINUE FHELD
DCA CADF
CALL /GET CONTINOUE INSTRUCTION
GETCAD
DCA INS /STORE IT IN INS
ISZ CONT JPDINT CONT AT NEXT kNS TO EXECUTE
TAD CONT /SET ADDR TO CONT FROG EXEC FROM
DCA JADRI1
TAD INS
CLL
TAD FP2000C /OVERFLOW SETS L FCR ICT OR CPER
SNL CLA
JMP CONTI /J%P IF NOT IOT OR OPER
TAD INS /NEWINS INS
DCA NEWINS
TAD PNWINS /SET RAM PROGRAM EXECUBION TO
DCA GOADR /BEGIN FROM "NEWINS"
JHE I PCNTS #GO TO EXECUTE BRAM
/PUT EFFECTIVE ADDRESS OF MEMORY REFERENCE INSTIRUCTION
/IRTO ADDF
CONT1, TAD INS
AND FE177 /GEFT ADDRESS ON PAGE
DCA ADDR
TAD INS JTEST FCR ZERG FAGE
AND FP200
SNA CLA
JMP CONT2 /ZERO PAGE - GO ON
CMA JCURRENT PAGE - GET INS LOCATION
TAD CONT /CCNT POINTS ONE PAST INS 1OC
AND FP7600 /JISOLATE PAFE NUMBER
TAD ADDR /ALD TO GET
DCA ADDE /W EW EFFECTIVE ADDEESS !

/HANDLF INDIRECT REFERENCE
Z/ASSUME EA IS IN INSERUCTION FIELD

DCA DF1 / SO SET DF1 1IFSAVE
TAD INS s/TEST INS FOR INDIRECT
AND FPU4QQ

SNA CLA

211

725.
726.
727.
728,
729.
73¢C.
731,
732,
733.
734,
73S,
136,
737.
73¢8.
739.
74C.
741,
Tu2.
743,
T84,
T45.
46,
747,
ThE.
749,
75C.
751,
7s2.
753.
754,
755.
7%6.
757,
158,
758.
TJeC.
7€1.
762,
763,
Jeb.
76¢%.
7€6.
767.
Te8.
7969,
77¢C.
771,
172,
773.
774,
775.
776.
777,
778,
779.
7ec,
781,
782,
783,
784,
785,

663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
682
584
685
686
687
688
629
690
691
692
693
694
495
696
€97
£98
699
700
701
702
703
704
705
706
707
7ce
709
710
711
712
713
74
715
716
FAN
FAR:)
719
720
721
722
723

7654
7055
7056
7057
7060

7061
7062
7063
7064
7065
7066
7067
7070
7071
7072

7073
7074
7075

7076
7077
7100
7101
7102
7103
7104
7105
7106
7107
7110
EARD]
7112
7113
7114
7115
7116
7117
7120

7121
7122
7123
7124
7125
7126
7127
7130
7131
7132
7133

7134
7135
7136
7137
7140
7141
7142
YALE]

5276
1052
3041
1040
3027

1040
0352
1342
7640
5273
4056
6431
7001
4056
6442

4056
6431
3040

10137
7100
0350
1347
7420
5321
7640
5314
1040
3027
1035
4056
6uu2
20u0
1040
3025
1335
3043
5740

7200
1037
0350
1337
3067
1041
1341
3066
1336
30412
57u0

0067
0072
0066
ouuo
7400
6201
7770
0177

/HARDLE

JRINISH
CONT23,

/HANDLE
CONT3,

CONT3A,

/HANDLE
CONTY4,

JMP CONT3
TAD DPSAVE
DCA DF?
TAD ADDR
DCA CAD
AUTO-INCREMENT
TAD ADDR
AND FP7770
TAD FM10
SZA CLA
JMP CONT2A
CALL
GETCAD

IAC

CALL
SETCAD

/CiRECT - GO ON

ZINCIRECT - S0 EA IS IN DATA FIELD
/ SO SDT DF1 DFESAVE

/SET CAD ADDR

/SEE IF ADER IS AUTO-INC REGISTER

/NCT AUTO-INCR - GO ON
7AUTO- INCB - GET REGISTIER VALUE

JINCREMENT IT
/ANLD RESTORE

HANCLING INDIRECT

CALL
GETCAD
DCA ADDR

JGET CONTENIS CF ADDF

/AND MAKE THAT NEW ADDR

JMS, JMP INSTRUCTICNS

TAD INS
CIL

AND FP7000
TAD FP4000
SNL

JMP CONTUY
SZA CLA
JMP CONT3A
TAD ADDR
DCA CAD
TAD CONT
CALL
SETCAD

ISZ ADDR
TAD ADDR
DCA JADR1
TAD PIFSET
CCA GOADR
JME I PCNTS
AND, TAD, DCa,
CLA

TAD INS
AKD FP7000
TAD IADDR
DCA NEWINS
TAD DF1
TAD CDFO
DCA DFSET1
TAD PPFST1
DCA GOADR
JME I PCNTS

/ *¥%% CONSTANTS

PNWINS,
PIF3ET,
PDFST1,
IADLCR,
PCNTS,
CDFG,
FMto,
FP177,

NEWINS
I¥SET
DFSET1
400 ADDR
CCNTS
CrLF

~-10

177

/SEE IF INS IS JNE CF JMS

JL=1 IF INS I35 JMS QF JKP

JNCT JMS OR JMP - GO ON

/INS OR JMF - AC=0 I¥ INS IS JMS
/NCT JMS - GO ON

/JMS - EMUIATE JNS

/SET RETURNRURN ADDRESS
/PCINT ADDR AT SUBROGUTINE BODY
/GET JUMP DESTINATION

/AND SET IT

/START RAM PROG EXECUTION
/FROM IESET

/GO TO EXECUTE RAM EROG

ISZ INSTRUCTIONS

/GET INS
/1SOLATE OQOECODE

/SET NEWINS OPCODE I ADDR

/SET DFSET1 CDF CF1
/SET RAM PRCG EXECUTION
/ TO BEGIN FROM DFSET1
/G0 TO EXECUTE BAM FPBROG

€1-1

237,

8139,
8ud.
841,
qu2,
343,
Bu L,
845,
gu e,

724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
763
T b
745
Tu6
47
748
749
759
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
775
730
781
782
783
T34

FALY)
7145
7146
7147
7150
7151
7152

7200
7201
7202
7203
7204
7205
7206
7207
7210
7211
7212
7212
7214

7215
7216
1217
7220
7221
7222
7223
7224
7225
7226
7227
7230
7231
7232
7233
7234
7235

7236
7237
7240
7241
7242
7243
T24L
7245
72u6
7247
7250
7251

0200
0400
2000
4000
7000
7600
7770

7200

1031
3030
4056
6400
7040
3044
1024
3025
1030
3036
1365
3043
5767

1031
3030
4056
6400
4056
6423
5231
1024
3033
1030
3034
53770
1371
3033
1000
3034
5770

3047
7004
3050
7701
3051
6214
3052
6201
1034
3036
1033
3035

FP200,
FP40O0,

200
4co

FP2000200C, 2000

FP4O0O0,
FP7000,
FP7600,
FP7770,
PAUSE

/ODT-F

) FEEEX
J EEEXX

4000
7000
7600
7770

VERSION S TAPE 7

BFREAKPOINT/CONTINUE ROUTINES - CONTINUED **%**
SIXTH ROM PAGE

*START+12C0
/ G HANDLER

/GO TO A

GDO,

SPECIFIED LOCATION
TAD OCADF

CCA CADF
CALL
CRLF
CHA /SET CONTINUE COUNT TC ZERO
DCA NCONT
TAD WORD /SET ADDR 10 CONTINUE EROGRAM
DCA JADRI / EXECUTION FROM
TAD CADF /SET PIELD TO CONTINUE FBOGRAM
DCA IFSAVE / EXECUTION FROM
TAD PIFSTA /SET BAM PBOGRAM EXECUTION TO
DCA GOADR / EEGIN AT HFSET
JBE I PCONTS /GO TO EXECUTE RAM EBOGEAM

/ B HANDLER
/SET BEEAKPOINT AT A SPECIF¥IED LOCATION

BDO,

BDO1,

TAD OCADF

DCA CADF

CALL JTYPE CR,LEF

CELF

CALL /SEE IF VALUE SPECIFIED
NTY FED

JMP BDO1 /VALTE SPECIFIED - GO CN
TAD WORD /SET BREAKFOINT ADDRESS
CCA TRAD

TAD CADF /AND FIELD

LCA TRADF

CME I PREAD JCET NEXT COMMAND

TAD ODTLOC /NC VALUE SPECIFIED ~
DCA TRAD / CLEAR BREAKPOINT BY SEITING
TAD F13A / 1T WITHIN ODT-F

DCA TRADF

JMP I PREAD /GET NEW COMMAND

/BREAKEOINT RETURN
JENTRY TO ODT UPON ENCOUNTERING BREAKPOINT
/SAVE STUFF THEN GO TO COMMAND SCANNER

BKPT,

DCA ACSAVE /5AVE AC

FAL ZSAVE LINK

DCA LSAVE

ACL JSAVE MQ

CCA MQSAVE

RDF /SAVE PROGBAM DATA RIELD
CCA DPSAVE

CDF F1A /SET ODT-F F-F DATA FIELD
TAD TRADF /SAVE PROGRAM INSTRUCIXGN FIELD
DCA IFSAVE

TAD TRAD /AND BREAKPOINT LOCATICYHN

DCA CONT JFOR CONTINUE

v1-1

847,
848,
849.
850,
851.
8c2.
8¢3.
8c%4.,
855.
856,
857.
gee,
869,
B€D.
861.
862.
863,
e6u,
865.

785
786
787
788
789
790
791
792
793
794
795
796
797
798
739
800
801
802
803
804
805
806
807
808
809
310
811
212
313
814
815

7252
7253
7254
7255
7256
7257
71260
7261
7262
7263
7264
7265
7266
7267
727¢C
7271
7272
7273
7274
7275
7276
7277
7300
7301
7302

7303
7304
7305
7306
7307
7310
7311
7312
7313
7314
7315
7316
7317
7320
7321
7322
7323
7324
7325
7326
7327
7330
7331
7332
7333
7324
7335
7336
7337
7360
7341
7342

1033
3027
1034
3030
1045
4056
6uu2
1030
3031
2044
5766
4056
7347
1033
4056
6107
1361
4056
6102
1047
4056
6107
4056
6400
5770

1031
3030
4056
6400
1024
0053
3024
1054
3027
4056
6431
0053
70419
1024
7640
5337
1027
4056
6107
1363
4056
6102
u0s5¢
6431
4056
6107
u4cse
6400
1027
2027
70090
7041

TAD TRAD

DCA CAD

TAD TRADF
DCA CADF

TAD KEEP

CALL

SETCAD

TAD CADF

DCA OCADF

ISZ NCONT

JMP I PCONTO

CALL

FFIELD

TAD TRAD

CALL

ENUM

TAD AP250

CALL

TYPE

TAD ACSAVE

CALL

PNDM

CALL

CELF

JMP I PREAD

¢/RESTOBE BREAKPOINT LOCATION
/ CONTENTS

7INITIALIZE OCADF
/CONTINUE COUNT OVER?
/NC - CONTINUE

JTYPE OUT BKPT FIELD

/AND LOCATION

/TYPE W (v

JTYPE OUT AC

/TYPE CR, 1F

/GET NEXT COMMAND

/ *%x%x% NCRD SEARCH ROUTINE ENE *%«*x

/ W HANDLER

J/SEARCH BETWEEN LIMLO ANL LIMHI FOR WORDS THAT
/MATCH SPECIFIED NUMBER IN MASKED PITS

wDO, TAD OCADF
DCA CADF
CALL
CPLP
TAD WORD
AND HMASK
DCA VWORD
TAD LIMLO
DCA CAD

wDO1, CALL
GETCAD
AND MASK
CIA
TAD WORD
SZA CLA
J¥P WDO2
TAD CAT
CALL
ENUY
TAD AP257
CALL
TYPE
CALL
GETCAD
CALL
PNUY
CALL
CRLF

¥po2, TAD CAD
ISZ CAD
NCP
CIa

JTYPE CR,LF

/MASK SPECIFLIED NUMBER
/INITIALIZE CAD AS MEMORY
/ POINTER FCE SERRCH

/GET MEMORY WORD

/HASK IT
JCCHPARE TC WOBD

/ECUAL?

/NC ONO - GET NEXT
s/YES - PRINT LOC

/PRINT »/n

/PRINT CONTENTS

JTYPE CR, IF

/CET LOC

/PCINT AT NEXT LOC

/IN CASE ISZ SKIPS
/CCHMPARF LOC WITH LIMHI

G1-1

908,
309,
310.
911,
912.
913,
aty.
915,
91¢.
917,
918,
919,
92¢.
921.
322.
923,
924,
925,
926.
927.
928,
929,
930.
931.
932,
923,
913y,
915,
936.
937.
538,
919,
940,
qyu1.
942,
9u3,
9y 4,
ays
Su€,
947,
9us.
949,
9:c.
951.
552,
953,
954,
955,
356,
957,
358,
959,
3€0.
9f 1.
362.
9613,
sen,
965,
966,
967.
GER,

8u6
847
8u8
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
A6 4
865
866
267
868
869
870
871
872
873
aTy
875
876
877
378
879
280
881
382
8383
8Ru
785
386
887
888
889
890
891
892
33
g2ou
895
836
497
898
899
ano
901
902
303
904
305
a0e

7343
7344
7345
7346

7347
7350
1351
7352
7353
7354
7355
7356
7357
73560

7361
7362
7363
7364
7365
7366
7367
7370
7371

7400
7401
74902
7403
740U
7405
74C6
7407
7410
7411
7412
7413
744
7415
7416
7417
7420
7421
Tu22
T423
7424
7425
7426
7427
7430
7431

1055
7640
5314
5770

1030
7110
7012
1364
4056
6102
1362
4056
6102
5461

0250
0256
0257
0260
0072
7007
7400
6200
0G 20

7400

7200
1033
3027
1030
3030
4056
64631
3045
1247
4056
6UL2
1250
3027
1243
4056
6442
2027
1244
4056
6442
1036
1245
3072
1052
1246
3073

TAD LIMHI

SZA CLA sLIMHI REACHED?

JME WDO1 s/NO - REPEAT LOOF

JMP I PREAD /YES - GET NEXT COMMAND

/ %®x*x DRINT FIELD SUBROUTINE **%*x
/SUEROUTINE TO PRINT FIELL
/PRINT FIELD SPECIFIEL BY CADF FOLELCWED BY "."

PFIELD, TAL CADF /GET FIELD
CLL RAR /PUT IT IN BITS 9-11
RTR
TAD AP260 JAID IN ASCII FCOR NUMBER
CALL /TYPE IT OUT
TYPE
TAD AP256 J/TYBE ™.
CALL
TYPE
RETURN /RETURN

/ *** CONSTANTS
AP2%0, 2°%0
AP256, 256
AP257, 257
AP260, 260
PIFSTA, IFSET
PCONTO, CONTO
PCONT5, CCNTS
PREAD, READ
opT1iCcC, 20 /ANY UNEXECUTED LOC IN ODT-F
PAUSE
/ODT-F VERSIOE 5 TAPE 8
/ *%*%%x SEVENTH ROM PAGE
*START+1400
/ %%%x% BREAKPOTHT/CONTINUS ROUTINES - CONTINUED *=*#%x
/RESTORE CONDITIONS OF PROGRAM TO BE DEBUGGED AND
JEXECUTE RAH PROGRAN
JRAM PROGRAM RETURNS TO PROGRAM BEING DEBUGGED.
CONTS, CLA
TAD TFRAD /SET CADF.CAD TRADF.EIRAD
DCE CAD
TAD TRADF
DCA CADF
CALL /GFT BREAKEOINT CONTENTS
GETCAD
DCA KEEP JAND SAVE THEM IN KEEF
TAD TRAP /PUT TRAP INSTRUCTIOR
CALL
SETCAD /INTO BREAKPOINT LGCATION
TAD PZPAT /POINT CAD AT BKPT LINKAGEEGE
DCA CAD / LCCATIONS
TAD TRAP1 /SET BREAKEQINT LINKAGE LOCATICNS
CBLL
SETCAD
ISZ CAD
TAD TRAP2
CALL
SETCAD
TAD IFSAVE /SET IFSET CIF IFSAVE
TAD PBCIF
DCA IFSET
TAD DFSAVE JSET DFSET CDF DFSAVE
TAD PBCDF
DCA DFSET

91-1

969,
970.
971.
972,
973.
974,
975.
976,
977,
78,
979.
980,
981,
982,
983,
9eun,
985.
986.
987,
9ge,
989.
990.
991,
9%2.
993,
354,
995.
996,
997,
998,
999,

100¢.

1001,

1002,

1003.

1004,

1005,

1006,

1007,

1908,

1008,

1010,

1011,

1012,

1013,

1014,

1015.

101€,

1017,

1018,

1019,

1920,

1021,

1022,

1923,

1024,

1025,

1026.

1027,

1028,

1029,

997
208
909
910
911
912
913
914
915
3916
917
918
919
920
921
922
923
924
925
326
927
928
929
93¢
931
932
933
934
235
936
3317
938
EER)
340
341
942
243
944
aus
946
qu?
948
au9
959
951
952
953
354
355
356
a5 7
958
956
960
261
962
363
S64
355
966
367

7432
7433
7434
7435
7436
7437
440
7661
Tu42

Tuu3
Tuuy
7445
T4u6
7447
7450

Tu51
7452
7453

Ju5y
7455
7456
7457
7460
7461
Tus2
7463

7464
7465
7466
7457
7670
7471
7472
7473
7474
7475
7476
7877
7500
7501

7502
7503
7504
7505
7506
7507
7510
7511
7512
7513

1025
3042
1051
7421
1050
7010
7200
1047
5443

6202
5064
6202
6201
5005
0005

1024
3027
5760

1031
3030
1602
1030
1357
4056
6102
5760

7602
1046
7100
4056
7526
1353
3020
1356
4056
6102
2020
5273
3046
5760

1031
3030
7602
1027
712C
4056
7526
4056
6431
7100

TAD JADR?

DCA JADR

TAD MQSAVE /RESTORE MC

MCL

TAD LSAVE /RLCSTORE LINK

RAR

CLA /RESTORE AC

TAD ACSAVE

JMP I GOALR /GC TO EXECUTE RAM PROGEBAN

/ ¥¥* CONSTANTS

TRAP1, CIF F1A

TRAEF2, JMP ZPATI1

PBCIF, CIF

FBCDF, CDF

TRAP, JMP ZPAT

PZPAT, ZEAT

/ **%xx% DONCH ROUTINES *s#¢sex

/ + HANDLER

/SET LOWER LIMIT OF PUNCH COMMAND

SEMIDG, TAD WORD
DCA CAD /SAVE LOWER LIMIT IN CAD
JME I PEREAD /GET NEXT CCMMAND

/ Q HANDNANDLER

/PUNCH FIELD

QDo, TAL OCADF
DCA CADF
CLA HLT /WAIT FOR USER TO TURN ON PUNCH
TAD CADF /CET FHELD
TAD BP30C /FLAG AS FIELD SPEC
CALL JPUNCH 1T
TYPE
JME I PBREAD /CET NEXT COMMAND

/ E, T HANDLERS
/PUNCH CHECKSUM AND TRAILEFR

EDO, CLA HLT /WAIT FOR USER TO TURN ON PUNCh
TAD CHKSUM JFET CHECKSUM
CLL
CALL /PUNCH 1IT
PUNCH
TDO, TAD BM100 JINIT COUNT
CCA TENP
TDO1, TAD BP200 JPUNCH A 1 IN CHANNEL &8
CALL
TYPE
ISZ TEMP /CCUNT OVER
JMP TDO? /NG - REDPEAT
DCA CHKSUM /JYES - REINITIALIZE CHECKSUM

JMF I PBREAD JGET NEXT COMMAND
/ P HANDLER
JPUNCH OUT MEMORY IN EIN FORMAT
JLOWER LIMIT IN CkD, UPPER LIMIT IN WORD

PDO, TAD CCADF
DCA CADF
CLA HLT /WAIT FOR USER TO TUSGN QN PUNCH
TAD CAT /GET STARTING ADDRESS
STL /PUNCH IT - FLAG AS ADDRESS
CALL
PUNCH
PDO1, CALL /GET CORTENTS OF LOC
GETCAD
CLL /PUONCH IT

L1-7

103¢. 968 7514 4056 CALL

1031. 959 7515 7526 PUNCH

1032, 370 7516 1027 TAL CAD /CCMPARE CURRENT LAC
1033, 971 7517 7041 CIA

1034, 972 7520 1024 TAD WORD /ANLC HIGH LINMIT

1015, 973 7521 7650 SNA CLA 7ECUAL?

103¢€, 974 7522 5760 JMY T PBREAD JYES ~ GET NEXT COMMAND
1037, 975 7523 2027 ISZ CAD /NC ~ POINT A T AT NEXT LOCATICN
1038, 976 7524 5311 JME PDOY JCONTINUE LCOP

1039, 977 7525 5303 JHMP PDO+? /GC AROUND TOP OF MEMOBY -
1040, 978 J PUNCH NEW NBOGIN

1041, 979 /SUBROUTINE TO PUNCH A NUMEER

1042, 980 /PUNCH NUMBER IN AC IN BIN FORMAT

1043, 981 /SET CHANNEL 7 (TO FLAG AN ADDRESS) IF LINK IS SET
1044, 982 7526 3020 PUNCH, DCA TEMP /SAVE NUMBER

1045, 983 7527 1020 TAD TEMP /GET HIGH EABF OF NUMBER
104E€E, 984 7530 7012 RTR

1047, 985 7531 7012 RIR

1048, 986 7532 7012 RTR

1049, 387 7533 0355 AND BP177 /TSOLATE NUMBER ANLC LINK
10£0. 388 7534 40586 CALL /0UTPUT IT

1021, 989 7535 7543 PUNCH1

10¢c2. 940 7536 1020 TAD TEMP ZGET LOW HALF OF NUMBEE
1053. 391 7537 0354 AND BP77

10%u. 992 7540 4056 CALL /OUTPUT IT

1055, 993 7541 7542 PUNCH1

10%6. 994 75642 5461 RETURN /RETURN

10¢7. 995 /SUBROUTINE TO PUNCH AC ANT ACCUMULATE CHECKSUHM
10¢ee, 996 7543 3021 PUNCH1, DCA TEMP2 75AVD NUMBER

1089, 997 7544 1046 TAD CHKSUM /ALD IT TO CHECKSUM
10€0. 998 7545 1021 TAL TEMP2

1061. 929 7546 3046 DCA CHKSUM

1062. 10090 7547 1021 TAD TEMP2 JTYPE IT OUT

10€ 3. 1001 7550 4056 CALL

1ccu, 10062 7551 6102 TYPE

10€5. 1003 7552 5461 RETURN /RETURN

1066. 1004 / ¥** CONSTANTS

1067. 1208 7553 7700 BM100, =100

106E. 1006 7554 0077 BP77, 77

10€9. 1007 7555 0177 BP177, 177

1070, 1008 7556 0200 BP200, 200

1071, 1009 7557 0300 BP300O, 300

1072. 1010 7560 6200 PBREAD, READ

1073, 1011 PAUSE

1074, 1012 0020 LAST=2¢C

1075. 1013 0066 LT=66

1076, 1014 0067 FIR5T=67

1077. 1015 0070 SEC=70

1078, 1016 0071 THIRD=71

1079, 1017 0072 DATA2=72

1080, 1nig 0073 pC2=73

1081, 1019 0053 HOLD=53

10€2. 1020 0054 SAVEC=54

1083. 1021

1neu, 1022 757t *START+1576

1085, 1623 7576 4056 CALL

108€. 1c24 7577 6400 CRLF / PUNCH OUT A CARBAGE RBRETURN
1087. 1025 / AND LINEFEED AT THE START
10€¢%. 1026 / OF BIN

1089, 1027

t0sc. 1028

81-1

1091, 1029 7600 *START+1600

1962, 1030

1093. 1031 7600 734¢C BIN, CLA CLL CHMa / SET LT EO 7777
1094, 1032 7601 3066 DCA LT
1095, 1033 7602 3046 DCA CEKSUM
1096. 1034 7603 3067 DCA FIRST
1097. 1035 7604 3070 DCA SEC
1098, 1036 7605 7340 CLA CLL CMA
1099. 1037 7606 3054 DCA SAVEC
1100, 1038 76C7 1354 TAD K200
1101. 1039 7610 3020 DCA LAST
t102. 1040 7611 1357 TAD K102
1103. 1041 7612 3067 DCA FIRST
110Q4, 1042

1105, 1043 7613 7340 BEGG, CLA CLL CHM2a
1106. 1040 7614 3072 DCA DATA2
1107, 1045

1108, 1046 7615 3073 BEG, DCA PC2
11089. 1047

1110. 1048 7616 4056 CALL

1111, 1049 7617 6463 LISN

1112, 1050 7620 3053 DCA HOLL
1113, 1051

1114, 1052 7621 1053 TAD HOLEL
1115, 1053 7622 1356 TAD KRUR
1116, 1054 7623 7700 SHA CLA
1117, 1055 7624 5257 JMP RUM
111E, 1056 7625 1053 TAD HOLT
1119, 1057 7626 1352 TAD KCHS8
1120, 1058 7627 7650 SNA CLA
1121, 1059 7630 5325 JEP LTC
1122, 1060

1123, 1061 7631 1053 TAD HOLD
1124, 1062 7632 3020 DCA LAST
1125, 1063

1126, 1064 7633 1066 TAD LT
1127, 1069 7634 7640 SZA CLA
T12¢. 1066 7635 5215 JMP BEG
112¢. 1067

1130. 1068 7636 1053 TAD HOLT
11319, 1069 7637 135S TAD XFD
1132, 107¢C 7640 7700 SMA CLA
1123, 07 7641 5215 JMP BEG
1134, 1072

1138, 1073 7642 1053 TAD HOLD
1136, 1074 7643 1046 TAD CHKSUM
1127, 1075 Teu4 3046 DCA CHKSUN
1128, 1076

1139, 1077 7645 1067 TAD FIRST
1140, 1078 7646 0353 AND KLONG
1141, 1079 7647 764G KLING, SZA CLA
1142, 1080 7650 5314 JMp PCL
1142, 1081

1144, 1082 7651 2073 ISZ PC2
1145, 1082 7652 5272 JMP MORE
11446, 1084

1147, 1085 7653 1054 PCL2, TAD SAVPC
1148, 1086 7654 1070 TAD SEC
1149, 1087 7655 3054 DCA SAVEC
1ec, 1088 7656 5306 JMP BACK

1181, 1089

61-1

t1€2,
1153,
1124,
1155,
1156,
1157,
11ce.
1129,
11€C.
1161,
1162,
1163.
11€4.
1165.
1166.
1167.
1168.
1169.
117¢,
1171,
1172,
1172,
1174,
1175,
1176,
1177,
ti7a,
1179,
1180,
1181,
11E2.
1183,
1184,
118¢,
1186,
1187,
1188,
1189,
11¢0.
1161,
1182,
1183,
1154,
1195,
1196,
1197.
11%8.
1199,
12C0.
12071,
1202.
12C2.
12Cu,
12085,
1206.
1207,
1202,
1209.
1210,
1211,
1212,

1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
107
1108
1109
1110
1111
1112
1113
11
1115
1116
1117
1718
119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
131
1132
1133
1134
1135
1136
1137
1138
139
1140
1141
1142
1143
LR
1145
11u%
11487
1148
1149
1150

7657
7660
7661
7662
7663
7664
7665
7666
7667
7670
7671

7672
7673

7674
7675
7676

7677
7700
7701
7702
7703
7704
7705

7706
7707
7710
7711
7712
7713

7714
7715
7716
7717
7720
7721
7722
7723
7724

7725
7726
7727
7730
7731
7732
7733
7734
7735
1736
7737
7740
7741
T742
T743
7744
7745

4056
6463
3053
1053
4056
6102
1053
1356
7700
5216
5257

2072
52177

1053
3071
5215

1067
7002
1070
3454
7000
2054
7300

7300
1071
3067
1053
3070
5213

1067
0351
7002
3054
3067
1053
3071
7040
5215

3066
1020
1352
7650
5213
1067
0351
7002
1070
7041
1046
7041
3046
1067
01351
1046
1070

RUM,

MORE,

BACK,

PCL,

17C,

CALL
LISN

DCA
TAD

CALL
TYPE

TAD
TAD
SMA
JMp
JMp

152
Jup

TAD
DCA
JMP

TAD
BSW
TAD
DCA
NOp
ISz
CLA

CLA
TAD
DCA
TAD
DCA
JMP

TAD
AND
BS®
DCa
DCA
TAD
DCA
CHA
JMKP

DCA
TAD
TAD
SNA
JHup
TAD
AND
BSW
TAD
CIA
TAD
Cia
DCA
TAD
AND
TAD
TAD

HOLL
HOLD

HOLL
KRUB
CLA
BEG+1
RUM

DATA2
DL2

HOLD
THIRD
BEG

PIRST

SEC
I SAavpC

SAvVPC
CLL

CLL
THIRL
FIRST
HOLL
SEC
BEGG

FIRST
PESK

SAVEC
FIRST
HOLD

THIRD

BEG

LT
LAST
KCHB8
CLA
BEGG
FIRST
PMSK

SEC

CHKSUM

CHKSUM
FIRST
PMSK
CHKSUM
SEC

0¢-1

1213,
1214,
1215,
1216.
1217,
1218.
1219.
1220.
1221,
1222,
1223,
1224,
1228,
1226.
1227.
12268,
1229.
1230.
1231,
1232,
1232,
1234,
1235,
1236.
1227,
1238,
1239.
124C.
1241,
1242,
1243,
1244,
1245,
1246,
1247,
1248,
1249.
ra6ce.
1257,
1252,
1253,
12¢u,
12¢8,
125¢€.
1257,
1258,
1259,
1260,
12€1.
12A2.
1261,
1264,
1265,
1266,
1267,
1269,
1269,
1270,
1271,
1272,
12713,
1274,
127¢.

1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1166
1170
1171
1172
1173
1174
1175
1176
1177
1178

END OF PASS 2

7746
7747
7750

7751
7752
7753
7754
7755
7756
7757

7772
7773

T774
7775
7776

7777

3047
5750
6727

0077
7600
0100
0200
7500
7401
0102

7772

7301
6400

6402
5776
6000

5372

0 ERRORS DETECTED

SYNECL

ACSAVE
AP256
BTG
BET7
CFLAG3
CONT2A
DFSAVE
FIRST
FPTAQ0
HOLD
JADR
XKRUS
LINHT
MDO
ODTLOC
ECONTS
PTIFSET
BSTCDY
°Do
RETRNI
SETCAD
3KPTRH
3p200
STACKT
TABLE?
TP212
TRADY
WDO1
ZPAT

TABLE

oou7
7362
7615
7554
6177
7114
0052
0067
7151
0053
0042
7756
0055
6730
7371
7367
7135
6462
Tus4
0061
a442
6163
6743
6050
€303
5456
6055
7314
0005

ACTENMP
AP257
BIN
CADF
CHKSUM
CONT3
DFSET1
F¥10
FP7770
IADDR
KCHS8
KTTY
LIMLO
MORE
PBCDF
PCREAD
PIFSTA
PUNCH1
RAMT
RETURN
SETCDY
SLDO1
SP215
STACK1
TDO1
TP215
TRAP
Wpo2

PNSK,
KCH8,
KLONG,
K200,
KFD,
KRUB,
K102,

*START+1772

6u02

JMP I .+#1

INIT

Jup .-5
0063 ADDR1 6737
7363 AE260 7364 BACK
7600 BKPT 7236
0030 CAD 0027
00u6 CLOSE 6411 comm
7076 CONT4 7121
0066 CFSET 0073 DEA1
7142 FP177 7143
7152 Fia 0000 F1
7137 IFSAVE 0036
7752 KCRA 6056 KCPB
6060 k0377 6338 K1C
0054 LISN 6463
7672 MQOSAVE 0051 my
7446 PBCIF 7445
600U EC2 0073
7365 PMSK 7751
7543 EONCH 7526
6051 RAM2 6052 RaM3
5461 BUART 6160 RUM
6451 SFLAG1 6166
6610 5LDO 6601
674U SP257 6745
C07u STACK 0062 STAR
7473 D0 7471 TEMP2
6u57 TP6201 6UED
T447 TTYHY 6477 TYFE
7337 WDO 7303 WORD

DCA ACSAVE
JMP I .41
ADO

0077
7600
0100
0200
7500
7401
0102

CLA CLL IAC
6400

NN N NN

674 ¢
770¢
€256
005¢
€60C
qu0C
0041
YA
gooc
0072
6057
7757
60s¢C
6134
756 ¢
7136
6114
6061
€053
7657
617¢€
6332
6746
6000
0021
0034
6102
0021u

SET THE AC TO 0001

CLEAR THE INTBERCEPT JR.

DISPLAY

TURN OF THE CP TINMER
STABT OF THE

GO TO THE

PROGRA N

ENTRY FOINT FOB CP REQUEST

ADDRY
BADQ
BM100
CALL
CONTO
CONT
DL2
FP2CO
GDO
INIT1
KEEP
K20C
LTABL
NCONT
PCLZ
PDO1
PNUM
PZDAT
READ1
SAVEC
SHUT
SH5S
5p277
SUB1
TEME
TRAD
UADG1
WTTY

6741
6715
1553
4Cs56
70407
€035
7677
7144
7200
6040
Q0 us
7754
6257
004
7653
7511
4107
7450
6204
€054
0032
6333
6335
€045

0020

0033
6712
6171

ADDR
BDO1
BP177
CDFO
CONT1
CRDO
DOTDO
FP4000
GETCAE
INIT
KFD
LAST
LTC
NEWINS
PCL
PDQ
ENWINS
P240
READ2
SCHAR
SKIP3
SPNTER
SP400
SUB2
THIRD
TRAP1
Uapo
WUART

0Quo
7231
7555
7141
7033
6616
6654
7147
6431
6000
71755
0020
7725
0067
7714
7502
7134
6137
6235
0025
6172
0026
6747
6046
0071
7443
6670
6161

ADO
BDO
EP200
[o3110]
CONT2A
CRLF
EDO
FP400
GETCD1
INS
KLING
LFDQO1
LT
NTYPED
BC¥TS
FFIELD
BOPJ
E260
FEAD3
SEC
SKIF4
SP10
5P6201
SUB3
n5
TRAP2
WCRA
WVR

6727
7215
7556
7000
7073
6400
7464
7145
6437
0037
7647
66uU5
0066
6423
7140
7347
6072
6140
6240
0070
6173
6334
6750
6047
6455
Tu4y
6165
6174

AP250
BEGC
BP 300
CFLAG1
CONTZ
DATAZ2
ERBOR
FP7000
GOADR
JALDR1
KLONG"
LFLO
MA 5K
OCATF
FCONTO
2GTCD1
FREAD
p7
READ
SEMILO
SKBDR
SP177
SP7600
TAELE?
TORE
TRAP3
WCRB
ZPAT?

7361
7613
7557
6167
A
0072
6337
715¢C
CCu3
0025
7753
6625
0053
0031
136¢€
6461
737¢C
6135
62GC
7451
6162
6742
6751
6260
0C23
6054
6175
0064

	Table Of Contents
	Chapter 1 Introduction
	Chapter 2 Working With the Intercept Jr. Module
	Chapter 3 Intercept Jr. Programming Examples
	Chapter 4 Intercept Jr. Module
	Chapter 5 Jr. RAM Module
	Chapter 6 Jr. P/ROM Module
	Chapter 7 Jr. Serial I/O Module
	Chapter 8 Intercept Jr. Tutorial System Monitor Program
	Chapter 9 Intercept Jr. Audio Card
	Chapter 10 Intercept Jr. Cassette Interface Card
	Appendix A Intercept Jr. Programming Fundamentals
	Appendix B Introduction To Logic
	Appendix C Octal-Decimal Integer Conversion Table
	Appendix D Instruction Summary and Bit Assignments
	Appendix E Glossary
	Appendix F ASCII Character Codes
	Appendix G Loading Constants Into The Accumulator
	Appendix H Operation of the Phaselock Loop
	Appendix I Remote Data Station
	Appendix J Key Board Tennis Program
	Appendix K Octal Debugging Technique ROM
	Appendix L ODT Listing

