INTERCEPT® JR. MICROCOMPUTER TUTORIAL SYSTEM USER'S MANUAL

TABLE OF CONTENTS

CHAPTER		PAGE
1	INTRODUCTION	1-1
2	WORKING WITH THE INTERCEPT JR. MODULE INTERCEPT JR. START-UP RESET SWITCH ENTERING THE CONTROL MODE SELECTING A FUNCTION INSPECT ACCUMULATOR SETPC DECREMENT PC, DECPC DEPOSIT DATA INTO MEMORY, MEM RUN HALT RESET SIN DIS BIN LOADER MICRO MICRO MICROINTERPRETER FUNCTIONS MEMORY REFERENCE INSTRUCTIONS INPUT/OUTPUT TRANSFER (IOT) INSTRUCTIONS OPERATE INSTRUCTIONS LEAVING MICRO MODE PROGRAM EDITING AND CORRECTION KEYPAD OPERATION TABLE OF INSTRUCTION CODES	2-1 2-1 2-2 2-2 2-3 2-3 2-3 2-4 2-4 2-5 2-5 2-5 2-6 2-6 2-7 2-7 2-8 2-10
3	INTERCEPT JR. PROGRAMMING EXAMPLES EXAMPLE 1 - INCREMENTING MEMORY DATA EXAMPLE 2 - DECREMENTING MEMORY DATA EXAMPLE 3 - PROGRAMMING TIME DELAYS EXAMPLE 4 - ADDRESSING MODES EXAMPLE 5 - INDIRECT ADDRESSING USED IN TABLE MANIPULATION EXAMPLE 6 - THE JMS INSTRUCTION AND INDIRECT ADDRESSING EXAMPLE 7 - AUTOINDEXING EXAMPLE 8 - ADDRESS FIELD MODIFICATION EXAMPLE 9 - USING CONDITIONAL SKIPS EXAMPLE 10 - FLOWCHARTING A PROGRAM EXAMPLE 11 - BIT MANIPULATION EXAMPLE 12 - LOGICAL OPERATIONS EXAMPLE 13 - I/O PROGRAMMING EXAMPLE 14 - TELETYPE I/O USING MONITOR CALLS EXAMPLE 15 - PRINTING UNDER KEYPAD CONTROL EXAMPLE 16 - PROGRAM TO DEMONSTRATE I/O TO THE 6957 AUDVIS MODULE EXAMPLE 17 - REAL-TIME PROGRAMMING	3-1 3-1 3-2 3-2 3-2 3-3 3-5 3-6 3-7 3-8 3-10 3-14 3-15 3-15 3-15 3-17 3-18

CHAPTER		PAGE
4	INTERCEPT JR. MODULE INTRODUCTION TYING ON TO THE DX BUS ADDRESS DEMULTIPLEXING DATA DEMULTIPLEXING KEYBOARD INPUT DIGITAL DISPLAY OUT IOT PROCESSING OPTIONS SCHEMATIC	4-1 4-1 4-1 4-2 4-2 4-3 4-3 4-4 4-7 4-8
5	JR. RAM MODULE INTRODUCTION DISCUSSION SCHEMATIC	5-1 5-1 5-1 5-4
6	JR. P/ROM MODULE INTRODUCTION DISCUSSION SCHEMATIC	6-1 6-1 6-2 6-4
7	JR. PIEART SERIAL I/O MODULE INTRODUCTION DISCUSSION SCHEMATIC	7-1 7-1 7-1 7-9
8	INTERCEPT JR. TUTORIAL SYSTEM MONITOR PROGRAM INTERCEPT JR. MAIN FLOWCHART MONITOR STACK REFSH - DISPLAY REFRESH SEDB - SWITCH DEBOUNCE CLKPD - CLEAR KEYPAD HEX EXIT CONTROL STATE SERVICE ROUTINES INCAC - INCREMENT ACCUMULATOR DECPC - DECREMENT PROGRAM COUNTER HALT RUN RESET DEPOSIT INTO MEMORY BLANK FLAG TOGGLE SETPC - SET PROGRAM COUNTER MICRO - MICROINTERPRETER SIN - SINGLE INSTRUCTION EXECUTE INPIE - INITIALIZE PIE BIN - BINARY LOADER DUMP - MEMORY DUMP MONITOR PROGRAM LISTING	8-1 8-2 8-15 8-18 8-20 8-21 8-21 8-21 8-21 8-21 8-21 8-22 8-23 8-23 8-23 8-23 8-24 8-27 8-29 8-29 8-29
9	INTERCEPT JR. AUDIO CARD INTRODUCTION DISCUSSION SCHEMATIC	9-1 9-1 9-2 9-3

CHAPTER		PAGE
10	INTERCEPT JR. CASSETTE INTERFACE CARD INTRODUCTION THE RECORDER SOURCES OF NOISE INTERFERENCE 6954 ACI BOARD WRITING PROGRAMS FOR DATA TRANSFERS - USING TTY ADDRESSES USER ASSIGNED ADDRESS WRITING A MEMORY WORD TO THE CASSETTE READING A MEMORY WORD FROM THE CASSETTE INITIALIZING THE PIE THEORY OF RECEIVER SECTION OPERATION THEORY OF TRANSMITTER SECTION OPERATION D.CD.C. CONVERTER CIRCUIT OPTIONS SCHEMATIC	10-1 10-4 10-5 10-6 10-7 10-8 10-9 10-9 10-10 10-11 10-12 10-13
	APPENDICES	
APPENDIX A	INTERCEPT JR. PROGRAMMING FUNDAMENTALS NUMBERING SYSTEMS ARITHMETIC PROGRAMMING EXAMPLE #1 ARITHMETIC PROGRAMMING EXAMPLE #2 ARITHMETIC PROGRAMMING EXAMPLE #3 BINARY & OCTAL ADDITION & MULTIPLICATION TABLES	A-1 A-1 A-6 A-9 A-10 A-12
APPENDIX B	INTRODUCTION TO LOGIC	B-1
APPENDIX C	OCTAL-DECIMAL INTEGER CONVERSION TABLE	C-1
APPENDIX D	INSTRUCTION SUMMARY AND BIT ASSIGNMENTS	D-1
APPENDIX E	GLOSSARY	E-1
APPENDIX F	ASCII CHARACTER CODES	F-1
APPENDIX G	LOADING CONSTANTS INTO THE ACCUMULATOR	G-1
APPENDIX H	OPERATION OF THE PHASELOCK LOOP	H-1
APPENDIX I	IM6100 CMOS MICROPROCESSOR REMOTE DATA STATION	I-1
APPENDIX J	KEYBOARD TENNIS PROGRAM WITH INTERCEPT JR.	J-1
APPENDIX K	OCTAL DEBUGGING TECHNIQUE ROM	K-1
APPENDIX L	INTERSIL ODT LISTING	L-1

FIGURES

FIGURE		PAGE
1-1	INTERCEPT JR. TUTORIAL SYSTEM	1-2
1-2	INTERCEPT JR. SYSTEM BLOCK DIAGRAM	1-4
2-1	INTERCEPT JR. MODULE	2-1
2-2	MEMORY REFERENCE INSTRUCTION FORMAT	2-11
2-3	IOT INSTRUCTION FORMAT	2-12
2-4	GROUP 1 MICROINSTRUCTION FORMAT	2-15
2-5	GROUP 2 MICROINSTRUCTION FORMAT	2-17
2-6	GROUP 3 MICROINSTRUCTION FORMAT	2-18
3-1	PROGRAM FLOWCHART	3-11
5-1	JR. RAM MODULE	5-1
6-1	JR. P/ROM MODULE	6-1
7-1	JR. SERIAL I/O MODULE	7-1
8-1	MEMORY ALLOCATION MAP	8-1
8-2	INTERCEPT JR. MAIN FLOWCHART	8-2
8-3A	STATUS WORD LOCATION 0143	8-18
8-3B	SWITCH WORD LOCATION 0133	8-19
8 - 3C	ACTIVE DISPLAY OPTIONS	8-19
8-3D	DISPLAY FORMATTING	8-20
8-4	CONTROL STATE KEY SELECTION/CONNECTIONS KEY - DX BUS	8-17
8-5	MONITOR PROGRAM LISTING	8-31
9-1	INTERCEPT JR. AUDIO CARD	9-1
10-1	INTERCEPT JR. CASSETTE INTERFACE CARD	10-1
	TABLES	
2-1	TABLE OF INSTRUCTION CODES	2-10
3-1	PAGE VS. MEMORY LOCATIONS	3-5
5-1	JUMPER CONNECTIONS FOR MAPPING	5-2
6-1	ADDRESS RANGE IN OCTAL IM5623/IM5624	6-2
7-1	CONTROL REGISTER A CONSTANTS	7-2
7-2	CONTROL REGISTER B CONSTANTS	7-3
7-3	VECTOR REGISTER	7-3
7-4	UART CONTROL REGISTER BIT	7-4
7-5	20 mA LOOP/EIA RS232-C CONNECTOR PINOUTS	7-6
7-6	PIF-HART INSTRUCTIONS	7-7

CHAPTER 1 INTRODUCTION

The theoretical principles underlying digital computers were first enunciated by Charles Babbage in 1833, but the technology available at the time was not equal to the task of actually building a working machine. John Von Neumann developed the stored program concept at the Institute for Advanced Studies at Princeton University and, since then, electronic computers have undergone several iterations from the early vaccum tube machines to transistorization to integrated circuit systems, and now the age of LSI is evident. Architectural advances from the first use of hardware index registers, microprogrammed control, interrupt processing, direct memory access channels, and distributed processing have been numerous, but the history of digital computers has yet to be fully written.

In the last 1930's and early 1940's, wartime requirements and the development of vacuum tubes led to the construction of extremely expensive and complex digital computers used mainly to speed up numerical calculations. As the technology progressed, computers became faster, smaller and less expensive. Advances in hardware architecture and programming languages evolved rapidly. As a result, the 1960's saw significant increases in the application of business and data processing computers.

The first minicomputer, the PDP-8*, was introduced by Digital Equipment Corporation in 1965 and made dedicated applications for digital computers possible. This first minicomputer, costing approximately \$50,000, was considered so inexpensive that it found itself being used in universities, laboratories, and in numerous process control applications. Many versions of this machine were brought out in succeeding years.

Computers, big and small, must all have a processor, main memory and input/output. Decreasing hardware costs and increasing sophistication of processing technology led to multiplicity of computer architecture. The early 1970's saw the microprocessor, the heart of a computer, enter the scene. Its function is to accept data from the user, process it according to instructions provided by the user, and stored in memory, and return usable results to the user in some convenient fashion.

LSI techniques, with their high density capability, have enabled semiconductor manufacturers to produce processing units and memory devices on single monolithic silicon chips. Input and output devices which constitute the man/machine interface, have remained relatively bulky.

* Trademark of Digital Equipment Corporation, Maynard, Mass.

FIGURE 1-1

The INTERCEPT JR. TUTORIAL SYSTEM, pictured in Figure 1-1, recognizes the instruction set of Digital Equipment Corporation's PDP-8/E and is designed with a modular concept to enable the user to purchase only those modules which meet his requirements. The design permits the user to participate in the future of digital computers by yielding an understanding of the microprocessor and related component functions as well as programming fundamentals.

Large Scale Integration (LSI) of Intersil's digital CMOS components results in the system being battery operable and, thereby, yields the flexibility of a portable system. Experience can be gained with the components required for a classical computer architecture—a processor, or central processing unit (CPU), memory and input/output. The IM6100 microprocessor serves as the CPU and memory is available in the form of CMOS RAM, ROM and bipolar P/ROM. Input/output can be experienced in its simplest form via the keyboard and LED displays or can be studied in greater detail by utilizing the JR. SERIAL I/O MODULE.

This Owner's Handbook presents a step-by-step learning experience for the INTERCEPT JR. TUTORIAL SYSTEM. Chapter 2 entitled "Working With the Intercept Jr. Module" instructs the user in the fundamentals of the basic module--the start-up and the selection of a function. The console control, or keyboard, is discussed in detail. Chapter 3, "Programming Fundamentals", presents the user with simple programming examples and the ability to progress to more complex problems. Chapter 4, 5, 6, 7, 9 and 10 explain the hardware aspects of the six modules via pictorial representation, text and the corresponding schematics. Chapter 8 discusses the monitor ROM program, presents the flow chart and listing, and, thereby, gives the user a greater degree of programming insight. The Appendices contain fundamental information on number systems, two's complement arithmetic, an introduction to logic, and other miscellaneous information that will be of interest to the user. Figure 1-2 presents a block diagram of the total system configuration.

It is Intersil Incorporated's opinion that the INTERCEPT JR. TUTORIAL SYSTEM will enable you to embark upon a truly rewarding educational experience. The microprocessor has resulted in a natural evolutionary step in electronic circuitry design. This is only the beginning. We sincerely wish that your participation in this evolution will be rewarding to you.

6950

INTERSIL

SYSTEM BLOCK DIAGRAM

Figure 1-2

CHAPTER 2 WORKING WITH THE INTERCEPT JR. MODULE

Figure 2-1 provides a pictorial representation of the INTERCEPT JR. MODULE with the pertinent components discussed in this chapter highlighted.

INTERCEPT JR. START-UP

Turn the module "ON" with the "ON-OFF" power switch. Power is provided by the four (4) D-Cell batteries which must be inserted, with the sleeve, in the module. When facing the module, with the keyboard in front and connectors on the left side, the left hand

battery clip is negative and the right hand battery clip is positive. BATTERY REVERSAL WILL DAMAGE THE SYSTEM. The module does a power-up RESET so that it will always come up halted with the Program Counter, PC (ADDRESS) equal to 7777. the CONSOLE CONTROL timer will be active so that the ADDRESS and MEMORY displays will be valid provided a "BLANK DISPLAY" is not in effect. The information displayed will be PC = 7777 in the ADDRESS and the MEMORY data in that location will be 5776. This instruction branches the microprocessor to routines which save registers, initialize the RAM stack and search for keyboard depressions. If the display does not illuminate, press

to turn it on. The 256 words of RAM are always provided power, as long as the batteries are installed, regardless of the position of the "ON-OFF" power switch.

RESET SWITCH

The RESET SWITCH does a complete hardware reset of the microprocessor and can be used at any time for this purpose. Therefore, it is not necessary to turn power off to reset the microprocessor. When switching the module OFF it is recommended that the RESET SWITCH be slid down while the power is turned off. This keeps the microprocessor from running during the power down process thereby eliminating the possibility of writing bad data into the RAM as the voltage level goes lower than the minimum specified. If the RAM data is not required to be preserved, use of the RESET SWITCH is not required during power-off.

ENTERING THE CONTROL MODE

The operator will now enter the control mode by pressing the red control key, CNTRL, on the KEYBOARD. This key will cause the module to enter what is referred to as an undefined control mode or SHELL mode when the CONSOLE CONTROL timer is enabled, or at any point during the execution of a control function. This state is referred to as undefined as we have not yet chosen a CONSOLE CONTROL function to be performed. The other mode is the user mode in which the module is either waiting for or executing user programs.

SELECTING A FUNCTION

After pressing the CNTRL key, we are now ready to choose a function to be performed. This is accomplished by pressing any of the function keys which are described next.

INSPECT ACCUMULATOR

Pressing CNTRL IAC will change the mode of the right hand display from memory data to accumulator contents or vice versa. If bit 7 of the SWITCH word has been zeroed (see chapter 8), instead of the AC, the contents of any location may be continuously displayed during program execution. This key also has special meaning for certain functions and its use is described with each of those functions. This key is color-coded yellow.

SETPC

This function allows the user to control the Program Counter, PC, in the module for purposes of depositing words, or examining words or conditions. Following the activation of this key, the user will load an octal number into the PC by entering the digits on keys 0-7. The digits will be displayed in ADDRESS and will be entered from the right, shifting the previously entered digits to the left. Any number of digits may be entered until the display contains the value desired. A CNTRL key depression will enter the value displayed into the PC and will return the state to SHELL mode. Note that leading zeros may be needed to clear the display before entering the desired octal numbers.

DECREMENT PC, DECPC

This function will decrement the value of the PC by one and return the module to SHELL mode. This function is useful when examining sequences of memory locations.

DEPOSIT DATA INTO MEMORY, MEM

This function allows the user to enter instructions and data in the RAM (see Figure 8-1) as well as set the values of the internal registers of the module by depositing the data into memory locations used by the monitor program to save and update the data in these registers. After a closure of the MEM key, the user will proceed to enter digits into MEMORY with keys 0-7 as he did for SETPC. The new digits will be displayed on MEMORY, entering from the right and shifting to the left. When the MEMORY display contains the desired value, the user will deposit it in the RAM by pressing either DECPC, or MEM. If

DECPC is pressed, the MEMORY display will be deposited into RAM in the memory location addressed by the ADDRESS display. The ADDRESS display will be decremented and the RAM information in the decremented address will be displayed in MEMORY. If MEM is pressed, the value shown in the MEMORY display will be deposited into the RAM in the memory location addressed by the ADDRESS display, the ADDRESS display will be incremented and the next word in RAM will be displayed in MEMORY. Successive depressions of MEM will increment the memory ADDRESS. Digits can now be entered from the right, as before. If the user wishes to skip a location, he presses MEM again. This will retain the value of that location in RAM and the ADDRESS will move to the next location. By pressing the yellow key, the user will deposit the value of MEMORY into the location specified by ADDRESS, the module will exit the control mode and enter the user mode. If the user presses CNTRL, the value shown in MEMORY will be deposited and the module will enter the SHELL mode. RAM locations 0000 and 0143-0177, reserved for the MONITOR cannot be modified. Locations 0140-0142, also used by the MONITOR, should not be modified ordinarily.

RUN

This function will set the microprocessor Run flip flop to RUN and will exit the control mode. The module will come out in the user mode at the PC point specified during control mode, running.

HALT

This function will clear the RUN flip flop in the microprocessor so that the module will come out of the control mode halted.

RESET

This function will be a complete software RESET of the module. All internal microprocessor flags are initialized, the accumulator and link are cleared, the PC is set to 0200 and its contents are displayed. It will also remove a BLANK DISPLAY status.

SIN

This function, referred to as Single Instruction, will cause the module to perform, in the user mode, a single instruction. Following this, the possible changes of state can be observed by inspecting the contents of the appropriate memory locations. Due to the MONITOR program structure, the user cannot single step through ROM-P/ROM locations. JMP*-1, JMS*-1 and JMS*-2 instructions can be single stepped properly; but TAD, ISZ and DCA instructions which refer to a *+1 or *+2 location cannot be single stepped properly (see Chapter 8). SIN may be successively depressed to single step through a program.

DIS

This function will BLANK and RESTORE the ADDRESS and MEMORY display thereby conserving power. The BLANK/RESTORE function is achieved by depressing CNTRL followed by DIS to BLANK the display and then CNTRL followed by DIS to RESTORE the display. A blanked display will carry over from a power-down but will be cleared by a software RESET (depression of CNTRL and RESET). The RESET switch does not affect display status.

BIN LOADER

This function will activate the firmware loader which will load BINary tapes using the 6953-PIEART, JR. SERIAL I/O MODULE. This loader will return to the halted user mode when data has finished loading. The BIN loader will ignore data for locations 0000g and 01438-0177g and will load all BIN formatted tapes generated by the MONITOR or by PDP-8/E or IM6100 assemblers. The loader will ignore all change field instructions on those tapes. It will also echo all characters enclosed by rubouts on those tapes.

MICRO

This function will place the CONSOLE CONTROL at the control of the MICROINTERPRETER in the MONITOR ROM. The MICROINTERPRETER functions are elaborated on in the next section.

MICROINTERPRETER FUNCTIONS

Pressing CNTRL followed by MICRO causes INTERCEPT JR. to execute the microinterpreter routines which are resident in the MONITOR

ROM. These routines will interpret key closures as opcode bits, relative address bits, page bits, address mode bits, and microinstruction bits according to the specific sequence in which the keys are depressed. This enables the user to rapidly enter programs via the keyboard without constantly referring to the instruction format listings. The user should be familiar with the use of the instructions in order to make the most efficient use of the microinterpreter.

MEMORY REFERENCE INSTRUCTIONS

In the MICRO mode, if any of the keys marked AND, TAD, ISZ, DCA, JMS, or JMP are pressed, the MEMORY display at the current memory ADDRESS will show 0000, 1000, 2000, 3000, 4000, or 5000, respectively.

All the following key closures are interpreted as address bits. The numerical keys may be depressed as many times as desired, entering octal address digits from right to left. While address digits are being entered, the opcode will be displayed on the left hand display.

At any time after the opcode is entered, depression of the yellow IAC key will set the indirect bit (note IND legend on this key) of the instruction (add 4 to the next-to-most significant octal digit). After entering the address, depressing CNTRL will display the ADDRESS counter and the fully assembled instruction. Releasing CNTRL will advance the ADDRESS counter. The yellow IAC key may be pressed repeatedly to advance the ADDRESS counter.

INPUT/OUTPUT TRANSFER (IOT) INSTRUCTIONS

In the MICRO mode, depression of the IOT key will cause 6000 to be entered into the currently addressed memory location. Subsequent numeric key depressions are performed to enter the required device address and control bits into the IOT instruction.

Depressing CNTRL will advance the ADDRESS counter to the next location. Depressing SHIFT will cause the ADDRESS counter to step.

OPERATE INSTRUCTIONS

Operator instructions are divided into three groups of operate microinstructions. Thus, in the MICRO mode, the desired microinstruction group is selected by depressing the keys marked OPR1, OPR2 or OPR3. This will enter 7000, 7400 or 7401, respectively, into the MEMORY display.

If no additional keys are depressed and the address counter is advanced, these instructions, which are all NO OPERATION, NOP, will be entered. Further key depressions will set various bits in the instruction enabling the user to select valid microinstruction combinations. The microinterpreter does not check for illegal microinstruction combinations so the user must be careful about the combinations being selected. Table 2-1 shows the more useful combinations. The user should become familiar with the rules of combinations and logical execution sequence in order to create microinstructions not shown in the tables.

On the CONSOLE CONTROL, in general, the designations in red are associated with OPRI microinstructions, and the designations in green, except for -QA and -QL, are associated with OPR2 microinstructions. The -QA and -QL designations stand for MQA and MQL which are OPR3 microinstructions.

Conditional skip microinstructions in the OPR2 group may have their skip condition inverted by pressing the REV key while setting the microinstruction bits.

Rotate instructions in the OPR1 group may be changed from a single bit rotate to a two bit rotate by pressing the key with T/BSW designation on it. (This key is used for both two bit rotates as well as Byte SWap.)

LEAVING MICRO MODE

Depressing the CNTRL key twice puts the user back into SHELL, the undefined control state, and free to choose the next function.

PROGRAM EDITING AND CORRECTION

If an instruction is entered incorrectly, the user must exit MICRO by depressing CNTRL twice. This will result in advancing the ADDRESS counter by one. Decrementing the ADDRESS counter by one is achieved by pressing DECPC. The user must then reenter the MICRO mode by pressing CNTRL and MICRO. Now the correct instruction may be reentered in full.

The program may be examined location by location by successively pressing DECPC or MEM from the undefined control state. DECPC results in stepping backward through memory, and MEM results in stepping forward. These two keys may be pressed without going through the undefined control state in order to go backwards and forwards through the program in any sequence.

Memory data may be changed at will while stepping back and forth through the program simply by depressing the numeric keys in any desired fashion.

When editing in the MICRO mode, an instruction may be changed by entering a new sequence of keys. If an instruction is correct, the address counter may be stepped simply by pressing the yellow IAC key (immediately after CNTRL has been pressed to step the address) as many times as desired.

KEYPAD OPERATION

We shall illustrate keypard operations in MICRO mode with this example:

Enter instruction JMP START in location 0357g. Label START represents location 0200g. Enter instruction SZL in location 0362g.

1) To set program counter to 0357₈, press CNTRL SETPC 0 3 5 7

Comments: Note that the same key has the digit 7 and the legend SETPC on it. Thus, the MONITOR routines assigned different meanings to the keys at different times. The address is shifted from right to left into the left hand display.

2) MICROINTERPRETER mode, press CNTRL MICRO

Comments: When CNTRL is pressed, the SETPC mode is terminated and when MICRO is pressed, the MICRO mode is entered.

3) OPCODE entry, press JMP

Comments: The digit 5 appears in the most significant position of the right display and the other positions are clear. 0357 5000

4) ADDRESS entry, press 0 2 0 0

Comments: As soon as key 0 is pressed, the display switches to 5000 0000 and any string of octal digits may be entered into the right display from right to left.

5) ASSEMBLE complete instruction, place in memory and increment program counter, press CNTRL.

Comments: Note that if the yellow key is pressed at this point, the MICROINTERPRETER will set the indirect bit, that is, add 0400 to the opcode and the location referenced by the instruction will be used as a pointer to the effective address.

As CNTRL is pressed and held down, the displays will show the PC and assembled instruction 0357 5200, and when the key is released, the left display will increment to 03608 and the MICRO mode is again in effect waiting for another opcode entry. At this point, if they key marked IAC REV IND is pressed, the address will increment again with MICRO still in control. If the address that was entered was not in page 0 (00008 to 01778) or in the current page (02008 to 03778), a simple diagnostic message consisting of a flashing display is received by the user and another attempt to enter a valid address may be made.

- 6) ADVANCE address to 03628, press IAC IAC IAC Comments: This is quicker than pressing CNTRL SETPC 0 3 6 2 CNTRL MICRO.
- 7) Enter SZL instruction (skip on zero link), press OPR2 SNL REV

Comments: By pressing OPR2, bits 0, 1, 2, 3 are set showing 7400g in the right display. By pressing SNL (the same key that previously was used to enter the MICRO mode), bit 7 is set showing 7420g in the right display, the code for an SNL. Pressing REV (the same key with IAC on it) reverses the skip condition from non-zero to zero in this case by setting bit 8, and 7430g is seen in the right display.

This example shows how the MICROINTERPRETER assigns multiple meanings to the keys. The twelve keys of the keypad are read onto the 12-bit microprocessor data bus under program control.

TABLE 2-1

TABLE OF INSTRUCTION CODES

KEYS DEPRESSED LEFT TO RIGHT		MEMORY OCTAL CODE	OPERATION
CNTRL MICRO SNL AND 0		-	Enter MICROINSTRUCTION Mode
	MEMORY REF	ERENCE INSTRUCTIONS	
KEYS DEPRESSED LEFT TO RIGHT	MNEMONIC	MEMORY OCTAL CODE	OPERATION
MICRO SNL AND 0	AND*	0000	Logical AND
nnn		00nn or 01nn	Depress numeric keys as required for valid address
IAC REV IND		04nn or 05nn	Depress IND key if INDirect MRI is required
CNTRL			Advances ADDRESS counter to next location
OSR BSW TAD	TAD	1000	Binary ADD
DIS RAL 192 2	ISZ	2000	Increment and Skip if Zero

^{*} The sequence of key depressions required to enter the opcode, address field, indirect bit (if necessary) and advance the address counter is shown in full for this case. The same sequence is true for the other memory reference instructions, but only the initial operation of entering the opcode is shown for the remainder to avoid duplication.

FIGURE 2-2

MICROPROCESSOR INPUT/OUTPUT TRANSFER (IOT) INSTRUCTIONS

KEYS DEPRESSED LEFT TO RIGHT	MNEMONIC	MEMORY OCTAL CODE	OPERATION
RESET CLL 10T 6	SKON	6000	Skip if Interrupt on
CLL IOT OSR BSW TAD	ION	6001	Interrupt Turn on
RESET DIS RALISZ 6	ІОТ	6002	Interrupt Turn off
RESET SIN RAR DCA	SRQ	6003	Skip if INT Request
RESET CLL IOT CML JMS	GTF	6004	Get Flags

RTF

6005

Return Flags

SGT

6006

Operation is Determined by External Device, if Any

CAF

6007

Clear All Flags

IOT INSTRUCTION FORMAT

FIGURE 2-3

DEVICE INPUT/OUTPUT TRANSFER (IOT) INSTRUCTION

KEYS DEPRESSED LEFT TO RIGHT

MNEMONIC

MEMORY OCTAL CODE

OPERATION

As applicable

6000

n, n, n, n...n

6nnn

Depress numeric keys as required to enter specific address and control bits

GROUP 1 OPERATE MICROINSTRUCTIONS

KEYS DEPRESSED LEFT TO RIGHT

MNEMONIC

MEMORY OCTAL CODE

OPERATION

NOP

7000

No operation

IAC

7001

Increment Accumulator

DECPC OP1 SZA-QL DIS RAL ISZ 2	RAL	7004	Rotate Accumulator Left
DECPC OP1 SZA-OL 2 OSR BSW TAD 1	RTL	7006	Rotate Two Left The T in T/BSW indicates bit 10 is set to give two shifts. Key may be pressed before RAL if desired.
DECPC OP1 SZA-QL SIN RAR DCA 3	RAR	7010	Rotate Accumulator Right
DECPC OP1 SZA-QL SIN OSR BSW TAD 1	RTR	7012	Rotate Two Right Except for OPR1 key, order of depression is irrelevant.
DECPC OPI SZA-OL OSR 1	BSW	7002	Byte Swap Only bit 10 set giving byte swap function.
DECPC OP1 SZA-OL CML JMS	CML	7020	Complement Link
DECPC OPT SZA-OL HALT CMA JMP 5	CMA	7040	Complement Accumulator
DECPC OP1 SZA-OL HALT CMA JMP REV IND	CIA	7041	Complement and Increment Accumulator Logical execution sequence is CMA, IAC, but keys may be pressed in IAC, CMA order.
DECPC RESET OP1 SZA-OL 6	CLL	7100	Clear Link
DECPC OP1 SZA-QL 6 RESET DIS RAL ISZ 2	CLL RAL	7104	Clear Link-Rotate Accumulator Left Logical sequence first clears link, then rotates.

Example of microprogrammed instruction to set accumulator to octal six.

Logical sequence:

CLA

CLL

CML

IAC

RTL

Key sequence:

DECPC OP1 SZA-QL SETP CLA C RESET CLL IOT 6

Octal instruction:

7327

- LOGICAL SEQUENCES: 1—CLA, CLL 2—CMA, CML 3—IAC 4—RAR, RAL, RTR, RTL, BSW

GROUP 1 MICROINSTRUCTION FORMAT

FIGURE 2-4

GROUP 2 OPERATE MICROINSTRUCTIONS

KEYS DEPRESSED LEFT TO RIGHT	MNEMONIC	MEMORY OCTAL CODE	OPERATION
SETPC CLA OP2 7	NOP	7400	No operation
SETPC CLA OP2 7 CMA JMP 5	HLT	7402	Halt
SETPC OSR CLA OP2 BSW TAD 1	OSR	7404	Or with Switch Register
SETPC CLA OP2 REV IND	SKP	7410	Skip REV key sets bit 8 giving the AND condition of skips specified in bits 5, 6, 7. This results in unconditional skip.
SETPC CLA OP2 SNL AND 0	SNL	7420	Skip on Non-Zero Link
SETPC CLA OP2 MICRO SNL AND REV IND	SZL	7430	Skip on Zero Link REV reverses selected skip condition by setting bit 8.
SETPC DECPC OP1 7 SZA-QL	SZA	7440	Skip On Zero Accumulator

SETPC CLA OP2 7 DECPC OP1 REV SZA-QL IND	SNA	7450	Skip on Non-Zero Accumulator
SETPC CLA OP2 OP1 SZA-QL MICRO SNL AND 0	SZA SNL	7460	Skip on Zero Accumulator, or Skip on Non-Zero Link, or both OR'ed skip conditions.
SETPC DECPC OP1 SZA-QL SNL AND ON IND	SNA SZL	7470	Skip on Non-Zero Accumulator, and Skip on Zero Link AND'ed skip conditions.
SETPC MEM OP3 7 OP3 SMA-QA	SMA	7500	Skip on Minus Accumuator
SETPC MEM OP3 IAC REV IND	SPA	7510	Skip on Positive Accumulator
SETPC MEM OP3 SMA-OA SNL AND 0	SMA SNL	7520	Skip on Minus Accumulator, or Skip on Non-Zero Link, or both OR'ed skip conditions.
SETPC MEM MICRO SNL AND SMA-QA 0 IND	SPA SZL	7530	Skip on Positive Accumulator and Skip on Zero Link AND'ed skip conditions.
SETPC CLA OP2 OP3 OP1 SMA-QA SZA-QL	SMA SZA	7540	Skip on Minus Accumulator or Skip on Zero Accumulator or both. OR'ed skip conditions.
SETPC CLA OP2 OP3 OP1 SMA-OA SZA-QL IND	SPA SNA	7550	Skip on Positive Accumulator and Skip on Non-Zero Accumulator AND'ed skip conditions.
SETPC CLA OP2 OP3 SMA-QA DECPC OP1 SZA-QL MICRO SNL AND 0	SMA SZA SNL	7560	Skip on Minus Accumulator or Skip on Zero Accumulator or Skip on Non-Zero Link or all OR'ed skip conditions.

LOGICAL SEQUENCES:

1 (Bit 8 is Zero) — SMA or SZA or SNL
(Bit 8 is One) — SPA and SNA and SZL
CLA
CLA
OSR, HLT

GROUP 2 MICROINSTRUCTION FORMAT

FIGURE 2-5

CHAPTER 3 INTERCEPT JR. PROGRAMMING EXAMPLES

INTRODUCTION

The reader who is not familiar with elementary programming techniques, two's complement arithmetic and octal coding, should study Appendix A and the IM6100 brochure for a description of the instruction set before continuing with this section. The MONITOR program will be used to illustrate the use of various techniques. The SETPC and MEM keys may be used to look at the ROM locations shown. The MONITOR listing is in Chapter 8.

EXAMPLE 1 - INCREMENTING MEMORY DATA

6624	2000	AINC,	ISZ SAVPC	/Increment the user PC
6625	5200		JMP MICRO	
6626	5200		JMP MICRO	/Return for new Micro Command

This technique uses the ISZ instruction to directly increment memory data without needing to bring it into the AC first. Note the use of the JMP MICRO instruction twice in case the data was 7777 and a skip was performed. NOP instruction after ISZ can also be used to avoid the effect of the skip on the program.

EXAMPLE 2 - DECREMENTING MEMORY DATA

•				
6430 6431	7340 1000	DECPC,	CLA CLL CMA TAD SAVPC	/Set AC to -1 /Add data in SAVPC
6432	3000		DCA SAVPC	(location 0000) /Restore decremented data
•				
•				

Note the use of the microinstruction combination CLA CLL CMA to clear the AC and the link and then to complement the AC, resulting in 7777 in the AC and O in L. By adding the contents of location SAVPC to the AC in two's complement arithmetic, a decrement is effectively performed. Note that the logical sequence of microinstruction execution is chosen for usefulness. It would be of no value to complement the AC first and then to clear it.

EXAMPLE 3 - PROGRAMMING TIME DELAYS

•				
•				
6203 6204 6205 6206 6207	3157 1223 3144 2144 5206	DCA TAD DCA ISZ JMP1	SAV4 TK1 TIME TIME	/Store wait count in SAV4 and clear AC /Get the Time constant /Place in the timer /Time out 2.4 ms at 2.46 MHz /Jump back one location
6223	7620	ТК1,	7620	/-112

This sequence is part of SWDB, the switch debounce routine described in Chapter 8. The AC is cleared (incidentally while depositing in SAV4), and the constant TK1 is fetched from the current page address 6223. It is stored in the page 0 location 0144 and ISZ instructions are successively executed until the timer goes to zero and the jump-back instruction is skipped. The delay produced may be calculated by counting the number of major states in each instruction executed and multiplying by the state time. Thus, ISZ requires 16 states and JMP requires 10, so these 26 states are gone through a total of 112 times, for a total of 2912 states. Adding in the states for the DCA, TAD and DCA (11 + 10 + 11 = 32), we have a total of 2944 states. With a 2.46 MHz clock rate, the state time is 813 ns so the delay is (0.813 x 2944) microseconds = 2393.472 microseconds or approximately 2.4 milliseconds.

It is also instructive to note that the location TIME is in page 0, whereas the constant TKl is stored in the current page (page 31). In this case, RAM happens to be available only in page 0 and 1 and by keeping TIME in page 0, the ISZ instruction in page 31 was able to directly reference the location TIME in page 0. Obviously, ISZ instructions may only reference RAM locations.

EXAMPLE 4A - ADDRESSING MODES

The user should note that a characteristic of page addressing results in the octal coding for two memory reference instructions on different pages being identical when their operands are in the same relative location on the respective pages.

0020	5225	/JMP to location 25 on current page, for example to 0025		
: 0220	5225	/JMP to location 25 on current page, for example to 0225		

The user should enter these two instructions at the two locations specified. By using the SIN, single instruction key, to execute the instruction, the user will see how the addresses are referenced.

Note that memory reference instructions can reference 400_8 locations directly, 200_8 on page 0, and 200_8 on the page containing this instruction. If the instruction happens to be on page 0, then only locations 0 to 177_8 are directly addressable (see Example 10).

EXAMPLE 4B - ADDRESSING MODES

The user should enter these instructions.

:		
0020	5625	/JMP indirect via 0025
: 0025	0010	/Pointer to 0010 ₈
0220	5625	/JMP indirect via 0225
: 0225 :	0010	/Pointer to 00108

Now, by using the single step key at locations 0020 or 0220, the address should change to 0010 showing than an indirect reference has been made.

The pointer (location containing the effective address) can contain a full 12 bits of address, so the program can branch anywhere in the 4K address space by jumping indirect.

When constants and pointer addresses are stored in page 0, references may be made to them from any page, avoiding the necessity of storing them on each page that needs them.

EXAMPLE 5 - INDIRECT ADDRESSING USED IN TABLE MANIPULATION

This example is taken from the SHELL routine described in Chapter 8. It is a common technique of passing program control to one of several possible sequences by adding an index to a base address.

At the point that the following sequence is entered, the accumulator contains an octal number from 0 to 13 which stands for the routines MICRO, BIN, BLK, SIN, RUN, HALT, RESET, SETPC, DECPC, DEP, INSAC and SHELL respectively.

```
6402
          1207
                          TAD GOTO
                                        /add base address to constant
6403
          3147
                          DCA POINT
                                        /store pointer in POINT
6404
          1547
                          TAD I POINT
                                       /get routine starting address
6405
          3147
                          DCA POINT
                                        /phase starting address in POINT
6406
          5547
                          JMP I POINT
                                        /go to the routine
6407
          6410
                GOTO,
                          GOTO +1
                                        /base address
6410
          6600
                          MICRO
6411
          7622
                          BIN
6412
          6474
                          BLK
6413
          7400
                          SIN
6414
          6436
                          RUN
                                              TABLE OF ROUTINE
6415
          6434
                          HALT
                                              STARTING ADDRESSES
6416
          6165
                          RESET
6417
          6543
                          SETPC
6420
          6430
                          DECPC
6421
          6502
                          DEP
6422
          6425
                          INSAC
6423
          6400 BUG.
                          SHELL
```

Note that location 6407, labeled GOTO contains base address 6410, so by adding a number from 08 to 138 to 6410, a number from 6410 to 6423 is obtained. This number is stored in POINT.

Now, the effective starting address is obtained by executing a TAD indirect through POINT, for example contents of POINT used as operand address. Thus, if AC contained 3g, then 6413 would be stored in POINT, and TAD I POINT would place 7400 in the AC to be again stored in POINT. This time an indirect jump through POINT loads 7400 into the program counter.

Of course, POINT had to be stored in RAM and since pages 0 and 1 are in RAM, POINT was chosen to be in page 0, in order that the upper ROM pages could reference it. It can be seen that indirect addressing makes writing programs easier in mixed RAM-ROM memory where memory references cannot be easily confined to small relative address displacements. See Table 3-1 for a list of pages and their memory locations.

TABLE 3-1

PAGE	MEMORY LOCATIONS
0	0-177
ĩ	200-377
2 3	400-577
3	600-777
4	1000-1177
5	1200-1377
6	1400-1577
7	1600-1777
10	2000-2177
11	2200-2377
12	2400-2577
13	2600-2777
14	3000-3177
15 16	3200 - 3377 3400-3577
17	3400-3577
20	4000-4177
21	4200-4377
22	4400-4577
23	4600-4777
24	5000-5177
25	5200 - 5377
26	5400-5577
27	5600-5777
30	6000-6177
31	6200-6377
32	6400-6577
33	6600-6777
34	7000-7177
35	7200-7377
36	7400-7577
37	7600-7777

EXAMPLE 6 - THE JMS INSTRUCTION AND INDIRECT ADDRESSING

A very important use of indirect addressing is in returning to a main program from a subroutine. Appendix A shows how two programs may be linked using JMP instructions. The JMS instruction's usefulness lies in the fact that only one copy of a subroutine need be stored, for example in page 0, and a program anywhere in main memory may call it. INTERCEPT JR. uses a "last-in-first-out" (LIFO) or "pushdown" stack in page 0 to store subroutine return addresses. This allows nesting of subroutines and calling subroutines stored in the MONITOR ROM by linking through RAM. For further details refer to Appendix L.

Our example will demonstrate the use of the JMS instruction in RAM, and the use of indirect addressing to return.

The user should enter these instructions.

0020	7240	CLA CMA	/AC set to 7777 /Jump to subroutine starting at 0100
0021	4100	JMS 0100	
0022	7240	CLA CMA ·	/AC set to 7777
0023	7402	HLT	
•			
0100	0000		/This location will contain return address
0101	7200	CLA	/AC set to 0000
0102	5500	JMP I 0100	/Return to main program

Single step through this program (by successive depressions of SIN key after initial "CNTRL" "SIN" sequence at program starting address) and the program sequencing will be seen to go from 0020 - 0021 - 0100 - 0101 - 0102 - 0022 - 0023. In between, it will be instructive to look at location 0140 where the AC is saved by the MONITOR. The AC will initially be set to 7777, then the subroutine clears it, and then the main program again sets it to 7777. The JMS instruction stores the return address, namely 0022 in location 0100 so that upon executing the JMP indirect via 0100, the main program can be rejoined in sequence.

If a 1K RAM option card is available, the user could relocate the main program in an upper page and executive the same program provided the subroutine remained in page 0. The subroutine could be moved to a page different from page 0 or the main program's page but then an indirect JMS would have to be executed. We can illustrate this in page 0 as follows:

0020 0021 0022 0023 0024	7240 4424 7240 7402 0100	CLA CMA JMS I 0024 CLA CMA HLT	/AC = 7777 /Jump via pointer in 0024 /AC = 7777 /pointer address
0101 0102	7200 5500	CLA JMP I 0100	/AC = 0000 /Return

An extra location to store the pointer is neded.

EXAMPLE 7 - AUTOINDEXING

Example 3 showed how a simple loop could be programmed using the ISZ and $\sf JMP$ instructions.

The IM6100 treats memory locations 0010 through 0017, in page 0, in a unique manner. Whenever an instruction makes an <u>indirect</u> reference to any of these locations, the content of the location is incremented before it is used as an operand. These locations can, therefore, be used in indexing applications. The incrementation is done automatically, provided the <u>location was referenced indirectly</u>, without needing ISZ or TAD and IAC instructions, so this feature is known as autoindexing. When these locations are addressed directly, they act as any other location.

Since the autoindex location is incremented $\underline{\text{before}}$ it is used as an operand, it must be set to one less than the first value desired.

0010			/Autoindex location
:			
0200	7200	CLA	/Clear AC to 0000
0201	1212	TAD 0212	/Get # of locations to be cleared
0202	7041	CMA IAC	/2's complement of AC
0203	3212	DCA 0212	/Store in loop counter
0204	1213	TAD 0213	/Get "starting address -1"
0205	3010	DCA 0010	/Store in autoindex location
0206	3410	DCA I 0010	/Clear location pointed to by 0010
0207	2212	ISZ 0212	/Increment loop counter
0210	5206	JMP 0206	/Jump back two places
0211	7402	HLT	/Stop. All locations cleared
0212	0100	CONSTANT	/# of locations to be cleared
0213	0277	START-1	/Starting address (0300) -1

Note that the autoindex location supplies successive memory address pointers until the counter goes to zero and the program halts. The program will clear locations 0300 to 0377.

EXAMPLE 8 - ADDRESS FIELD MODIFICATION

Instructions and program data may be stored in the same memory. Thus, it is possible to treat instructions as data or data as instructions if this would be of any use.

A powerful programming technique involves performing arithmetic on memory reference instructions in order to alter the location being referenced. In this case, the instruction is treated as an operand and incremented, decremented, etc. Logical operations such as masking certain bits may also be useful. Such techniques are useful when manipulating large data tables. Example 5 has shown one technique of manipulating jump address pointers.

Consider the following example:

0200 0201 0202 0203 0204 0205 0206 0207	7300 1213 7041 3213 7240 0300 7450 5215	CLA CLL TAD 0213 CMA IAC DCA 0213 CLA CMA AND 0300 SNA JMP 0215	/Clear AC and L /Get # of data items /2's complement of constant /Store TALLY /AC = 7777 /AND contents of 0300 with AC
0210 0211	2205 2213	ISZ 0205 ISZ 0213	/Increment address field
0212 0213	5204 0100	JMP 0204 TALLY	/Increment TALLY /Jump back to check next item /Constant giving # of items to be checked
0214	0777	MASK	/Used to mask off opcode bits
0215	1205	TAD 0205	/Get instruction referencing zero data item
0216	0214	AND 0214	/Zero opcode bits
0217	3221	DCA_0221	/Store address of zero item
0220	7402	HALT	/Halt
0221			/Address of zero item

This program checks data stored in locations 03008 to 03778, when it encounters a zero data item in the list, it stores the address of this item in 0221 and stops.

Location 0213 initially contains the number of items stored starting in location 0300. The program replaces this number with its negative by two's complementing it. Successive data items are then read, AND'ing with 7777 in the AC. Note that if the AND leaves a non-zero AC, the AND instruction is incremented, stepping to the next item. A logical operation is done with this instruction to strip off the opcode bits when and if a zero data item is eventually detected. For this purpose, the mask 0777 is stored in 0214.

On powering up most locations will be non-zero, so the user can put a zero anywhere he chooses to check Example 8 operation. This technique of modifying instructions is a dangerous one to use in many situations because programs may be unintentionally changed because of an undiscovered "bug". (Modern concepts of structured programming discourage the use of this technique, but it is included because in some microprocessor applications, it might save memory locations.) For example, in this case, every time the program is rerun, locations 0205 and 0213 must be initialized.

EXAMPLE 9 - USING CONDITIONAL SKIPS

Group 2 microinstructions are primarily conditional skips and may be used to test conditions other than the number of passes that have been made through a loop. That is, the program may be made to loop an indefinite number of times until a specific condition is present in the accumulator or link bit. When two or more skip conditions are microprogrammed into a single instruction, the resulting condition on which the decision will be based is the logical OR of the individual conditions when bit 8 is 0, or, when bit 8 is 1, the decision will be based on the logical AND.

In the last example, the SNA instruction was used to skip on non-zero accumulator. The loop would continue as long as the next instruction was skipped and when the AC became zero, the program would jump out of the loop.

Very often conditional skips are used along with Group 1 operate microinstructions. The Group 1 instructions are used to manipulate the AC and L with shift, rotate, set, clear operations to set up these registers for testing with conditional skip instructions. This is used extensively in the MONITOR program, for example, in the routine called HEX (see listing of MONITOR and Chapter 8).

The following segment of code is in the MONITOR locations 6466-6471.

:			
6466	7640	. SZA (CLA
6467	5263	JMP ()K2
6470	7260	CLA (CMA CML
6471	5263	JMP ()K2
:			

This segment shows testing of the AC to see if it is zero or not. If AC is not zero, the program jumps to OK2. AC (0) can be tested with instructions such as SMA, skip if AC is less than 0, SPA, skip if AC is greater than or equal to 0, and their combinations, and the Link can be tested with instructions such as SZL, skip if Link = 0, SNL, skip if Link = 1. Combinations are possible which test these bits in one instruction, for example, SMA, SNL, skip if AC is less than 0 OR if Link = 1, or SPA SZL, skip if AC is greater than or equal to 0 and L = 0.

The user should note that SMA SNL will produce a skip on minus AC \underline{OR} non-zero link \underline{OR} both, whereas SPA SZL will produce a skip on plus AC \underline{AND} zero link (both conditions must be present for a skip).

The example also shows how microprogrammed combinations of microinstructions may be used to set various constants into the AC.

The instruction in location 6470 sets AC to -1 by first clearing it, then complementing it and the Link to get two's complement of -1, (77778).

EXAMPLE 10 - FLOWCHARTING A PROGRAM

Flowcharts may be used to represent hardware operation as well as to represent an algorithm to be implemented in software.

As an example of an algorithm, or computational procedure, we shall work out a program to computer the product of two octal numbers.

PROBLEM: Computer the product of two octal numbers.

ASSUMPTION: The numbers are positive integers and their

product does not exceed 409510 or 77778.

The 1st operand is not zero.

SOLUTION: Many different multiplication algorithms

exist. We shall choose a simple, inefficient one which is easy to understand and flowchart.

Add one number repeatedly to itself using a second number to determine the number of

additions.

The program will make use of a memory reference instruction known as "Increment and Skip on Zero". The ISZ instruction adds a 1 to the referenced data word and then examines the result of the addition. If the result is not zero, the program continues in sequence, performing the instruction following the ISZ. If the result is zero, the instruction following the ISZ is skipped (by incrementing the Program Counter again). In either case, the result of the addition replaces the original data word in memory.

By computing the 2's complement of one operand (data word) and referencing it with the ISZ instruction, we can repeatedly add the second operand to itself until the desired product is obtained. At this point, the counter becomes zero and the loop exit is taken.

After entering the program as shown, data may be entered into locations 0032 and 0033, the Program Counter is set to the starting address, and the program is run.

FIGURE 3-1

0020 0021 0022 0023 0024 0025 0026 0027	7300 1032 7041 3031 1033 2031 5024 3031	CLA TAD CMA DCA TAD ISZ JMP DCA	CLL 0032 IAC 0031 0033 0031 0024 0031			
0030 0031	7402	HLT loop	counter	and	final	product
0032 0033		Ist	operand operand	۵.,۰۵		p. 0 2 4 0 0

PROGRAM TO MULTIPLY TWO OCTAL NUMBERS TOGETHER

SETPC	0	0	2	0	
MICRO	OPR1	CI	_A	CLL	
TAD	0	0	3	2	
OPR1	CMA	I.A	AC .		
DCA	0	0	3	1	
TAD	0	0	3	3	
ISZ	0	0	3	1	
JMP	0	0	2	4	enter program
DCA	0	0	3	1	, -
OPR2	HALT				
SETPC	0	0	3	2	
MEM	lst C	PERAND			
MEM	2nd C	PERAND			
SETPC	0	0	2	0	execute program
RUN	Displ	ay shows	s product		, •
	MICRO TAD OPRI DCA TAD ISZ JMP DCA OPR2 SETPC MEM MEM SETPC	MICRO OPRI TAD O OPRI CMA DCA O TAD O ISZ O JMP O DCA O OPR2 HALT SETPC O MEM 1st O MEM 2nd O SETPC O	MICRO OPRI CI TAD O O OPRI CMA I/ DCA O O TAD O O ISZ O O JMP O O DCA O O OPR2 HALT SETPC O O MEM 1st OPERAND MEM 2nd OPERAND SETPC O O	MICRO OPR1 CLA TAD 0 0 3 OPR1 CMA IAC DCA 0 0 3 TAD 0 0 3 TAD 0 0 3 ISZ 0 0 3 JMP 0 0 2 DCA 0 0 3 OPR2 HALT SETPC 0 0 3 MEM 1st OPERAND MEM 2nd OPERAND SETPC 0 0 2	MICRO OPR1 CLA CLL TAD O O 3 2 OPR1 CMA IAC IAC IAC DCA O O 3 1 TAD O O 3 3 ISZ O O 3 1 JMP O O 2 4 DCA O O 3 1 OPR2 HALT T SETPC O O 3 2 MEM 1st OPERAND NEW AMEM 2nd OPERAND O 2 O SETPC O O 2 O

For example, if 1st operand is 00004 and 2nd operand is 0010, the display will show 0040. The user will also find it instructive to load small numbers as operands and single-step through the program to verify that the program follows the flowchart. Thus, set the PC to 0020, then press "CNTRL", "SIN" and then press the "SIN" key repeatedly. Each time it is pressed, the program executes one SINgle instruction. At any point, the user may set the PC to 0410 to examine the contents of the accumulator (this is explained further in Chapter 8) and resume execution of single instructions by resetting the PC to the last address the user had stopped at and continuing with SIN key depressions.

The yellow Inspect AC key may be used in the MICRO mode to inspect AC contents at any time. The user may alternately single step and press IAC to note the change in the AC. Note that when the program is fully executed in SIN mode, location 0031 is found to contain the loop counter value 0000 instead of 0040 even though the AC contained 0040 prior to single stepping the DCA 0031 instruction.

The reason is that the MONITOR saved the loop counter and placed a breakpoint in its place and even though the single instruction was executed properly, the loop counter was restored. A complete explanation may be found in Chapter 8 in the description of the SINGLE INSTRUCTION EXECUTE routine.

The DCA 0031 in location 0030 may be replaced by a NOP, 7400 while single stepping. In the RUN mode, of course, the program will halt showing the final product in location 0031. The Inspect AC feature could be left on in the RUN mode, but since the AC is cleared when the DCA is executed, this is not particularly useful.

It is instructive to replace the DCA 3031 in location 0027 with a JMP 0020 or 5020, then running the program with the Inspec AC mode on. The flickering of the display reflects the continually changing contents of the AC as the program is executed repeatedly. Use the RESET switch to get out of this loop.

The user will find it useful to rewrite the program to make the assumptions less restrictive. For example, a check could be included to test for a zero 1st operand and, if the test was true, the product zero could be immediately calculated. Tests for negative operands could be included and/or checks for arithmetic overflow.

EXAMPLE 11 - BIT MANIPULATION

Often, it is necessary to set, clear or determine the status of individual bits in a word. For example, a peripheral interface may be returning the status of various devices, and the processor must take action conditional on the status of these flags.

There are several methods. In one, the AC is rotated until the desired bit is in the link and then group 2 operate micro-instructions are used to skip conditionally on the link status. This technique is illustrated in Example 9. Another method is to AND a mask word with the AC, zeroing out all bits except the one to be tested and then testing the AC for zero.

This technique will be illustrated with an example from the SIN routine in the MONITOR.

:				
7450	1400	INDB,	TAD I SAVPC	/get the instruction
7451	0262		AND LOT	/mask out indirect bit
7452	7650		SNA CLA	/test; is bit set
7453	5564		RETURN	/no; return with true
				address in TIME
7454	1544		TAD I TIME	/yes; get true address
7455	3144		DCA TIME	/place it in TIME
7456	5564		RETURN	/return with true address
•				in TIME
•				
7462	0400	LOT,	0400	/AND mask word

This routine INDB, determines the effective address referenced by an instruction and places it in location TIME. By AND'ing the instruction with 0400, the AC will be non-zero if the indirect bit, bit 3, is set and zero if this bit is zero.

The methods for setting and clearing bits are similar. One can rotate the bit into the link and then use group I microinstructions to clear or set the link. This has the advantage that rotates may be combined with link bit operations in one instruction.

To clear a bit, one can AND the word in AC with a word containing one's everywhere except in the desired bit position. To set a bit, one can add a word containing zero's everywhere except in the desired bit position. This technique is used by the bit set routines in the MICROINTERPRETER, ROM locations 7243-7275.

The next example shows the use the MQ register in logical operations. It will be seen that this register may also be used in bit manipulation operations.

EXAMPLE 12 - LOGICAL OPERATIONS

Boolean operations play an important role in computer logic. We have seen examples of how the AND instruction can be used to mask out selected bits.

The NOT or logical complement operation is easily performed by placing the logical data word in the accumulator and executing a CMA, complement AC, instruction.

The inclusive OR operation is performed by placing one logical operand into the MQ register (executing an MQL - load MQ from AC), loading the second logical operand into the AC, then executing an MQA instruction (contents of the MQ are OR'ed with contents of the AC).

Any Boolean operation may be synthesized using combinations of the basic AND, OR and NOT operations.

EXAMPLE 13 - I/O PROGRAMMING

Chapter 7 and Chapter 8 give examples of I/O instructions as used in INTERCEPT JR.

There are three methods by which information may be transferred between INTERCEPT JR. and peripheral devices:

- 1) DMA I/O transfer
- 2) Interrupt I/O transfer
- 3) Programmed I/O transfer

The first method involves Direct Memory Access, DMA, by an I/O devices and allows for high speed transfers of blocks of data at essentially the memory cycle rate. The transfer is controlled without processor intervention on a "cycle stealing" basis. That is, the I/O device requests a DMA cycle and the processor grants it at the end of the current instruction. (See Figure 17 of the IM6100 brochure). The processor tri-states its bus drivers and from that point on, as long as the DMA REQ line is active, the device controls the DX bus and data transfers on the bus. Typical DMA using devices are disks, tapes and CRT screen refresh circuits.

INTERCEPT JR. primarily uses the last two methods. Both of these require CPU intervention. Interrupt transfers use the interrupt system to service one or more peripheral devices simultaneously, permitting processing to be performed concurrently with data I/O operations.

Both methods use the AC as a data buffer for transfers in both directions.

Interrupt programming is especially useful in real time systems which are required to respond to real time events. The time spent waiting for a change in device status is greatly reduced or even eliminated. This is done by writing I/O handling routines which are separate from the main program and using the interrupting capability of I/O devices to enter these routines only when the I/O device is either ready to perform a data transfer or requires CPU intervention. Thus, as long as the device does not request an interrupt, the mainline program may continue to run and time is not wasted "polling" I/O devices for changes in status.

In INTERCEPT JR., the control panel timer generates interrupt requests at periodic intervals. The display refresh routine that periodically drives the LED displays is an example of an I/O handling routine. When the main program is interrupted, a method of returning to it after servicing the interrupt request is necessary. INTERCEPT JR. saves the current content of the PC in location 0000g of the memory and fetches the next instruction from location 0001g if an external I/O device requests an interrupt.

In the case of a control panel interrupt, the return address is stored in location 0000g of panel memory. This is the same as 0000g of page 0 of the main memory in the INTERCEPT JR.

For further details on device interrups and CP interrupts, refer to the IM6100 and IM6101 data sheets.

The third, and slowest method, that of programmed data transfer, is also the simplest, needing a minimum of hardware support. The INTERCEPT JR. PIEART board uses this technique. The processor, upon recognizing an I/O instruction, opcode 68, places the instruction on the DX bus during $IOT_A \cdot LXMAR$. The selected device communicates with the CPU through four control lines--CO, C1, C2 and SKP. The control line SKP, when low during an IOT, causes the CPU to skip the next sequential instruction.

The INPIE, TALK, LISN, and READ routines of the MONITOR should be studied to see the use of IOT's in programmed data transfer.

For example, the print to TTY routine is as follows:

7600 7601 7602	6163 5200 6161	TALK,	SKIP2 JMP1 WRITE1	/Skip on clear Xmit buffer /Xmit buffer not yet clear /Write AC to Uart Xmit buffer
7603	3144		DCA TIME	/Clear AC and store the old character in TIME
7604	5564		RETURN	

Note the use of the SKIP2 instruction to implement a "wait" loop. When the condition is satisfied, the loop is exited. The device must activate the SKP line back to the CPU in order for the CPU to skip the next instruction.

The WRITEl instruction is another IOT used to write the AC to the UART. (See Chapter 7 for device address codes and command codes.) Refer to the IM6100 and IM6101 data sheets for more information.

The next chapter describes dedicated IOT instructions used in INTERCEPT JR. namely 6400 - Load Display, 6402 - Enable/Disable CP Timer, 6403 - IOT CPREQ, 6406 - IOT Reset, 6407 - IOT RUN. The experienced user may use these to shut off the timer and perhaps use subroutines in the MONITOR for his own purposes, for instance, display information other than the USERPC and its contents.

EXAMPLE 14 - TELETYPE I/O USING MONITOR CALLS

The following program makes use of the MONITOR ROM PIE-UART subroutines by calling them via the software stack mechanism.

The control panel interrupt requests must be shut off to prevent timing difficulties.

0100	7340	Set AC to 7777
0101	6402	Disable CP request timer
0102	4161	CALL
0103	6340	PIE initialization routine INPIE entry address
0104	4161	CALL READ from
0105	7613	Teletype routine
0106	4161	CALL TALK, the print
0107	7600	to TTY routine
0110	5104	Jump back for next character

Note that the stack mechanism requires that the CALL instruction (JMS 0161) be followed by the entry address of the subroutine. (See Appendix L, ROM Based Subroutine Calls)

EXAMPLE 15 - PRINTING UNDER KEYPAD CONTROL

The following program will print ASCII characters on a Teletype under control of the INTERCEPT JR. board.

Refer to Appendix F for the ASCII character set.

070 071 072 073 074 075 076 077 100 101 102	7340 6402 4161 6340 7300 4161 6156 4161 6441 7004 7006 7002	BACK	STA STL IOT TIMER CALL INPIE CLA CLL CALL CLKPD CALL HEX RAL RTL BSW	/Disable /Control panel timer /Initialize /PIEART interface /Wait for keypad /To clear /Read octal /Data from keypad /Shift three places /Left and swap bytes /To determine leading
104	1121		TAD K0002	code digit /MSB of ASCII code always one
105	7500		SMA	/Is 2nd ASCII digit 4,5,6,7?
106	7001		IAC	/No, 1st digit must therefore be 3
107 110 111 112 113 114 115 116 117 120 121	7002 3122 4161 6156 4161 6441 1122 4161 7600 5104 0002 0000	K0002, TEMP1,	BSW DCA TEMP1 CALL CLKPD CALL HEX TAD TEMP1 CALL TALK JMP BACK 0002 0000	/Yes, 1st digit must be 2 /Store temporarily /Wait for clear /Keypad /Read 2nd octal /Digit /Assemble ASCII character /Transmit character /To printer /Go back for next character

Appendix F shows that the 8-bit ASCII character codes have the property that if the left octal digit is 2, the second octal digit is 4, 5, 6 or 7, and if the left octal digit is 3, then the second octal digit is 0, 1, 2 or 3.

This program allows the user to enter characters as two successive octal digits.

Note that this assumes the eighth (parity) bit is always set.

EXAMPLE 16 - PROGRAM TO DEMONSTRATE I/O TO 6957 AUDVIS MODULE

0225 0226 0227	7201 6402 7000		CLA IAC ENDIS TIMER NOP	/Set AC=0001 /Shut off CP timer
0230	7000		NOP	
0231	7604	READ,	LAS	/Load keypad to AC
0232	7450		SNA	/Key depressed?
0233	5231		JMP READ	/No, go back to try again
0234	6404		LD DISPLAY	/Display AC on LED register
0235	6401		CL0CK	/Click speaker
0236	5231		JMP READ	•

The first two instructions shut off the control panel interrupt timer. The three instruction loop in locations 231, 232, and 233 cause the processor to wait until a key is depressed, and when this occurs, to load the LED register with the AC and CLICK the speaker.

While a key is depressed, the processor executes the instructions

LAS	(15 major states)
SNA	(10 major states)
LD DISPLAY	(17 major states)
CLOCK	(17 major states)
JMP READ	(10 major states)

continuously, and the speaker "clicks" merge into a high pitched beep. The fundamental frequency of this "beep" is easily calculated by counting the number of major states in the above instruction sequence, multiplying by twice the clock period and taking the reciprocal of this number.

In this case, there are 69 major states; and, assuming a 2.56 MHz crystal, the clock period is 390 ns, and the "beep" frequency is $1 / (69 \times 2 \times 390 \times 10^{-6}) = 18 \text{ KHz}.$

Now change the instruction in location 0236 to 5230. This adds a NOP, or 10 more major states to the loop, decreasing the frequency of the beep. By placing 5227 in location 0236, the frequency is lowered further. This program enables the user to find out which DX line each key is connected to.

Instead of a beep, the program can be made to click on each key depression by replacing the two NOPs with 4161 and 6156. This calls the CLKPD subroutine which waits for a clear (fully released) keypad before returning to the calling program.

The action of the HEX program which encodes key depressions in order to generate MONITOR program subroutine starting addresses may be easily seen by replacing the three instruction keypad read loop in locations 231, 232 and 233 with the sequence 7000, 4161, and 6441. As before, 4161 is a JMS to the top of the RAM subroutine stack and 6441 is the starting address of the HEX routine. Descriptions of these programs may be found in Chapter 8, and a discussion of the software stack may be found in Appendix L.

The program just entered should have looked like this:

7201
6402
4161
6156
7000
4161
6441
6401
6404
5227

EXAMPLE 17 - REAL-TIME PROGRAMMING

A. MONITOR subroutines

Note that when using MONITOR subroutines via the stack mechanism, the CP timer should in general be disabled. The stack base is initialized only on power-up, but there is always a slight chance that when the user calls a subroutine and the user program is setting up the return linkage, a CP interrupt with the resulting CALLs to REFSH, SWDB, CLKPD could disturb the locations used to set up the user subroutine return.

B. Programming for user-generated interrupts

Programs using input and output routines spend a lot of time in loops (skip on device ready flag instruction followed by JMP*-1) waiting for a peripheral device to accept or transmit data. The processor can spend this time productively by using the interrupt facility to signal external conditions to the running program. These external conditions could be peripheral device flags (ready for operation, operation complete, etc.) or alarm conditions (power fail detected).

When the interrupt system is enabled (via execution of the ION instruction), then whenever a device generates an interrupt request to the running program, the following operations occur:

- 1) The instruction currently in execution is completed.
- 2) The INTGNT (interrupt grant) signal is activated.
- 3) The contents of the PC are stored in location 0000g.
- 4) The interrupt system is turned off so no further interrupt requests will be acknowledged.
- 5) The IM6100 begins executing instructions starting at 0001g.

Location 00018 usually contains a direct or indirect JMP to the entry address of an interrupt service routine. In simple systems, the interrupt handler may begin at 00018.

The interrupt handler in general must perform the following:

- It must save processor status. In general, this means the contents of the AC, L, MQ, instruction and data field registers, and any other data required for proper resumption of execution. The structure of the mainline program (background program) and the interrupt handlers (foreground programs) determines the amount of information needed to be saved.
- 2) The various I/O devices must be polled to determine which one generated the interrupt. Upon identification, control must be transferred to the proper device service routine.
- 3) The required service is performed, and the device interrupt flag is cleared.
- 4) The processor status is restored, the interrupt system is enabled by executing an ION or RTF instruction. Both these instructions take effect (turn the interrupt system on) only after the next sequential instruction, a JMP I 00008.
- 5) The JMP I 0000g causes execution to resume as if no interrupt had occurred as long as all the required status was saved and restored, and the time delay to the mainline program was not significant.

If a second interrupt occurs while an interrupt is being serviced, the return address in location 0000 would be lost unless the interrupt system is disabled while servicing the first interrupt.

Such a situation may occur when high and low speed devices are being concurrently serviced. To ensure rapid response to the high speed device, the interrupt system is re-enabled before the low speed device has been completely serviced. The interrupt handler must, therefore, save the return address and the low speed device service routine must return indirect through the save address rather than 0000g.

In the INTERCEPT JR., control panel interrupt requests have higher priority than device interrupt requests so a similar situation arises.

Device identification may be accomplished in several ways. Each device must recognize certain IOT instructions addressing it. At least one of these, in a device capable of requesting interrupts, is a "skip on interrupt request" instruction. When this instruction is executed, if the addressed device is grounding the INTREQ line it will also ground the skip (SKP) line. This causes the next instruction (typically an unconditional skip) to be skipped and a JMP instruction executed to the proper service routine.

Typical code follows:

EXAMPLE 17A

HANDLER,	DCA ACSAVE RAR	/SAVE AC /GET LINK,
	DCA LKSAVE	/AND SAVE
	KSF	/KEYBOARD STATUS FLAG?
	SKP	/NO; CHECK PRINTER
	JMP KBD	/YES; GO TO KEYBOARD /SERVICE ROUTINE
	TSF	/SKIP ON PRINTER INTERRUPT
	SKP	/NO; GO TO EXIT SEQUENCE
	JMP PRT	/YES; GO TO PRINTER SERVICE
		/ROUTINE
	CAF	/CLEAR ALL DEVICE FLAGS
	JMP EXIT	/AND RETURN
EXIT,	CLA	/CLEAR AC
	TAD LKSAVE	/READ LINK STATE
	CLL RAL	/AND RESTORE
	TAD ACSAVE	/RESTORE AC
	ION	/ENABLE INTERRUPTS AFTER
		/NEXT INSTRUCTION
	JMP I Ø	/RETURN TO MAINLINE PROGRAM

The instruction sequence which determines the interrupting source is called a "skip chain" because of the number of skip instructions.

Skip chains must be designed so that high-speed devices are tested near the top of the chain and that information loss does not occur due to timing problems.

If two interrupts occur simultaneously, the high speed device, being higher up in the chain, will be serviced first, and the low speed device will be serviced as soon as the interrupt system has been re-enabled and the background program has been resumed because it will request another interrupt.

Alternatively, the skip chain may use JMS instructions to the device service routines. Upon termination of the higher priority device service routine, the skip chain is reentered, without re-enabling the interrupt system. Polling of lower priority devices may thus continue and the skip chain must terminate with an ION, JMP I Ø to return control to the mainline program if no further interrupt requests are pending.

Another case arises when during the execution of a low speed device service routine a high speed device requires service. Because the interrupt system is disabled, the request for service may be ignored long enough for information to be lost.

Sometimes, a device may not be capable of high speed data transfers, but it has high priority nevertheless. This is the case of control panel interrupt requests in IM6100 systems such as the INTERCEPT JR. A priority interrupt system can be established through software by the following sequence of operations:

- Begin low priority device service routine by saving all required processor status as well as background program return address in 00008.
- 2) Execute an ION instruction.
- 3) Clear low priority device interrupt request flag. Interrupt system is now enabled.
- 4) Service the device as required. A high priority interrupt is permissible now without losing the background program linkage.
- 5) Terminate the service routine by restoring processor status and return to the background by an indirect jump via the stored return address.

The INT pushbutton on the AUDVIS card generates an interrupt to the IM6100. The following example illustrates interrupt programming techniques. On receiving the interrupt, the IM6100 automatically saves the PC in location 00008 and executes the instruction in location 00018. The example interrupt service routine will simply display the current value of AC, re-enable interrupts, and return to the main program.

INTerrupt GraNT (INTGNT) becomes active after an INTREQ is recognized, and is reset after the first IOT instruction is executed. During the time INTGNT is active, CPREQs are gated off by the hardware.

EXAMPLE 17B

/INTERRUPT	SERVICE	ROUTINE		
	חרע ערי	: AV	/SAVE	ΔΛ

0001	3020		DCA ACSAV	/SAVE AC
0002	1000		TAD 0000	/GET SAVED RETURN ADDR
0003	3021		DCA PCSAV	/AND SAVE IN PCSAV
0004	1020		TAD ACSAV	/RESTORE AC
0005	6404		DISP	/AC TO DISPLAY
0006	6001		ION	/RE-ENABLE INTERRUPTS
0007	5421		JMP I PCSAV	/RETURN TO MAIN PROGRAM
0020 0021	0000 0000	ACSAV, PCSAV,	0000 0000	/AC SAVE LOC /PC SAVE LOC

/MAIN PROGRAM

/INCREMENT AC REPEATEDLY. WHEN INT /PUSHBUTTON IS PRESSED THE INTERRUPT /SERVICE ROUTINE WILL DISPLAY THE /CURRENT VALUE OF THE AC.

0022	6001	START,	ION	/ENABLE INTERRUPTS
0023	7001	LOOP,	IAC	/INCREMENT AC
0024	5023		JMP LOOP	/AGAIN AND AGAIN

In the INTERCEPT JR., the CP timer need not be turned off for user generated interrupts provided that the CP TIMER routine execution time does not interfere with the device interrupt response or service time. This is because the hardware uses INTGNT to gate CP interrupt requests.

However, INTGNT is reset by the execution of any IOT and this would allow CPREQs to get through once again.

Note that the execution of an IOT after an INTGNT is also used by pheripheral devices to place an interrupt vector on the DX bus.

Interrupt vectoring is a procedure by which an interrupting device can identify itself eliminating the need for a skip chain. The device places an address (the interrupt vector) onto the DX bus which is used by the processor to branch to the appropriate device service routine. Prioritization of the devices is accomplished in the hardware by a "priority chain" such that a device may request an interrupt only when no higher priority device is also reguesting an interrupt.

A user interrupt routine in an INTERCEPT JR. system with vectored interrupt should be functionally identical to one of the following routines:

EXAMPLE 17C-Interrupt Service Routine without timer off:

0000 0001 0002	0000 3006 1000		0000 DCA AC TAD 0000	Return address Save AC in 0006 Get interrupt return address
0003 0004	3007 6002		DCA PC IOF	Save return address in 0007 Vector to user service routine
0005 0006 0007	0000 0000 00	AC, PC,	0000 0000 0000	

Note that the CP Timer is gated off while the instructions in 0001-0004 are being executed by JR. hardware (gate D4).

Also note that the user interrupt service routine should return indirectly through location 0007 (JMP I 0007-5407) and the service routine should use contents of location 0006 as AC.

The user interrupt service routine is quite likely to be interrupted by the CP Timer but the timer routine will return properly to the user routine.

EXAMPLE 17D-Interrupt Service Routine with timer off:

0000	0000		0000	Return address
0001	3006		DCA AC	Save AC in 0006
0002	1000		TAD 0000	Get return address
0003	3007		DCA PC	Save in 0007
0004	7001		IAC	IAC
0005	6402		EN/DIS Timer	Disable timer and vector
0006	0000	AC,	0000	
0007	0000	PC.	0000	

This routine may let one CP Timer request through since the timer oscillator may have already clocked the request FF (D5).

Unfortunately, the only way to guarantee that no timer request interferes with the interrupt service routine execution time is to turn it off in the main program itself. One must do this, in any case, if the interrupt response time is critical.

Please note that locations 0010-0017 are autoindexed and hence they must not be used to save PC since the contents of 0010-0017 will be incremented by 1 before being used if they are referenced indirectly, for example, by an instruction JMP I 0010 (5410).

Note the examples 17C and 17D use the techniques described earlier for a system with a high priority (CP) and low priority (user) device. The IOT instructions reset INTGNT, allowing CP requests to get through and vectoring to the user service routine. In example 17C, the IOF is used purely to vector, as the user interrupt system is already automatically disabled. In more complex priority interrupt systems, interrupt processing for a given device can be interrupted in order to service higher priority devices, and this procedure is facilitated by saving interrupt return addresses and interrupt processor state on a stack similar to the MONITOR subroutine stack.

Real time systems are much harder to debug because of the asynchronous nature of the signals and events. Failures that occur non-repetitively and seemingly at random are very hard to pinpoint. The user must be much more careful in writing and documenting software, and analyze interaction between program segments thoroughly.

As an example of a simple failure because of an asynchronous event, consider an interrupt service routine that did not save location 0000_8 .

EXAMPLE 17E

:
0050 ION /ENABLE DEVICE INTERRUPTS
0051 JMP I Ø /RETURN TO BACKGROUND

Assume that a CP Timer request was generated immediately after the execution of the ION in 0050. Now location 0000 will have 0051, the return address. After the timer service routine, the program returns to 0051 which specifies a JMP I \emptyset , that is, to jump to itself (since 0000 has 0051). So the program will get stuck here and will never get out.

C. SKP Programming

Often the programmer wishes to test the condition of an external device and execute different program segments depending on the result. One way of accomplishing this is to read the device status (with an IOT instruction) into the AC and then use a conditional skip operate instruction to perform the test. Another method uses a single IOT instruction (called a SKIP IOT) which tests on external device and skips the next sequential instruction if the test was successful. The SKP pushbutton on the AUDVIS module is a "device" which may be tested in this manner using a 6405 SKIP IOT instruction. The 6405 IOT in this case also reads the switch register into the AC, but it is possible to have a SKIP IOT which does not modify the AC. In the following example, the switches are read into the AC, and the AC is two's complemented if the SKP pushbutton is not pressed. Finally the AC is displayed on the LED readouts.

EXAMPLE 17F

0020	6405	START,	RDSWRG	/READ SWITCHES AND SKI	
0021	7041		CIA	/NEGATE AC	,
0022	6404		DISP	/DISPLAY AC	
0023	5020		JMP START		

CHAPTER 4 INTERCEPT JR. MODULE

INTRODUCTION

As shown on the schematic, all memory and I/O devices are connected to the IM6100 DX bus. The twelve (12) bit bus carries time-multiplexed addresses and data from memory and I/O devices.

Timing information must be provided to strobe data on and off the bus and select lines are needed to enable the proper devices.

The MONITOR ROM and 256 x 12 RAM are mapped in upper and lower areas of the 4K address space, and it is necessary to select the proper devices during memory I/O.

The keyboard commands must be interpreted after making sure switch bounce does not cause erroneous operation.

The ADDRESS and MEMORY display digits are multiplexed in order to reduce the number of decoder/drivers required.

The IM6100 microprocessor used in the INTERCEPT JR. is the commercial temperature range device and a 2.46 MHz crystal is used in order to ensure operation of the system as battery voltage falls from 6 V to 4.5 V.

TYING ON TO THE DX BUS

The DX bus carries addresses and data at different times. All peripherals and memory address inputs, peripherals and memory data inputs and outputs are connected to the bus. All elements connected to the bus are, therefore, tri-state devices.

Data strobes and device signals must be generated in order to demultiplex data from the bus or multiplex data onto the bus.

The MONITOR ROM, a 1024 x 12 device is mask-programmed at the factory to decode the lower ten (10) bits as an address, and the upper two (2) bits as a chip enable. For example, the MONITOR ROM, as supplied by the factory, has the upper two bits mask programmed to 11 to select the ROM for 6000 to 7777.

When data is read out, the chip puts its data out onto the DX bus. Thus the DX pins on the 6312 are bidirectional (addresses in and data out).

The RAM is 256 x 12, implemented in CMOS by 3 6561 chips, each 256×4 .

The A_0 - A_7 address inputs and the I/O data pins are connected to the DX bus.

ADDRESS DEMULTIPLEXING

Both the ROM chips and the RAM chips have internal address latches. These latches are loaded from the address inputs when the strobe input STR is driven low. When STR is low, the latches are not affected.

When the processor places memory address data on the bus, it drives the signal LXMAR at pin 10 low. This signal, Load External Memory Address Register, is intended to strobe the memory address latches. Note that the chip does not have to be selected in order to latch address information.

DATA DEMULTIPLEXING

After the CPU places a memory address on the bus, a data transfer must take place either into the CPU from memory or from the CPU to memory. The direction is indicated by the XTC line. The various SELECT lines are activated during the data-in and data-out phases of the memory cycle. XTC is high for the first half of a memory cycle (when memory read operations may be performed) and low for the second half (when memory may be written into). Thus XTC may be directly connected to OEH, Output Enable Active High, of the ROM chips and R/\overline{W} , Write Enable Active Low, of the RAM chips to enable these chips for reading or writing. During XTC high, of course, the RAM may be selected for reading. The memory outputs will not be activated unless the chip has been selected as well as had its output enabled. Otherwise, many chips would be activated at the same time.

Obviously, it would be undesirable to simultaneously read from several devices onto the same DX lines at once.

For this reason, the active low chip select pins on the RAM chips and OEL, Output Enable Active Low, on the IM6312's are connected to the SEL line. This line may be strapped to either the "MEM SEL" line or the AND'ed combination of "MEM SEL" and "CP SEL". These are active low signals generated by the CPU to select user memory, MEM SEL, or control panel memory, CP SEL. With only the Intersil provided control panel ROM in the system, the jumpers should provide the combination AND signal. This combination signal will select memory when either MEM SEL or CP SEL goes low.

Another aspect to be considered is how addressable memory space is partitioned. In the INTERCEPT JR., the MONITOR ROM occupies the highest 1K of the basic 4K address space and the RAM occupies the lowest 256 words of this space. It is possible to program 256 word pages of the 4K address space for RAM into the IM6312 ROM such that it will generate an RSEL, RAM SELECT, signal by decoding the high

order four bits of the address. These fields must obviously be aligned with page boundaries. RSEL is connected to CS₁ of the IM6561's. In the IM6312-002 MONITOR ROM, RSEL is activated by "0000" on DXO, DX1, DX2 and DX3.

RSEL allows random mapping of double page RAM fields within the 4K address space. Note that the base page, or at least the first 16 locations must be writable in order for autoincrement instructions and interrupt instructions to work. Also note that the highest location (7777) should normally be in ROM as it is used as a pointer to power up initialization routines. See Figure 8-1 for a memory map.

Normally the RAM area does not overlap with the ROM area, therefore, one of the RAM chip select pins is kept permanently low by a jumper to GND so that selection depends only on the chip select connected to the SEL line. BVCC is always present for data retention.

The mapping of RAM into ROM space is of significance should the user generate a ROM to be placed in the spare socket which requires this feature. In such a case, the RAM chip select jumper must be connected to the appropriate RSEL pin. The ROM is mask programmed to generate RSEL appropriately.

Please refer to the IM6312 data sheet for further details.

KEYBOARD INPUT

The INTERCEPT JR. uses a 12 switch keyboard which is an ideal situation as there are 12 DX lines. Each key is connected through a 3-state inverting buffer to the corresponding DX line.

When the CPU executes an OSR instruction, OR Switch Register with accumulator contents, it activates the SW SEL, Switch Select, line and OR's the DX bus with the accumulator. SW SEL is used to enable the keyboard buffers thereby giving the means to read the keyboard.

Naturally, it must not respond to illegal key closures (illegal combinations, bouncing, or too many keys being depressed, etc.). These conditions are checked by the firmware, to be described later.

To improve noise immunity, the inputs to the buffers are pulled up to VCC via 1K resistors in a DIP package.

DIGITAL DISPLAY OUT

The INTERCEPT JR. has two display registers, each with four decimal (BCD) digits.

Each register is driven by a type 4511 CMOS BCD-TO-7 segment latch/decoder/driver and four transistors that enable successive digits in turn (H2, J2, Q1, Q3, Q4)*.

The CPU loads the BCD latch with a digit each, and the 34042 quad CMOS latch (G2) with a single bit and this enables two particular digits to display the decoded contents of the BCD latches. In the next cycle, the BCD latches get loaded with the contents of the two adjacent digits and the bit shifts one position in the quad latch, enabling the next digits, and so on. The CPU can blank the displays under keyboard control in order to conserve battery power.

The data in the AC is loaded into the display latches by 'LOAD DISPLAY' at IOTA \cdot XTC \cdot DEVSEL. The 'LOAD DISPLAY' command is generated by IOT decoding circuitry to be described in the next section.

The 2N2222 transistors, when turned on by the shifting bit, connect the LED common cathode to a low voltage. The drivers source current to individual segments, lighting these up for the time that the bit keeps that digit selected (nominally 8 ms at 4 MHz).

IOT PROCESSING

The INTERCEPT JR. uses Programmed Data Transfer techniques for all I/O operations. This technique uses the IM6100 IOT instructions, which have an octal opcode of 6, to initiate peripheral I/O operations. These operations could be sensing of peripheral device status flags, for example, 'is TTY ready", or controlling device operation, for example, "move disk head to next track", or a data transfer operation, for example, "read character". The nature of the operation depends entirely on the device interface circuitry.

The IM6100 also has the capability for INTERRUPT data transfers and DMA data transfer, but these are unused in the INTERCEPT JR. except for console interrupts described in the next section.

When the IM6100 fetches an IOT instruction, it executes an IOTA cycle, during which the entire IOT instruction is placed on the DX bus during LXMAR time. This means external address registers, such as the ones on board memory chips, will all be loaded with the IOT instruction. In order not to have a memory chip respond falsely, the CPU suppresses the MEM SEL signal, and activates the DEV SEL, Device Select, signal. The device address and control information present in bits 3-11 of the IOT instruction are decoded and the DEV SEL signal is used by the peripheral to enable the selected functions.

* These designations are used to identify the devices on the schematic and on the assembled board.

The 340175 CMOS quad latch (B3) is strobed by LXMAR to latch DX3 and DX9, DX10, DX11 from the bus. The 74C42 CMOS BCD to decimal decoder (B4) is fed with AX11, AX10, AX9 and AX3. The AX3 line acts as an enable to the decoder and must be high in order for the D input to the decoder, which is the most significant bit, to be low.

This means that all device addresses in this system should be of the form 1XXXXX. The 74C42 is a control decoder and only eight of its outputs, corresponding to the possible permutations of the three bit control field in the IOT instruction, may be used. Of these eight, only five, corresponding to IOT's with DX3 high and 0, 2, 3, 6 and 7_8 in their control field, are used. For simplicity we shall assume a device address of 100000 or 40_8 .

These IOT instructions will now be described:

LOAD DISPLAY, or 6400 is gated along with XTC and DEVSEL through an OR, the 34025 NOR (A3) followed by the 34069 inverter (C4), into the <u>Load Enable</u> pins of the display drivers. During IOTA \cdot XTC \cdot DEVSEL time, this control function will load the latches in the display drivers (H2, J2) and the 34042 quad latch (G2) which drives the multiplexing transistors.

IOT RESET, or 6406 is gated along with DEVSEL through the two NOR's (C5) to generate an active low RESET. RESET is also generated on power-up, when the one input of the 34001 NOR gate (C5) is pulled high by the charging .47 microfarad capacitor. The RESET line driven low will clear the IM6100 accumulator, load 7777g into the program counter, and halt the CPU, besides resetting external logic. RESET is activated on power-up through the RC circuit, at any time by pressing the RESET switch or under program control. The RESET line into the IM6100 is sampled at T1 time of the last cycle of an instruction, and the worst case response time is 14 µsec at 4 MHz. The IOT RESET is a software simulation of the direct RESET line needing approximately a dozen instructions. Including the time needed to debounce the keypad, executing the routine, etc., the response time is many milliseconds. Thus the CPU does not actually do a RESET; it is made to clear all registers initialize the PC to 0200 and is then halted.

IOT RUN, or 6407 from the control decoder is gated along with DEVSEL. When enabled by XTC, the RUN/HLT line is driven by a negative going pulse. Each such pulse causes the CPU to alternatively run and halt by changing the state of the internal RUN/HLT flip flop.

IOT CPREQ, or 6403 is gated with DEVSEL through the 34025 NOR (F3) and 34069 inverter (C4) into the active low direct set input of the DFF 74C74 (D5). During IOTA time, DEVSEL will set the DFF and provided that INTGNT is not active and holding off the 34011 NAND (D4), a CPREQ will be issued. The 74C74 is reset by CPSEL.

CP TIMER EN/DIS, or 6402 is an IOT instruction that is used to turn the control panel interrupt timer on or off under program control. The CP timer circuit is formed by two gates (34001 NOR at C5 and 34011 inverter at D4) and an RC circuit (6.8 K R^3 and .47 microfarad C^8) and as long as pin 5 of the NOR at C5 is low, the oscillator is enabled, running and clocking the DFF at D⁵ at a 30 Hz rate. Thus, CP REQuests are issued at a 30 Hz rate (the DFF being reset by CPSEL in between). When IOT instruction 6402 is executed, during IOTA · DEVSEL · XTC time, clock input pin 11 of the 74C74 DFF at C3 is driven low and the rising edge of DEVSEL clocks in the data on DXII into the flip flop. At this time, the IM6100 is driving the DX bus with the accumulator so if AC11 is high, the DFF is set, and if AC11 is low, the DFF is cleared. If the DFF is set, the CP timer is disabled by holding pin 4 of the NOR gate at C5 at a low. If the DFF is cleared, this gate is allowed to toggle and the timer runs. Note that during normal operation, the CP timer is running, and CPREQ and CPSEL are being generated.

The reason that CPREQ is not activated unless INTGNT is inactive is that control panel interrupt requests have higher priority than device interrupt requests or even DMA requests. Since INTERCEPT JR. uses main memory for both control panel as well as user routines, interrupt return addresses are saved in location Thus, if CPREQ were allowed to be active at all times, the user's device interrupt return address could be destroyed by a CPREQ. INTGNT is activated only by INTREQ and is reset by executing the first IOT instruction in the interrupt service routine. At this time, the CPREQ is allowed to get through, as long as the IOT did not disable the CP timer. If the user is implementing an interrupting device interface with PIE interrupts enabled, a single IOT would be used to reset INTGNT, disable CPREQ and get an interrupt vector from the PIE. At the conclusion of the service routine, CPREQ would be re-enabled under program control.

The monitor firmware will be more fully discussed in Chapter 8. For a more detailed discussion of the control panel capabilities of the IM6100, refer to the IM6100 brochure. INTERCEPT JR. uses the same memory address space for control panel, monitor functions and user memory. See the discussion on the monitor program for further details.

OPTIONS

The user may put another IM6312 ROM in the second socket provided on the INTERCEPT JR. board. Extra decoders are not required. The second ROM could contain user and/or factory generated programs such as floating point math routines, I/O handlers, diagnostics programs, utilities, etc. See Appendix K.

As part of the initialization sequence, the MONITOR will also check for the presence of a ROM in the expansion socket. Proper interfacing to the MONITOR requires that any ROM in this socket should be programmed to occupy the 4000g-5777g address area, should have 0764g (two's complement of 7014g) in location 5777g and should have a valid entry point at 4000g.

The following chapters will describe the optional boards that may be plugged into the 6950-INTERCEPT JR. to expand its capabilities. The three connectors on the 6950 board are in parallel and bring out the DX bus, IM6100 control lines, select lines, power connections and unused IOT control lines from the 74C42 decoder (B4).

The basic 256 words of RAM may be disabled by tying chip select high through the jumper option pins provided. This is done by cutting the printed trace between pins 2 and 4 (above MONITOR ROM) and strapping pins 1 and 2 together. This is done when the 6951-MIKX12 JR. RAM MODULE board is to be mapped into the lower 1K field in 0008 to 17778.

The information in this manual and in the IM6100 Family brochure should help the user to design his own I/O interface boards if required.

CHAPTER 5 JR. RAM MODULE

INTRODUCTION

The JR. RAM MODULE, 6951-M1KX12, pictured in Figure 5-1, allows the user to expand the complexity and size of the programs that may be written up to the 4K word memory size limit.

The board is fully nonvolatile using penlite cells to retain the RAM chips in the low power data retention mode. Thus, the user may write programs on a board, unplug it and use a different board without losing programs. The board may be mapped into memory space according to several jumper options. The board may also be configured as either an Instruction Field or a Data Field by jumper option. (Refer to the IM6100 brochure.

DISCUSSION

Twelve (12) IM6518 CMOS RAM chips are used to implement the 1024 x 12 array for this board. The IM6518 is organized as 1024×1 with separate data-in and data-out pins and ten (10) address pins. (Refer to the IM6508/18 data sheet for further information.) INTERCEPT JR. uses a single bus for all address and data I/O, therefore, the DI and DO pins on the RAM chips are both connected to the respective DX line. The ten (10) address lines are buffered using ten gates from

two 34050 hex CMOS buffers (G1 and G2). One gate is used to buffer XTC. This signal and LXMAR, as previously explained in the discussion of the 6950 board, strobe memory addresses into the RAM chips and enable the chip for data write operations.

The SUP SEL signal is also buffered. This signal selects the RAM for both control panel and main memory use.

A NAND latch is formed by two gates of 34011 quad two input NAND (E3) and can be used to disable memory by grounding one input to one of these gates. Switch S1, DISABLE, is provided for this purpose.

The two most significant bits of address are latched in the 340175 quad D-type latch (G3). This latch provides both true and complemented outputs, and, by connecting the appropriate jumpers to the 34075 three input OR (F3), the IK RAM field provided by the board may be mapped into any of the four IK fields of the total 4K memory space addressable by the IM6100 microprocessor.

Since the highest 1K field is occupied by the MONITOR ROM and 256 words of RAM are provided in the lower 1K field by the 6950 module, normally the jumper should be placed to map the RAM into one of the middle 1K areas, for example 20008-37778 or 40008-57778.

If these two fields are being allocated for the PROM board, 6952, the RAM may be mapped into the 1K base field in which it will overlay the 256 words provided in the 6950 board. This will provide the additional 768 words that would otherwise be unobtainable.

Table 5-1 provides the jumper connections for different mappings.

TABLE 5-1

Desired Mapping	Strap* Pins 9, 10
0-1777	To Pins 5 & 8
2000-3777	To Pins 5 & 6
4000-5777	To Pins 7 & 8
6000-7777	To Pins 7 & 6

^{*} These strapping option pins are numbered and located between the 340175 at G3 and the connector pins. For mapping 2000-3777, pins 9 and 5 and pins 10 and 6 are strapped together. Other mappings require cutting the printed trace before adding the new straps.

The board may also be configured to be either an instruction field or a data field by an appropriate jumper connected to the DATAF pin. Normally, the field jumper from test point 2 is connected to VCC and distinctions are not made between IF and DF. These distinctions are usually required only in extended memory systems (Refer to IM6102 data sheet).

The RAM on this board may be made nonvolatile by using two "AA" type penlite cells in the clips provided. If V_{CC} from the "D" cells falls below 3.9 volts, the zener diode CR2 turns off, turning off transistor Q2, which in turn cuts off the series transistor Q1. Diode CR1 becomes forward biased, and the "AA" cells power the RAM array in the data retention mode.

JR. RAM MODULE SCHEMATIC

CHAPTER 6 JR. P/ROM MODULE

INTRODUCTION

The JR. P/ROM MODULE, 6952-P2KX12, pictured in Figure 6-1, enables user developed programs to be stored in user programmable read only memory.

The user has the option of utilizing the IM5623, 256 X 4, or IM5624, 512 X 4, three-state output Avalanche Induced Migration (AIM) programmable bipolar P/ROMs to obtain from 256 to 2048 words of program. Power dissipation is minimized by supplying power, via the POWER STROBE DRIVERS, only to those P/ROMs which are enabled. ADDRESS LATCH, MEMORY ENABLE AND POWER STROBE DECODING LOGIC are pictured in Figure 6-1.

The figure shows the address range for IM5624, 512 X 4 P/ROMs. For the user's convenience, the address range for the IM5623, 256 X 4, P/ROM and IM5624 are shown in TABLE 6-1. The user should change address range, as required, when mixing IM5623 and IM5624 on a given module.

TABLE 6-1
ADDRESS RANGE IN OCTAL IM5623/IM5624

IM5623 (256 X 4)	IM5624 (512 X 4)
2000-2377	2000-2777
3000-3377	3000-3777
4000-4377	4000-4777
5000-5377	5000-5777

DISCUSSION

This text should be used in conjunction with the enclosed schematic for a complete understanding of the 6952-P2KX12 JR. P/ROM MODULE.

The memory address is latched from the DX bus by the two 74LS174 hex latches when they are strobed by LXMAR.

The lower nine bits of the address go to the address inputs of all the twelve P/ROMs, which are arranged in a matrix of four rows of three.

The higher order three bits of the address are decoded by the 74LS138, and it generates a chip enable to the appropriate row of P/ROMs. This chip enable is also used to turn on the two transistors in the appropriate power strobe circuit in order to connect V_{CC} (less a $V_{CE}(SAT)$) to the power pins of the enabled row of P/ROMs. There is no delay penalty in power strobing because the bipolar P/ROMs are much faster than required by the CMOS processor. The average power dissipation is reduced to approximately 5% of the non-strobed case. With the chip enable high, the P/ROM outputs are in a high impedance state permitting XTC to be used as one of the signals enabling the 74LS138 decoder. The P/ROM outputs, therefore, may be directly connected to the DX bus. The XTC line signals the read and write phases of the memory cycle. Thus, XTC when high, enables decoder pin Gl during the time that the address is latched into the 74LS174's, and remains enabled during the time the address is decoded, the P/ROMs are enabled, strobed and accessed. XTC goes low during the second half of the memory cycle, disabling the P/ROMs.

Decoder pin G2A is enabled only during the $\overline{\text{SUP}}$ $\overline{\text{SEL}}$ time, that is, when either MEMSEL or CPSEL is active. Therefore, the memory is really powered only for three clock cycles.

The uppermost 1K of memory is in the monitor ROM on the processor board, so the decoder does not use the pins for a decoded zero and one.

In the event that extended memory is used, the DATAF (DATA Field) pin is jumpered to the G2B enable pin of the 74LS138 decoder. This signal is normally low, enabling the decoder, and is activated to the high state during the executive phase of indirectly addressed AND, TAD, ISZ and DCA instructions (see IM6100 data sheet) so that data transfers are controlled by the Data Field, DF, and not the Instruction Field, IF, when addressing more than 4K words. Otherwise, the G2B pin may be left grounded by a jumper.

Table 6-1 shows the address space occupied by the P/ROMs. The user must supply at least three P/ROMs and can use them anywhere in the address space provided.

JR. P/ROM MODULE SCHEMATIC

6-4

CHAPTER 7 JR. SERIAL I/O MODULE

INTRODUCTION

The JR. SERIAL I/O MODULE, 6953-PIEART, pictured in Figure 7-1, allows the user to communicate with a 110 baud full duplex terminal with either an EIA RS-232C type differential voltage interface or a 20mA current loop interface.

This board uses two CMOS LSI chips, the IM6101 Programmable Interface Element (PIE) and the IM6403 Universal Asynchronous Receiver/
Transmitter (UART). The MONITOR ROM provided with the 6950INTERCEPT JR. MODULE contains a bootstrap loader for loading programs from the 6953-PIEART using BIN formatted media, such as paper tape punched out by the 6950-INTERCEPT JR. via the 6953-PIEART and an ASR-33 Teletype using the Memory Dump routines contained in the MONITOR ROM. This allows the user to create programs, dump them out on paper tape and use them at a later date by simply reading the tape back in.

DISCUSSION

The data sheets on the PIE and UART should be studied in order to fully understand the description of the operation of this module.

It will also be beneficial to study the listing of the PIE-UART routines in the MONITOR ROM.

The PIE address used is 00111, therefore, all IOT instructions to the PIE are of the form 616X or 617X in octal.

By using a UART, the amount of code required to do serial I/O is considerably reduced because bit timing is taken care of by the UART. Also, the programs become insensitive to the CPU clock frequency. Both the PIE (B3) and the UART (B1) are general purpose programmable devices and, therefore, need to be programmed or initialized to specific system requirements.

Some functions are programmed by hardwired pin connections and others by MONITOR ROM firmware routines.

The printed wiring is set up to program the PIE SEL 3-7 inputs to the address 00111. It also grounds CNTRL pin 2 of the 6403 UART selecting the internal 11 stage divider. This divider's output is the 16X clock used by the receiver register and transmitter register. The 6403 is designed to be directly clocked by a crystal. The crystal used is a TV colorburst crystal of 3,579,545 Hz. When this is divided by 2¹¹ and 16, the baud rate of 109.2 Hz is within the tolerance limits of a 110 baud Teletype interface. The DIP package of 10K resistors (A3) pulls up the SEL 5, 6, 7 inputs and the PIE series priority input pin 3. The PIE control registers A and B and the vector register are initialized by the INPIE routine in firmware. Table 7-1 shows the constants loaded into these registers.

TABLE 7-1
CONTROL REGISTER A

0	1	2	3	4	5	6	7	8	9	10	11
FL4	FL3	FL2	FL1	WP2		WP1		IE4	IE3	IE2	IE1
1	1	1	0	1	0	0	0	0	0	0	0
FL 2	2, 3, 4	1	bits set high cause the unused FLAG outputs 2, 3, 4 to be at high level								
FL `	FL l bit set low causes FLAG output l (Reader Run Relay Flag) to be at low level										
WP 2	2		posit	ive pul	ses a	sitive t WRITE ITROL RE	outp	out 2			

wp | set low causes negative pulses at WRITE output l (used to load the UART TRANSMITTER BUFFER REGISTER from the data inputs).

IE 1, 2, 3, 4 set at 0 disables all PIE interrupts.

TABLE 7-2 CONTROL REGISTER B

0	1	2	3	4	5	6	7
SL4	SL3	SL2	SL1	SP4	SP3	SP2	SP1
0	0	1	1	0	1	1	1

NOTE:

- 1. Sense input S4 is not used, therefore, SL4 and SP4 bits are irrelevant.
- 2. SL 3 = 0 and SP 3 = 1 program the SENSE3 flip flop to be set by a positive going edge. SENSE3 is connected to the serial data input of the UART and is used for start bit detection.
- 3. SL2 = 1 and SP 2 = 1 program the SENSE2 flip flop to be set by a high level. SENSE2 is connected to the TRANSMITTER BUFFER REGISTER EMPTY (TBRE) output of the UART which indicates that the UART transmitter is ready for new data. The TBRE signal is a high level.
- 4. SL 1 = 1 and SP 1 = 1 program the SENSE1 flip flop to be set by a high level. SENSE1 is connected to the DATA READY (DR) output of the UART, which is a high level indicating that a character has been received and transferred to the receiver buffer register.

TABLE 7-3 VECTOR REGISTER

0	1	2	3	4	5	6	7	8	9	10	11
]	INTE	RRUP	Γ VE(CTOR				VF	PR1
n	0	0	0	0	0	0	0	0	0	0	0

NOTE: The PIE interrupts are disabled in this application, and the sense flip flops are tested by the firmware with SKIP instructions.

The PIE's READ2 output is unused and the READ1 output is connected to the UART RECEIVER REGISTER DISABLE (RRD) and DATA RECEIVED RESET (DRR, an active low input) so that when a received character is ready, R1 which is normally high (keeping the RECEIVER REGISTER disabled) pulses low during IOTA-DEVSEL, transferring the receiver data to the IM6100 via the DX bus while simultaneously clearing the DR flag in readiness for the next character.

The UART is also initialized both via hardwired connections and under program control.

STATUS FLAGS DISABLE (SFD pin 16) is grounded to enable all UART status flags. The UART CONTROL REGISTER bits are loaded from the DX bus as shown in Table 7-4.

т	Δ	R	1		7	_ 1
и.	m	n		г-	•	

	DX Lines	0	1	2	3	4	
	Designations	ΡI	SBS	EPE	CLS1	CLS2	
	Constant	1	1	1	1	1	
PI = 1	PARITY INHIBIT is inhibited ar forced low.	- Par nd PAR	ity gen ITY ERR	erati OR (P	on and E) out	checking out is	3
SBS = 1	STOP BIT SELECT CLS2, this sele					CLS1 and	
EPE = 1	EVEN PARITY ENA	NBLE -	Irrele	vant	as par	ity is	
CLS1 = 1) CLS2 = 1)	CHARACTER LENGT		ECTED -	Thes	e bits	select o	n

All unused pins are brought out to test points, to faciliate experiments by the user.

The UART TBR parallel data input bus and RBR parallel data output bus are connected to DX4-11.

The serial input and output pins of the UART go to both EIA-RS-232C and 20 mA current loop interface drivers and receivers.

Table 7-5 shows the connector and jumper options for the two interfaces.

Serial output bits from the UART cause the push-pull EIA driver to switch between V_{CC} and -12 volt and transistor Q2 to supply 25 mA nominally (5 volt \div (R5 + R4)) to the current loop interface.

Briefly, the PIEART interface works as follows once the interface is initialized. When transmitting to a terminal, the IM6100 executes a waiting loop using a SKIP on SENSE2 instruction followed by a jump back. SENSE2 as shown in Table 7-3 is set when the TRANSMITTER BUFFER is empty. When the character has been transmitted, the waiting loop is exited and a WRITE1 instruction is executed writing a new character into the UART transmit buffer. The PIE strobes the DX bus at the proper time when this instruction is performed.

When receiving from a terminal, the IM6100 resets the SENSE3 flip flop by executing a SKIP on SENSE3 instruction. This flip flop senses the start bit of a character. The READER RUN flag is set by executing a SET FLAG 1 instruction to the PIE. Now the interface is ready for a character from either a tape reader or a keyboard and a wait loop is entered. This loop is exited when a start bit is detected and the READER RUN flag is cleared just in case the data source was a reader. This stops the reader from advancing until the CPU is ready for another character. Another wait loop is entered and this time it is exited when the DATA RECEIVED flag goes true, setting the SENSE1 flip flop. The accumulator may then be cleared and a READ1 command executed. This causes the PIE to enable the UART receiver buffer onto the DX bus, simultaneously clearing the DR flag.

When reading BIN tape, the above transmit and receive program sequences are called as subroutines, while the main program performs functions such as testing characters for a rubout, accumulating checksums, testing for leader-trailer, etc. (Refer to MONITOR description).

Whenever SKIP on SENSE flip flop instructions are executed, the PIE will test the state of the desired flip flop and, if it has been set, it will assert the SKP/INT output causing the IM6100 to skip the next instruction. The sense flip flop is then cleared. For more details, refer to the PIE data sheet.

TABLE 7-5
20 mA LOOP/EIA RS232-C CONNECTOR PINOUTS

OPTION	STANDARD CONNECTION	MODIFIED CONNECTION
Voltage Change	+5 VDC on V _{CC}	+10 VDC on V _{CC}
Option Option	Connect points #1 and #2	Cut between points #1 and #2 and connect points #1 and #3
Driver/Receiver	20 mA loop	EIA RS232-C
Change Option	Connect points #4 and #5	Cut between points #4 and #5 and connect points #5 and #6
EIA Earth Ground Option	No EIA Earth ground	To connect Earth ground, tie points #7 and #8 together

CONNECTOR PINOUTS

20 mA Loop		EIA RS	232-C
<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	XMIT+	1	Earth Ground
2	KEY	2	XMIT
3	XMIT-	3	RCVE
4	RCVE+	7	Signal Ground
5	RCVE-	18	-12 VDC
6	RDR+	All ot	hers are N.C.
7	RDR-		ear to Send)
8	-12 VDC		ta Set Ready) ceived Line Signal
9	N.C.	De	tector)
10	N.C.		ave to be tied to VCC some terminals

In order to use the module, it must first be connected to a serial ASCII 110 baud tape reader, typically an ASR-33 Teletype equipped with the reader. The connection is done by a cable connecting the 20 mA loop connector pins to the Teletype terminal strip. The Teletype is turned to the LINE position.

Note that the Teletype must be equipped for 20 mA full duplex operation and should have a reader run relay installed (such as 6909-RELAY).

To read BIN format tape, the tape is placed in the reader, the key is put in the START position and the sequence CNTRL 1 is pressed on the INTERCEPT JR.

As explained on page 2-5, this function will activate the loader. At the end of the load sequence, the machine is halted showing the AC (SAVAC location 0140) whose contents represent the checksum and should be zero for a valid load.

To dump memory onto tape, the starting and ending address of the block should be entered into locations 0176 and 0177 and the program run starting at location 7510. Naturally, the tape punch should be turned on.

Chapter 8 page 14 describes these routines in more detail.

Table 7-6 lists the PIE-UART instructions as used by the MONITOR. These instructions are also listed in the program listing.

TABLE 7-6 PIE-UART INSTRUCTIONS

6160	READ1	(Reset UART Data Received Flag and read received character)
6170	READ2	(Generate read strobe 2) - Not used
6161	WRITE1	(Load UART Transmit Buffer)
6171	WRITE2	(Load UART Control Register)
6162	SKIP1	(Test state of sense FF1; skip if set by UART Data Received Flag)
6163	SKIP2	(Test state of sense FF2; skip if set by UART Transmit Buffer Empty Flag)
6172	SKIP3	(Test state of sense FF3; skip if set by START bit)
6173	SKIP4	(Test state of sense FF4; skip if set) - Not used

6164	RCRA	(Read control register A)
6165	WCRA	(Write control register A)
6175	WCRB	(Write control register B)
6174	WVR	(Write vector register)
6166	SFLAG1	(Set FLAG 1) - Reader Relay Flag - ON
6176	SFLAG3	(Set FLAG 3)
6167	CFLAG1	(Clear FLAG 1) - Reader Run Relay Flag - OFF
6177	CFLAG3	(Clear FLAG 3)

In addition to these, the IM6100 internal IOT instruction 6007_8 or CAF (Clear All Flags) clears the sense flip-flop thus clearing all interrupt requests.

The serial I/O module is typically used with the INTERCEPT JR. BINARY LOADER and MEMORY DUMP routines in order to read BIN format tape and dump a block of memory onto BIN formatted tape.

The PIE-UART interface is initialized only when the BIN and DUMP programs are used. The user has access to these routines via the software subroutine call stacking mechanism in case the serial port is to be used for other purposes, such as printing characters on the Teletype.

The user may also write his own code in RAM for interface utilization and handling Teletype I/O.

Example 14 in Chapter 3 shows how the MONITOR subroutine may be called to implement Teletype keyboard and printer operation.

JR. PIEART SERIAL I/O MODULE SCHEMATIC

CHAPTER 8 INTERCEPT JR. TUTORIAL SYSTEM MONITOR PROGRAM

The MONITOR is structured as an interrupt driven main program refreshing the display and looking for a CNTRL key depression; upon detecting it, it branches to a routine SHELL that picks up the next key depression, branches to appropriate routines and performs the operation.

The MONITOR uses main memory to store control panel routines in order to keep the system inexpensive. The IM6100 architecture, however, will allow control panel programs to exist in separate memory totally transparent to the user.

Figure 8-1 shows the memory allocation map for INTERCEPT JR.

The MONITOR uses several locations in page 0. These are listed in the program.

Some of these locations, SAVAC, SAVMQ, SAVFL in location 0140_8 , 0141_8 , 0142_8 , are used by the MONITOR to store IM6100 registers and flags and enable the user to conveniently examine and alter these registers.

Locations 0000 and locations 01438 to 01778 inclusive may not be altered by entering data through the keypad (MEM, DECPC or MICRO modes) or by using the BIN loader.

The user is urged to follow the descriptions of the MONITOR routines by referring to the program listing. The symbol table at the end of the listing may be used to find subroutine entry points and absolute addresses of symbolic operands.

FIGURE 8-1

	THE COLUMN	11000	SUBROUTINE
BUTTON	SW REG BIT#	HEX VALUE	RETY SAVE THE AC
RED	٥	B	
YELLOW	1	Α	GET THE RETURN
"MEM"	2	9	ADDRESS
"DEC PC"	3	8	
7	4	7	
6	5	6	DECREMENT THE
5	6	ε	STACK POINT ER
4	7	4	<u></u>
3	8	3	RESTORE THE
2	9	z	THE S MC
,	10	1	
0	11	0	RETURN TO THE PROGRAM

MONITOR STACK

Summary

Locations 1678 to 1778 are used as a software stack for subroutine return addresses. Additional area can be allocated to the stack by reserving any amount of space from 2008 on down.

On every CP interrupt after saving AC, MQ and FLAGS, the MONITOR reestablishes the stack locations in RAM but will reset the stack pointer and display modes <u>ONLY</u> if the user's program counter is pointing to location 7777. A stack call is implemented by the instruction 4161 followed by a 12-bit absolute pointer address and a return is implemented by the instruction 5564.

Discussion

The JMS (jump to subroutine) instruction of the IM6100 operates by storing the return address in the location referenced by the instruction and stepping to the following location. This location must contain an executable instruction. ROM resident subroutines must have their entry points in RAM, as ROM cannot be written into. The MONITOR uses a pushdown stack to minimize the overhead involved in storing subroutine return addresses.

A subroutine is "called" by invoking a supervisory routine, CALL, followed by the subroutine entry address. CALL increments the PC then leaves it on a stack, starting at 0167, updating the stack pointer in 0165. A return from the subroutine is performed by executing another routine, RETURN, which links back to the main program by "popping" the return address off the stack, decrementing the pointer. The return address skips over the entry address which followed the CALL statement. By reserving enough space in RAM, subroutines may be "nested" to any practical depth desired. Programs starting at location 0200 limit the stack depth to nine locations, of which several may be used at any particular time by the MONITOR routines. The program makes no provision for interrupt service routines using the stack since these higher priority routines may overwrite locations used for temporary variables by subroutine calls or returns.

Referring to Page 8-2, the INTERCEPT JR. MAIN FLOW CHART, the MONITOR is entered on power-up or on every CPREQ through location 7777 of control panel memory and the return address is saved in location 0000. The MONITOR updates the register save locations and goes on to the initialization routines. The CP subroutine stack is established. (Refer to Appendix L for a description of software stack operation with the IM6100.) Returns from subroutine calls should normally leave AC, MQ and L unchanged.

Next, the presence of the expansion ROM is checked. If location 57778 has 07648 in it, the program branches to location 40008, which should be the entry point for the additional ROM.

If the expansion ROM is not present, the MONITOR checks whether it is going through a power-up RESET (PC = 77778). The stack base is initialized only if there is a power-up RESET or user PC is 77778.

The Display Refresh subroutine, REFSH, is executed 100-200 times a second in order to keep the display flicker-free.

Next, the keypad is tested for depression of the CNTRL key. If this is not detected, the monitor goes to the out point, restores registers and flags and returns via the pointer in location 0000.

If a CNTRL key depression is detected, the switch debouce routine, SWDB, is called, and the test for CNTRL is made again. In case the test fails, the routine waits for the keypad to become inactive, by calling CLKPD, and exits as before. If the CNTRL key is definitely detected, the MONITOR enters the undefined control state SHELL and subsequent key depressions will have to be detected and analyzed. The MONITOR calls HEX, which generates starting addresses for the subroutines that are used to service each of the different key depressions that define a control state. Figure 8-4 shows the connections between the keys and the DX bus, and the control state selected by the key.

The MONITOR is directed to the proper service routine, and may or may not need further data (more key depressions, external conditions, status word bit settings, etc.) to properly execute the routine.

We shall now study some frequently called subroutines in the MONITOR ROM, REFSH, SWDB, CLKPD, HEX and EXIT.

DX LINE	0	1	2	3	4	5
KEYBOARD	CNTRL	IAC REV IND	MEM OP3 SMA-QA	SETPC CLA OP2 7	DECPC OPI SZA-QL	RESET CLL IOT 6
CONTROL STATE	CNTRL	SHIFT	MEMory data deposit	SETPC	DECPC	RESET
VALUE RETURNED BY HEX	0013 ₈ or ^B 16	0012 ₈ or ^A 16	0011 ₈ or ⁹ 16	0007 ₈ or 7 ₁₆	0010 ₈ or ⁸ 16	00068 or ⁶ 16

DX LINE	6	7	8	9	10	11
KEYBOARD	HALT CMA JMP 5	RUN CML JMS 4	SIN RAR DCA 3	DIS RAL ISZ 2	OSR BSW TAD	MICRO SNL AND 0
CONTROL STATE	HALT	RUN	SINgle instruction execute	DISplay blank/ restore	binary loader	MICRO interpreter
VALUE RETURNED BY HEX	0005 ₈ or ⁵ 16	0004 ₈ or ⁴ 16	0003 ₈ or ³ 16	0002 ₈ or ² 16	0001 ₈ or 1 ₁₆	0000 ₈ or ⁰ 16

FIGURE 8-4

The REFSH routine checks the display flag (MSB) of the STATUS word in location 01438. If the flag is cleared, the display is blanked. If the flag is set, the routine examines location 01338, the SWITCH word. If the MONITOR UPDATE flag in the MSB of this word is clear, the routine jumps to UDIS. UDIS uses the display code in bits 10 and 11 of the status word as an index to one of the locations DISP1, DISP2, DISP3, DISP4 by adding these two bits to the constant TADJ - 01348 and using the sum as a pointer. Thus UDIS refreshes the "USER DISPLAY".

If the MONITOR UPDATE FLAG is set, the User PC is stored in SAV2 (01558) and bit 6 of location SWITCH is tested. If this bit is set, the data at the User's PC is obtained, stored in SAV3 (01568) and the ODISLD routine is called. This routine formats the contents of SAV2 and SAV3 into four words that are placed into locations DISP1, DISP2, DISP3, DISP4. These locations are used to update the display.

If bit 6 in SWITCH is cleared, the routine checks bit 7. If bit 7 is set, the User AC stored at SAVAC location 01408 is transferred to SAV3 so that the User PC and User AC are displayed in real time. The SHELL will recognize the CNTRL IAC sequence as a request to complement bit 6 in SWITCH.

If bit 7 is clear, location 01278 is used as a pointer to the word that will be placed in SAV3. On power-up initialization, SWITCH is loaded with 77778 so bit 7 is set at that time.

Figures 8-3A, 8-3B, 8-3C show the display options available to the user as determined by STATUS and SWITCH bits.

0	1	2	3	4	5	6	7	8	9	10	11
ST ₀	Χ	Χ	Χ	Χ	X	Χ	Χ	Χ	ST9	sT ₁₀	ST ₁₁

X = Don't Care

ST₀ = 0 - Displays blanked 1 - Display refresh enabled

ST9 = "bit bucket" catches carry out when ST10, ST11 are incremented. Program clears this bit before every update.

 ST_{10} ST_{11} = DISPLAY CODE when added to 01348 indicates which location (01348-01378) is used for display update.

FIGURE 8-3A STATUS WORD LOCATION 01438

2 3 4 5 8 9 0 1 6 7 10 11 SWO Χ Χ Χ Χ X SW6 SW7 χ Χ Χ χ

X = Don't Care; SWO is MONITOR UPDATE flag

SW₀ = 0 - Display refreshed through user programmed DISP1-4 locations.

1 - USER PC used to update left display; right display to be determined by SW₆ and SW₇.

SW₆ = 1 - Right display contains memory data at User PC.

0 - SW7 will determine right display.

SW7 = 1 - Right display contains user accumulator.

0 - Right display contains word pointed to by 01278.

FIGURE 8-3B SWITCH WORD LOCATION 01338

OPTION I: OXX XXX XXX XXX in location 11338
User loads location 01558, 01568 and calls ODISLD or loads location 01348, 01358, 01368, 01378. CP interrupts will place the contents of 01558 and 01568 in the left and right displays, respectively.

OPTION II: 1XX XXX 1XX XXX in location 01338

CP interrupts will place the User PC in the left display and data stored at the User PC in the right display.

OPTION III: 1XX XXX 01X XXX in location 01338 CP interrupts will place User PC in the left display and AC in the right display.

OPTION IV: 1XX XXX 00X XXX in location 01338 CP interrupts will place User PC in the left display and the contents of the location whose address is in location 01278 in the right display.

FIGURE 8-3C ACTIVE DISPLAY OPTIONS

The Octal Display Load routine ODISLD will place octal data passed through locations SAV2 and SAV3 (01558, 01568) into the four locations 01348-01378 in the format shown in Figure 8-3C. BCD data may also be displayed but the four locations must then be loaded under user program control.

FIGURE 8-3D DISPLAY FORMATTING

The ODISLD routine makes use of a subroutine SHIFTY to shift digits. The shift count is passed to the subroutine as a constant following the CALL address. Thus the address of this constant is pushed onto the return address stack and the subroutine must access it via the stack, and increment the return address.

SWDB - ROM Locations 6200-6224, flow chart, Page 8-4

This routine reads the keypad into the accumulator, waits for several milliseconds, and again reads the keypad to see if it matches the first reading, thus indicating the end of switch bounce. If the readings do not match another timeout is allowed. During the timeout, the display is refreshed approximately every four milliseconds.

CLKPD - ROM locations 6156-6164, flow chart Page 8-4

This routine calls SWDB in order to timeout bounces, and checks for a zero reading from the keypad (indicating keypad clear) as long as required then returns to the calling program.

HEX - ROM locations 6441-6473, flow chart Page 8-4

This routine calls CLKPD to get a keypad clear indication, then this routine determines which key was pressed and generates a different number for each key. These numbers are used by the SHELL routine to generate starting addresses to the control state routines for each key.

EXIT - ROM locations 6051-6063, flow chart Page 8-2

This routine is entered when no keypad activity can be detected. The routine waits for the keypad to clear by executing CLKPD, then restores all registers and flags from RAM save locations. It then returns via the pointer in location 0000.

There is another entry point to this routine called OUT which is used if no keypad activity was detected even before key debouncing is needed, indicating the keypad was already clear. By entering at OUT, CLKPD does not have to be called, saving at least the 20 milliseconds it takes to execute SWDB.

CONTROL STATE SERVICE ROUTINES

Four of the control states possible through key depressions require extremely simple service routines. These four along with the symbolic starting address are:

INSPECT AC INSAC DECREMENT PC DECPC HALT HALT RUN RUN

These routines are stored in ROM locations 6425-6440, and the flow charts are shown on Page 8-5.

These routines are each a few instructions long and self-explanatory. They modify the RAM save locations. INSAC complements bit 6 of the switch word in location 0133 (see Figure 8-3).

The control panel program when executing the EXIT routine restores all flags and registers in the IM6100 from these RAM save locations.

The RUN routine uses the IOT RUN, 6407, command described in Chapter 4.

Except for DECPC and INSAC, the above routines, when complete, branch to the EXIT routine described previously by jumping indirect via the location labeled UG. DECPC and INSAC, upon completion, jump indirect via BUG which is the starting address of SHELL, returning INTERCEPT JR. to the undefined control state. This enables the user to pick the next control state without again pressing the CNTRL key.

RESET, ROM locations 6165-6177, flow chart Page 8-4

A keypad RESET (CNTRL RESET) clears AC, FLAGS, MQ save locations, clears external device flags by pulling the microprocessor RESET line low during DEVSEL time (thus not affecting the microprocessor, which samples RESET during state time T1) and loads 0200 into SAVPC.

DEPOSIT INTO MEMORY, DEP, ROM locations 6502-6542, flow chart Page 8-5

This routine with starting address at DEP may be executed repeatedly when a sequence of numbers is entered from the keypad. It begins by calling the routine HEX. The value passed on by HEX is tested for being greater than 7. If it is not greater than 7, it is interpreted to be an octal digit to be deposited into memory by shifting it into the rightmost digit. This is done by getting the current memory data indirect via 00008, SAVPC, shifting left three bits, while clearing the link each time so that zeros are shifted into the LSB, then adding the new digit. The routine PLACE is then called, which makes a range check and disallows writing into location 00008 (reserved for interrupt return addresses) or into locations 01438 - 01778, as these locations are used by the MONITOR to store temporary variables.

If the digit is greater than 7, it is not to be entered into memory, but rather a pointer is computed to force a branch to the proper routine to be executed next. This is done by adding the contents of TAB, 65108, to the value returned by HEX, 10, 11, 12, 13, resulting in 65208, 65218, 65228,

65238. These locations contain pointers to routines DCI, PCl, EXIT and SHELL respectively.

In other words, pressing DECPC at this time results in routine DCI being executed, pressing MEM results in routine PCI being executed, pressing the yellow key results in the EXIT routine being executed and pressing the CNTRL key results in SHELL being executed, meaning a return to undefined control state.

Routine DCI decrements the PC by adding -1, 77778, to it, and returns to DEP to get the next digit, indicating the contents of the decremented memory location may now be altered.

Routine PCI increments the PC when key MEM is pressed and returns to DEP so that data may be entered into the incremented memory location.

These routines allow the user to step forwards and backwards through memory and alter data at will, as long as the memory area being addressed is not in ROM. ROM may be examined but not altered.

BLANK FLAG TOGGLE, BLK, ROM locations 6474-6501, flow chart Page 8-5

This routine is executed when the key marked DIS RAL ISZ is pressed when in the undefined control state. Bit #0 in the status word, Figure 8-3A, is called the blank flag, and this routine toggles it every time it is executed, therefore, allowing the user to shut off the display to conserve power and to turn it back on. The routine clears the AC and L, gets the status word, shifts bit #0 into the link (by doing a left shift), complements the link, shifts if back, restores status and goes to EXIT.

SET PROGRAM COUNTER, SETPC, ROM locations 6543-6573, flow chart Page 8-5

This routine, like DEP, accepts octal digits from the keypad. It begins by calling the routine HEX to get a valid number from a key depression. The value is checked for being over 7. If not, the routine goes on to GOON, which loads the digit into the rightmost octal position in the PC and jumps back to SETPC to pick up a new key depression.

If the value returned by HEX is greater than 7, a base address in location ADJT is added to it, and the sum is used as an indirect pointer back to SETPC (if the DECPC or MEM keys are pressed) to EXIT (if yellow key is pressed) or to SHELL (if CNTRL is pressed).

MICROINTERPRETER, MICRO, ROM locations 6600-7275, flow chart Page 8-6

Routine MICRO calls HEX and gets an index to compute a pointer to the routines servicing the individual keys (see Example 5 in Chapter 3 for a detailed description).

Pressing the IAC key causes AINC to be executed, incrementing SAVPC. Pressing any of the keys with memory reference instruction opcodes on them causes routines ATAD, AISZ, ADCA, AJMS or AJMP to be executed. These routines load the opcode into the AC and jump to AAND. (Note that the opcodes are sometimes stored as constants, and sometimes are instructions located elsewhere in the same page). After the opcode of a memory reference instruction (MRI) is interpreted, when the keypad is activated to enter an address digit, the value is first checked to be a valid digit (less than or equal to 7) and displayed as the least significant octal digit in the right display. When any numeric key is pressed, the opcode is shifted out and displayed continuously in the left display. The user can enter any string of octal digits into the right display from right to left, and terminate the string by a CNTRL keypress. If the absolute address in the right display is valid (page 0 address or current page address) the MICRO will interpret the instruction correctly along with the proper page bit magnitude. While the CNTRL key is depressed, MICRO will display the instruction on the right, the user PC on the left. As the CNTRL key is released, the left display increments and the MICRO mode is reentered for the next instruction.

If the IAC key is pressed without pressing any numeric key, the PC will increment and the MICRO mode will remain in effect. Note that the yellow IAC key is also labeled IND and may be used to set the indirect bit.

Routine MRPA continues to scan digits entered from the keypad and checks to see if they are address digits, 0-7, a CNTRL key depression (routine NEXT is executed in which the user PC is incremented, and control returns to MICRO to interpret the next instruction) or an IND key depression (in which case routine ZONK is entered in order to set indirect bit 3). This is done by rotating the indirect bit into the link, setting it and rotating back. Control is passed back to MRPA so it makes no difference if the indirect bit is set before or after the address bits are supplied.

MICRO, like SHELL, depends on MONITOR utility routines HEX, CLKPD, SWDB, PLACE, etc. in order to acquire valid keypad data and enter it into allowable memory space.

When interpreting MRI's, MICRO makes use of the different display mode options in the routine TOZE by loading SAV2 and SAV3 with the opcode and absolute address and calling ODISLD. MRPA is again entered to acquire the next digit while control panel interrupts cause the MONITOR to display the opcode and address. When address entry is terminated, routine ADTS checks if the address is in page 0 or in the current page (by comparing PC page bits with page bits of address) and either calls PLACE or branches to FLASH.

PLACE (Page 8-8, locations 7561-7577) makes a range check and disallows writing into location 0000g (reserved for interrupt return addresses) or into locations 0143g to 0177g as these locations are used by the MONITOR to store temporary variables.

If the absolute address is out of page, FLASH is entered, which flashes the display to indicate an invalid address field. The flash routine blanks the display using IOT instruction 6400 and times out approximately $(4096 \ X \ (16 + 10) \ X \ 10)$ or $1064960 \ states$. This takes over half a second at 3.33 or 4 MHz.

FLASH then checks to see if the keypad has been depressed. If it has not, the routine continues to time out a different constant, TKB. If it has, the address field is cleared and subsequent depressions of the keys load the new digits in the address field.

Routine AIOT (Page 8-8, locations 7000-7042) is entered if in the MICRO mode, key IOT is pressed. An opcode of 6 is entered into the AC with a microprogrammed combination of Group I microinstructions and the routine collects digits from the keypad, while checking for a CNTRL key entry.

Detection of a CNTRL causes a branch to NEXT which increments SAVPC and returns to MICRO as before. Octal digits are shifted into the device address and control fields of the IOT instruction from right to left.

Routine AOPRI (Page 8-9, locations 7043-7124) is entered when an operate group I instruction is to be loaded via the keypad. The routine stores 7000 into the user addressed location by calling PLACE with 7000 in the accumulator. Then HEX is called as further digits are expected.

A table of jump addresses is used as described in Example 5, Chapter 3 to branch to the proper routine.

The branches either cause the program to ignore the key and look for the next key depression, AOPRI + 3, or call BSETII or call an appropriate bit set subroutine, JAIO-JA4. The bit set routines are used by routines in all three operate groups so they are coded as subroutines that may be nested in the MONITOR stack.

The bit set routines work by reading a constant, AAA-AAG (locations 7243-7251), corresponding to the appropriate bit being set into the AC, then jumping to the MBST routine. This routine stores the constant temporarily in MQ, clears the AC, gets the instruction in its current state, updates it by OR'ing in the MW, replaces it at the user addressed location by calling PLACE and returns.

This procedure is followed by all the operate group microinstruction service routines.

In other words, a table of jump addresses is used to computer a branch to either a bit set routine or back to the keypad reading sequence.

SINGLE INSTRUCTION EXECUTE, SIN, ROM locations 7400-7560, flow chart Page 8-11

This routine is useful in program development as a single instruction at a time may be executed allowing intermediate results to be examined under MONITOR control. This routine may only be used to single step through programs in RAM and not in ROM because software "breakpoints" are implemented by replacing the instruction at a breakpoint with a jump to the breakpoint processing subroutine and this requires writing into the memory.

SIN first initializes page 0 locations 0152 and 0153 labeled STORE and SHIFT to contain the instruction JMP I SHIFT and the address 7524. This initializes the breakpoint return linkage locations. Then it checks the instruction for a CALL (41618), a JMP or a JMS. If it is none of these, it goes to the EXEC routine.

If it is a JMP or a JMS, the INAD routine is called to determine the next address to be accessed, this is placed in SAVPC for a pseudo-JMP and SHELL is reentered; to execute a pseudo-JMS, the current PC is incremented and stored at the next address (stored in TIME), the next address is incremented and replaces the contents of SAVPC, and SHELL is reentered.

Routines INAD and INDB determine whether the current page bit and indirect bit are set by masking off all other bits and testing for a non-zero AC. If the page bit is set, the current page number is obtained by masking off other bits. This page number is concatenated with the page address. If the indirect bit is set, the effective address is fetched and replaced in TIME. In any event, when location EXEC + 4 is reached, TIME contains the address of the next instruction to be fetched. Now the program gets the contents of this location, NEXT, and the next sequential one (NEXT + 1) and saves them in SAVI and SAV2. The contents of these two locations are replaced by the instruction JMS BACK, which is 4151, a JMS to page 0 location 0151 and labeled BACK. Then both these locations are tested to see if the instruction was actually placed there, that is, if RAM exists there. The program does this by reading the locations back, adding the two's complement of 4151g to them and checking for a zero AC.

If the locations were indeed loaded correctly, the program proceeds to restore the MQ, LINK and AC and performs an indirect jump via SAVPC, executing the instruction specified by the user.

This instruction is executed, and, when the user program fetches the next instruction, it turns out to be the JMS BACK breakpoint placed by the MONITOR, so the user program stores the return address in BACK, 0151, and executes the instruction in location 0152 which happens to be the JMP I SHIFT which was placed there earlier. Thus, control is returned to the SIN routine at the point 7524 labeled RET. The routine saves away the AC, L and MQ again, restores the two instructions at the breakpoints, updates the user PC using the address stored in BACK and returns to the undefined control state.

The reason for storing JMS BACK in two successive locations can now be seen to provide for the case when the single instruction to be executed may skip the next location.

The MONITOR will allow all JMP, JMS, AND, IOT and OPERATE instructions including JMP*-1, JMS*-1, and JMS*-2 instructions to be single stepped properly. A limitation of the SIN program is that TAD, ISZ and DCA instructions which refer to a *+1 or *+2 location cannot be single stepped properly. There is little application for a program that uses instructions referencing the next sequential location, and especially, alters it, so we shall look at the cases when *+2 locations are accessed.

The instruction TAD*+2 will add the breakpoint instruction 4161 to the contents of the AC.

The instruction ISZ*+2 will increment the value 4161 to 4162 and then the original datum is restored so there is no net effect when single stepping this instruction.

The instruction DCA*+2 is useful in the INTERCEPT JR. to display a result when the location following this instruction contains the HALT instruction 7402. However, when single stepping this instruction, the DCA will write over the breakpoint instruction, then the original content is restored, so there is no net effect. It is recommended that the sequence

DCA*+3

NOP

HALT

is used to display data in programs when single stepping is desired.

A simpler alternative is to leave out the DCA instruction (so AC is not cleared) and select the Inspect AC mode before running the program. The right display will then show the AC.

PIE INITIALIZE, INPIE, PRINT TO TTY, TALK, RECEIVE FROM TTY KEYBOARD OR READER, LISN

These routines in ROM locations 6340-6362 and 7600-7621 are described in Chapter 7 on the PIEART board. See Page 8-12 for the flow chart.

INTERCEPT JR. BINARY LOADER, BIN, ROM locations 7622-7775, flow chart Page 8-13

This loader uses the PIEART interface board. The routine initializes the PIE-UART checksum and RAM locations it uses, then gets a character by calling LISN. The character is checked for being a rubout (all channels punched) or part of leader-trailer (only channel 8 punched), and if it is either, the program branches to RUM or LTC respectively. RUM continues to scan characters and echo all characters until another rubout is detected at which point it returns to BEG+1, which begins to process the next character. The system does not load text enclosed by rubouts.

LTC checks if the character is a first LT character or not. If so, the load routine is ended, the stray bit which appears on some PAL-8 generated tapes is masked, the checksum computed, the SAVAC location placed in the address display and the machine is halted showing the checksum.

If the character received was neither a rubout nor an LT character, the program updates the checksum, checks for a "change field" character (if it is, it is ignored and the next character is processed) and checks for "origin" data (if so, it gets the address data in two successive characters). The loader will ignore data for locations 0000g and 0143g-0177g. Data is loaded by routine DL2 only when conditions are valid.

INTERCEPT JR. MEMORY DUMP, DUMP, ROM locations 7305-7376, flow chart Page 8-14

This program requires that the first and last locations, of a block of memory to be dumped on tape, should be entered in locations 0131 and 0132, and the program run starting at location 7305.

The program uses leader-trailer routine TWTY contained in locations 6363-6374. It will punch out a BIN formatted tape complete with leader-trailer and checksum.

The program disables the CP request timer, initializes the PIE-UART, calls routine TWTY in the leader-trailer program to punch 63 LT characters.

The program next punches out the origin address, user entered in 0131, in two successive ASCII characters along with the channel 7 punch.

The data is also punched out using two characters per 12 bit word. The program counts the 1st and 2nd characters by looking at location BACK which is loaded with 7776 and incremented as a character is output. After two characters, the location becomes zero and the ISZ that incremented it will skip the BSW that is used to position the 2nd half of the character.

After every data item is transmitted, the address is checked to see if the end of the block has been reached.

As each character is punched (by calling the PUNCH routine, which in turn calls TALK), the checksum is updated in location SAV5.

After the last data item has been punched, the checksum is punched by CHSUM and routine TWTY is again called to punch out the leader-trailer tape.

Finally, the CP request timer is restored and the processor halted.

UL	ייי	HONITON 2 IFFOR	Z/ULD FALIA de-AF6-77 FAGE I		/ HDN11	roe 2 IEDOS P	AL 1A 06-APR-77 PAGE 2
		· MON1 · THE · · THIS · "MIC!	IOR : MONITOR PROGRAM FOR THE INTERCEPT UR. PROGRAM RESIDES IN THE INC.SI FOR MARKED MONITEPRETER AND IS ROW MASS 5004. THE	06023 124 06024 316 06025 724 06026 313	5	TAD BASE DCA STACY CLA CMA DCA SWITCH	/ YES! THIS IS A POWER-UP RESET / RESET THE STRAY POINTER / SET THE STRAY POINTER / SET THE SHITCH TO THE DEFAULT / COUNTION OF DISPLAY UPDATE ON AND TO (REMORN DATA) DISPLAY ON
		. THE	REEN DESIGNATED ISDAMS. NOM HAS BEEN FACTSAMMED TO OCCUPY ESS SFACE GOOD-7777 WITH THE RAM SELECT ACTIVE ADDRESS SFACE GOOD-0177.	06027 416 06030 610		CALL REFSH	/ REFRESH THE DISPLAY
	6000	FOR A	ADDRÉS: SPACE 0000-0377.	06031 760- 06032 750- 06033 525	ó	LAS SMA JMP OUT	/ LOAD THE KEYPAD TO THE AC / LOOM FOR A "C" KEYPRESS / NO! GO TO OUT / YES! TO SEE IF IT IS A VALID
			. THE PAGE ZERO VARIABLES FOR THE PROGRAM	06034 416 06035 620 06036 770	1 0 0	CALL SMDB SMA CLA	/ SWITCH PRESS.
			THE MONITOR RESERVES LOCATIONS 130-177 FOR ITS OWN USE AND RESTRICTS THE USER	06037 525 06040 564 06041 640	1	JMP EXIT JMP I .+1 SHELL	/ NO: GO TO EXIT / YES: GO TO THE PROGRAM SHELL
			ACCESS TO THESE LOCATIONS.	06042 556 06043 606	3 JHPI, 4 KCALLY	JMP 1 CALLX+2	THE TABLE OF CONSTANTS
	•		THESE LOCATIONS ARE ACCESSIBLE TO THE USER HOWEVER THEY MAY BE DISTURBED BY THE MONITOR	06044 607 06045 016 06046 577	5 KRETY, 7 BASE, 7 RAM2L,	STAC+.+2 5777	/ KEYMOLE POINTER
00130	+0130°	HOLDS: 0		06047 076 06050 400	4 RAM2K. O RAM2J.	-7014 4000	/ FEY
00131 00132 00133	0000	HOLDS: 0 SMITCH: 0 DISPI: 0					/ THE EXIT POUTINES FOR THE HONITOR
00134 00135 00134 00137	0000	DISP2: 0 DISP3: 0 DISP4: 0		06052 615 06053 730	EXIT.	CALL CLKPD CLA CLL	/ HAIT FOR THE FEYPAD TO CLEAR / CLEAR THE AC AND LINE / PESTORE THE NO TO THE USER
44.07	••••		. THE FOLLOWING LOCATIONS CANNOT BE LOADED	06054 114 06055 742 06056 114 06057 710	1	TAD SAVMO MOL TAD SAVFL CLL RAL	PESTORE THE MO TO THE USER RESTORE THE CINH TO THE USER
		•	USING THE BIN LOADER OR THE MEMORY DEPOSIT OR MICRO ROUTINES IN THE MONITOR	06060 720 06061 114 06062 600	0	CLA TAD SAVAC ION	CLEAR THE AC TO THE USER PRESTORE THE AC TO THE USER PRESTORE THE INTERRUPT ENABLE FLAC TO THE USER AND COME OUT OF CHIRCKE PRESTORE THE PC TO THE USER
00000	•0000	€0000 SAVPC: 000%		06063 540	r)	JMF SAVE(USER AND COME OUT OF CP MODE RESTORE THE PC TO THE USER
•	•0140	● 0140					" THIS IS THE END OF THE HONITOR PROGRAM
,							
00140	0000	SAVAC. 0					
00141		SAVFL. 0	PAL IA 06-AFR-77 PAGE 1-1		/ HON!	TOR 2 IFDOS F	AL 1A OC-AFF-77 PAGE 2-1
00142 00143	0000	SAVMO, () STATUS, ()					THE SUBROUTINE STACK FOR OVERHEAD
00144 00145 00146		TIME. 0 SAVE: 0 HOLD, 0					
00147 00150 00151	0000	POINT: 0 TEMP, 0 BACk: 0		06064 316 06065 216 06066 116	5	DCA AC 197 STACE TAD CALLX	SAVE THE AS PROBLET HE STACE POINTER CALLY HAS THE RETHAN ADDRESS INCREMENT THE RETHAN ADDRESS SAVE ON THE LIFE STACE
00152 00153 00154 00155	0000	STORE: 0 SHIFT: 0 SAV1: 0 SAV2: 0		06066 116 06067 700 06070 356 06071 156	1 5	IAC INCA 1 STACE TAD I CALLX	
00156 00157 00160	0000	SAV3. 0 SAV4. 0 SAV5. 0		06072 316 06073 116 06074 556	1	DCA CALLY TAD AC JMF I CALLX	FUT IT IN CALLX RESTORE THE AC CO TO THE SUPROUTINE CALLED
		•	. THE PAGE ZERO LOCATIONS FOR THE MONITOR	06075 3166 06076 156	6 RETY.	DCA AC TAD I STACE	
	+0161	•161	<pre>/ STACE</pre>	06077 316 06100 706 06101 116	1	DCA CALLX CMA CML TAD STACK	SAVE THE A- FORT THE PETURN ADDRESS FROM THE STACH AND PUT IT IN CALLX COMPLEMENT THE AC AND LIM DECEMENT THE STACH AND RESTORE THE
00161		CALLX, 6		06102 3165 06103 1166	•	DCA STACK TAD AC	PESTORE THE STACK POINTER RESTORE THE AC
00164 00165	0000	RETX. 0 STACE: 0		06104 556	1	JMF 1 CALLX	/ RETURN TO THE PROGRAM
00166	0000	AC. Q	. THE LOCATIONS 167-177 ARE STACK FOINTER				/ ME NON CONTINUE WITH THE MONITOR / SUBROUTINE:
			THE				/ THE DISPLAY PEFFESH FOUTINE
			TO THE STACK BY RESERVING ANY AMOUNT OF SPACE FROM 1000 ON DOWN, THE STACK BASE IS INITIALIZED ONLY BY A FOMER-OF RESET.	06105 7300	REFSH.	CLB CLL	/ THE AC AND THE LINE ARE LOST
				06106 1143 06107 7710 06110 5314)	TAD STATUS SPA CLA JMP . +4	FILEAR THE AC AND LIME FOR STATUS TESTI IS THE DISPLAY FLAG SETS FYESF OG ON
		CALLEIME CALLY	THE PROOFAM EMMATES FOR THE MONITOR (TAC)	06111 6400 06112 7300	THRU.	6400 CLA CLL	NO: COME OUT OF THE POUTINE HRITE THE AC TO THE DISPLAY CLEAP THE AC AND THE LINE
•	,,,,,	RETURNS JME PET		06113 5564 06114 1133	. 3	RETURN TAD SWITCH	/ RETURN TO THE PROGRAM / DET THE SOFTHARE SHITCH
			THE CONTROL FAME, COF REQUEST ENTER FOINT OF THE MONITOR PROGRAM	06115 7700 06116 5334 06117 1000	i	SMA CLA JMP UDIS TAD SAVPC	/ TEST: IS THE MONITOR UPDATE FLAG SET / NO: REFRESH THE USER DISPLAY / YES: GET THE USER PC
		/ MONITOR 2 IFDOS P	AL 1A 06-APR-77 PAGE 1-2		/ MONIT		AL 14 06-APR-77 PAGE 2-2
07777	•7777 5776	#7777 JMF I1		06120 3155 06121 1133 06122 7003 06123 7510	2	DCA SAV2 TAD SWITCH BSW SPA	STORE IN SAVE TO PASS TO ODISED ORT THE SOFTWARE SWITCH POSITION THE OTHER FLAGS OTESTS IS THE AC-DATA FLAG SETS
47774	•7776			06124 5351 06125 7004 06126 7710		JMP MODIS RAL SPA CLA	/ YES: GO GET THE MEMORY DATA
07776	8000	INIT	/ THE PROCRAM START POINTER	06130 1527	,	JMP ACDIS TAD I 127	/ TEST: IS THE AC DISPLAY FLAG SET? / YES: 60 GET THE USER AC / NO: GET THE WORD POINTED TO BY 127
			/ THE INIT ROUTINE FOR THE HONITOR / PERFORMS THE ELEMENTARY FUNCTIONS / OF THE MONITOR.	06131 3156 06132 4161 06133 6225	5 (0K) 1 5	DCA SAV3 CALL ODISLD	/ PASS TO ODISCO THRU SAV3 / UPDATE DISPI-DISP4
04000		*START INIT: DCA SAVAC	, SAVE THE USER AC IN RAM	06134 1143 06135 0343 06136 3143 06137 1143	,	TAD STATUS AND MSK1 DCA STATUS TAD STATUS	CLEAR THE STATUS WORD CLEAR THE BIT BUCKET RESTORE STATUS
06000 06001 06002 06003	6004 3141 • 7521	GTF DCA SAVFL	/ GET THE USER FLAGS / SAVE THE USER FLAGS IN RAM / GET THE USER HO AND CLEAR THE HO	06137 1143 06140 0350 06141 1346)	TAD STATUS AND MSK2 TAD TADJ	/ GET STATUS / MASH OUT THE DIGIT CODE / AD MIST TO THE TABLE OF
04004	3142 1242	DCA SAVNO TAD JMP1 DCA CALLX+1	/ SAVE THE USER AG IN RAH / ESTABLISH THE CP SUBROUTINE STACE	06142 3143 06143 1543 06144 2143	7 7 3	DCA POINT TAD I POINT ISZ STATUS	DISPLAY WORDS PLACE AS A POINTER OET THE DISPLAY WORD INSPERENT THE DIGIT CODE
06006 06007 06010 06011	3162 1243 3163 1244	TAD KCALLY DCA CALLX+2 TAD KRETY	/ LOCATIONS IN RAM	06145 5311 06146 0134	I TADU	JMP THRU DISP1	OO LOAD THE DISPLAY / THE TABLE OF CONSTANTS
06012	1244 3164	DCA RETX	/ THE LINE TO THE ROW ADDITION	06147 7773 06150 0003		7773 0003	
			/ THE PLACEMENT OF A KEY IN THE / KEYHOLE OF THE ROM ADDITION (LOCATION	06151 7300 06152 1400 06153 5331)	CLA CLL TAD: 1 SAVEC JMP (*	/ CLEAR THE AC AND LINE / GET THE MEMORY DATA / GO UPDATE
			/ 5777) MHICH MATCHES THE FEY IN THE / MONITOR PROGRAM 1441 / MILL CAUSE THE CONTROL PROGRAM / TO BRANCH TO THE ROM ADDITION / AT THIS POINT.	06154 1140 06155 5331	ACDIS.	TAD SAVAC	GET THE USER AC GO UPPATE
04013	1646 1247	TAD I RAM2L	AT THIS POINT.				
06013 06014 06015 06016	1247 7650 5650	TAD RAM2K SNA CLA JMP I RAM2J	/ THE MONITOR NOW BRANCHES				/ THE CLEAR FEYFAD ROUTINE / THE AC AND LINE ARE NOT AFFECTED
06017 06020	1000 7001	TAD SAVPC	/ TO THE ROM ADDITION / DET THE USER RO	96156 3150 96157 4160 96169 6299 96161 7449	CLMPD.	DCA SAVI	- SAVE THE AC IN SAVI - GET A SMITCH READING
06021 06022	7640 5227	SZA CLA	/ INCREMENT THE VALUE / TEST: WAS THE USER PC ECKAL TO 7777 / NO! THIS IS NOT A POMER-UP CP CALL			SMDE SZA JMP0 TAD SAVI	/ TEST FOR A ZERO READING / NO: SO BACK AND TRY AGAIN / YES: RESTORE THE AC
				06169 1150 96164 550	4	PETUPN	RETURN TO THE PROGRAM
							THE RESET ROUTINE

MERS

IFDOS PAL 1A 06-APR-77 PAGE 2-3

06165 7340 RESET, CLA CLL CMA
06166 3143 DCA 518TUS
06167 3140 DCA 548VE
06170 3141 DCA 548VE
06171 3142 DCA 548VE
06173 3600 BCA 548VE
06174 3000 DCA 548VE
06175 5777 UMF I FAD 06176 0200 CRUMB, 0200 06177 6434 FAD, HALT

FET THE STATUS WORD

/ CLEAR THE USER AC / CLEAR THE USER FLAGS / CLEAR THE USER HO / 10T RESET OF EXTERNAL FLAGS / SET THE USER PC TO 200 / GO TO HALT

. THE TABLE OF CONSTANTS

/ HONITOR 2 1FDOS PAL 1A 06-APR-77 PAGE 4-1 DCA TEMP TAD SAV2 AND HSC4 BSH CALL SMIFTY 7776 TAD SAV3 AND MSC4 TAD TEMP DCA DISP4 RETURN 06302 3150 06303 1155 06304 0321 06305 7005 06306 4161 06307 6322 06310 7776 06311 1156 06312 0321 06313 137 06314 3137 06315 5564 / PLACE IN TEMP / GET THE FIRST DISPLAY WORD / MASK OUT THE LAST DIGIT / POSITION / SHIFT OVER 2 PLACES / GET THE SECOND DISPLAY MORD / MASS OUT THE LAST DIGIT / COMBINE WITH TEMP / PLACE IN DISPA GO BACY TO THE PROGRAM 06316 7000 MSC1. 06317 0700 MSC2. 06320 0070 MSC3. 06321 0007 MSC4. SHIFTY, DCA HOLD TAD I STACK DCA POINT TAD I POINT DCA SHIFT ISI I STAC-TAP HOLD CLL RAR ISI SHIFT UPP, -2 TAD TEME DCA TEME RETURN STORE THE DIGIT IN SAVE
(GET THE POINTER TO THE SHIFT COUNT
PLACE IN POINT
(GET THE SHIFT COUNT
)
PLACE IN SHIFT
(RUMP THE RETURN ADDRESS BY ONE
) GET THE DIGIT ONE PLACE RIGHT
(NOTATE IT ONE PLACE RIGHT
) AND EDOME SHIFTIMG VET
ALL DOME, NOW COMBINE MITH TEMP 06322 06323 06324 06325 06325 06327 06330 06331 06332 06333 06334 3146 1565 3147 1547 3153 2565 1146 7110 2153 5331 1150 3150 5564

REFER TO THE LATER PART OF THIS LISTING FOR THE INFIE ROUTINE SOURCE WHICH 19 LOCATED AT THIS POINT IN THE ADDRESS

/ MONITOR 2 IFDOS PAL 1A 06-APR-77 PAGE 3

+6200 +START+200

/ THE SWITCH DEPOUNCE ROUTINE / LOSE THE AC AND THE LINE

READ THE PEYFAD INTO THE AC STORE IN SAVE OF THE MAIT COUNT PLACE IN THE CONSTANT OF THE THE CONSTANT PLACE IN THE CONSTANT THE CUT STILL SECONDS 7604 3145 1224 3157 1223 3144 2144 5206 4161 6105 2157 5204 7604 7041 1145 7640 5200 LAS
DCA SAVE
TAD TCNT
DCA SAVA
TAL TV1
DCA TIME
ISZ TIME
ISZ TIME
ISZ SAVA
UMP . -7
LAS
CIA
TAD SAVE
SZA CLA
UMP SWDE 06200 06201 06202 06203 06204 06205 06206 06211 06213 06214 06215 06216 06217 06216 / REFRESH THE DISPLAY / COUNT DOWN THE WAIT COUNT / GET ANOTHER SWITCH READING / NEGATE IT / ADD IN THE FIRST READING / TEST FOR A MATCH / NO MATCH SO DO IT AGAIN / THERE IS A MATCH SO GET THE / NEVPAL READING INTO THE AC / GO BACK TO THE PROGRAM 06221 1145 TAD SAVE 06222 5564 RETURN 06223 7620 TF1, 06224 7775 TCNT. / THE TABLE OF CONSTANTS 7620 7775

/ MONITOR 2 IFDOS PAL 1A 06-APR-77 PAGE 4

THE OCTAL DISPLAY LOAD ROUTINE
ARCUMENTS ARE PASSED THRU SAV2 AND
SAV3. SAV2 WILL GO TO DISPLAY 01
AND SAV3 WILL GO TO DISPLAY 02

/ SET THE AC TO 0004
/ SET THE AC TO 0400
/ SET THE AC TO 0400
/ PLACE IN TEMP
/ GET THE FIRST DISPLA / HORD
/ MASS OUT THE FIRST DISPLA / HORD
SHIFT OVER 5 PLACES TO THE RIGHT 04225 7307
04227 7002
04227 7002
04227 9130
04220 1135
04222 9144
04223 1232
04244 7773
04244 7324
04244 7324
04245 1135
04224 1137
04245 1136
04246 1232
04246 1357
04246 1357
04246 1357
04246 1357
04246 1357
04246 1357
04246 1357
04246 1357
04246 1357
04246 1357
04246 1357
04246 1357
04246 1357
04246 1357
04246 1357
04246 1357
04246 1357
04251 1150
04252 1357 / GET THE SECOND DISPLAY WORD / MASK QUT THE FIRST DIGIT / SHIFT OVER 9 PLACES TO THE RIGHT / PLACE THE COMPLETE DISPLAY WORD / INTO DISPI DCA DISPI

CLA CLL CML RTR
RAF TEMP

TAD SAV2
AND MSC2
CALL
TAD SAV3
AND MSC2
CALL
TAD SAV3
AND MSC2
TAD SAV3
AND MSC2
TAD SAV3
T / SET THE AC TO 1000 / PLACE IN TEMP
/ GET THE FIRST DISPLAY MORD
/ MASK OUT THE SECOND DIGIT
/ SHIFT OVER 2 PLACES / GET THE SECOND DISPLAY WORD / MASK DUT THE SECOND DIGIT / SHIFT OVER & PLACES / PLACE THE DISPLAY WORD / INTO DISP2 CLA CLL CML RTR
DCA TENP
TAD SAV2
AND MSC3
CLL RAL
TAD TEMP
DCA TEMP
TAD SAV3
AND MSC3
CALL
SWIFTY
7775
TAD TEMP / SET THE AC TO 2000
/ PLACE IN TEMP
/ GET THE FIRST DISPLAY WORD
/ MASK OUT THE THIRD DIGIT
/ SMIFT LEFT ONCE
/ COMBINE WITH TEMP 06263 06264 06265 06266 06267 06271 06272 06273 06274 06275 06276 06277 7332 3150 1155 0320 7104 1150 3150 1156 0320 4161 6322 7775 1150 / GET THE SECOND DISPLAY WORD / MASK OUT THE THIRD DIGIT / SHIFT OWER THREE PLACES / GET THE DISPLAY WORD / AND PLACE IN DISP3 06301 7330 CLA CLL CHL RAR / SET THE AC TO 4000

MONITOR 2 TESTS FAL IA SE-AFF-77 FAGE 5

THE MONITOR SHELL PROGRAM

06400 4161 SHELL-06401 6641 06402 1207 06403 3147 06404 1547 06405 3147 06406 5547 CALL
HEX
TAD GOTO
DCA FOINT
TAD I POINT
DCA POINT
UMF I POINT GET A NUMBER FROM THE FEYRAD ADJUST A POINTER TO THE TABLE PLACE IN POINT ADDRESS PLACE IN POINT ADDRESS PLACE IN POINT OF THE ROUTINE 06406 5547

94407 4410 6070

94410 8600

94411 7622

94417 7400

94417 7400

94417 8430

94417 8430

94417 8543

94417 8543

94417 8543

94420 8430

94421 8501

94424 8001 UG-ADJUSTMENT VALUE FOR THE TABLE THE TABLE OF POINTERS GOTO+)
MICRO
BIN
BU!
RUN
HALT
RESETC
DECPC
DECPC
INSELL
EXIT

. THE INSPECT AC FOUTINE

06425 4161 ÎNSAC CALL 06426 7276 RINSAC 06427 5623 UMF I BUG - 90 TO AC FLAG TORGUE GO TO THE SHELL

THE DECREMENT PO ROUTINE

FIRST THE ACTO -1
ADDITHE VIER FOR RESTORE THE DECREMENTED POWOOD TO THE IMELL 06490 7340 DECPC: CLA CLL CMA 06431 1000 TAD SAVPC 06432 3000 DCA SAVPC 06433 5629 JMF I BUG

> 7 MONITOR 2 | TEDOS FAL 14 06-AFF-TT FAGE 5-1 . THE HALT ROUTINE

CLEAR THE PUN PLISHFLOR - GO TO EXIT

THE RUN POUTINE

06436 7402 RUN-06427 6407 06440 5624 CLEAR THE RUN FLIF-FLOR LOT RUN COMMANT . 00 TO EXIT HLT 6407 JMF 1 56

INTERSIL

/ MONITOR 2 IFDOS PAL	14 06-APR-77 PROE 6		IFDOS PAL 1A 06-APR-77 PAGE 7-1 / GET A HEX VALUE FROM THE KEYPAD
<i>'</i> , '	THE HEX DIGIT ROUTINE THIS ROUTINE TANES A NEVPRESS FROM THE NEVPAD AND CONVEXTS IT IS IN THE ACT PROP OF TO	06600 4161 MICRO. CALL 06601 6481 06602 1207 TAD XEC 06603 3147 DCA POI 06604 1547 TAD 1 FC 06605 3147 DCA POI 06606 5547 JMP PC	/ ADJUST TO POINT AT THE TABLE NT / PLACE IN THE POINTER DINT / CET THE JUMP ADDRESS NT / PLACE IN POINT
0441 7300 MEE. CLA (LL C442 4161 CALL C442 4161 CALL CALE C444 4161 METUC. CALL CALE C444 4161 METUC. CALL C446 7430 SMP C447 3244 METUC. CALE C447 3244 METUC.	CLEAR THE AC AND THE LIMP HAIT FOR A CLEAR PEYPAD GET A READING FROM THE REYPAD TEST FOR A PEYPRES NOT 50 BACT YES: ROTATE RIGHT ONCE TEST HAS THAT BIT SET	06407 6410 XED. XED-1 06410 6467 ARMD 06611 6427 6470 06612 6631 A152 06613 6633 ADEA 06614 6636 A.WE 06615 6440 A.WE 06615 7700 ADEA 06617 7700 ADEA 06627 7700 ADEA	/ THE TABLE OF POINTERS
04452 5255 JFF .+3 04453 2154 ISZ SAVI 04454 5250 JFF4 04455 7300 CLA CLL 04456 1154 TAD SAVI 04457 1272 TAD KH7	YES: GO TO THE END NO: INCREMENT THE ROTATE COUNT GO BAC: AND: ROTATE AGAIN CLEAR THE ACAND THE LING GET THE HEX NUMBER SUPPRACT 7	06621 5200 AINC. 1SZ SAV 06623 6400 SHELL 06623 6400 AINC. 1SZ SAV 06624 2000 AINC. 1SZ SAV 06625 5200 JHP HIC	PC / INCREMENT THE USER PC RC / RETURN FOR NEW MICRO COMMAND
06460 7440 STA 06461 7265 MPP -+4 06462 7201 CLA IAC 06463 1154 0K2, CLA IAC 06464 3564 RETURN 06465 1273 TAD KHB	TEST: IS IT ECHAL TO 7 MOTOGON VES INCREMENT THE VALUE TO 8 CET THE FINAL VALUE INTO THE AC GO BACK TO THE PROCRAM TEST: MAS THE VALUE BY	06627 1313 ATAD: TAD K10 06630 5243 JMP AAN 06631 7332 A152: CLA CLL 06632 5243 JMP AAN	D GO TO MREA CMURTS SET THE AC TO 2000
6446 7640 \$2.4 CLA 06447 7263 JMP ONZ 06470 7260 CLA CMA CML 06471 7260 CLA CMA CML 06472 7771 KH7. 7771 06473 7777 KH8. 7777	MO: CP TO RETURN VEST SET THE AC TO -1 DECREMENT THE VALUE TO 7 -8	06637 5243 UMF AAN	D GO TO PERPA THE PO TO 4000 D GO TO PERPA D
/ 04474 7300 BLK. CLA CLL	THE BLAND FLAC TOGGLE ROUTINE THE AC AND LIM ARE LOST	06640 1242 ALMF. TAD 190641 5243 06641 5243 06642 5000 F5000 5000 5000 5000 66642 4161 AMD. CALL CR064 7351 F603 66646 4161 MRFS. TAU 106646 4161 MRFS. TAU 106646 4161 MRFS. TAU 106647 64161 MRFS.	D GC TO MREA FLACE THE OF CODE IN THE HEMOPY LOCATION
04473 1143 TAD STATUS 04474 7000 RAL 04477 7000 CFL RAR 04501 3147 DCL STATUS 04501 5624 JRP I UG	CLEAR THE AC AND THE LIME GET THE STATUS MORE FLACE THE FLAG IN THE LIME TOOGLE THE FLAG IN THE LIME RETORE STATUS WORD OUT OF STATUS WORD OUT OF		P GET THE VALUE FROM TEMP MADE OUT EIT #F TEST: TO VALUE T MOT GO TO ADDRESS LOAD YEST ADJUST TO TABLE
/ MONITOR 2 IFEOS PAL	14 06-APR-77 PAGE 6-1	/ MONITOR 2	IFDOS PAL IA 06-APR-77 PAGE 7-2
	THE MEMORY DEPOSIT ROUTINE	06657 3150 DCA TEM 06660 1550 TAD 1 TO 06661 3150 DCA TEM 06662 5550 UMP 1TO 06663 6654 ELO: ELO:7	EMP / GET THE POINTER P / PLACE IN TEMP
0.5002 4161 DEP. CALL 0.5004 3150 DEP. CALL 0.5004 3150 DEATH THE CALL 0.5005 1150 SAMERD. 0.5005 1750 SAMERD. 0.5010 1350 SAMERD. 0.5010 1350 SAMERD. 0.5010 1317 TAD TAE 0.5013 3150 DEATH THE CALL 0.5010 3150	GET A MED VALUE FROM THE LEVPAD FLAGE IT IN TEMP GET THE VALUE FROM TEMP MEST TO THE WELLE 7 MISTORY TO TO LOAD THE MEMORY VEST GET THE VALUE FLAGE IN TEMP GET THE FORMER GET THE VALUE FLAGE IN TEMP GET THE FORMER FLAGE IN TEMP GET THE FLAGE FLAGE IN TEMP GET THE FLAGE F	06664 6646 HRPA 06665 6646 HRPA 06666 6735 10w 06670 1160 T0Z TAD SAU 06671 7104 CLL RAL 06672 7104 CLL RAL 06672 7104 CLL RAL 06673 1150 TAD TEM 06673 1150 TAD TEM 06673 3160 DCA SAV	C / GET THE APSOLUTE ADDRESS / ROTATE IT OVER ONE OCTAL / DIGIT / ADD IN THE DIGIT
06117 6510 TAB. TAR-7 06520 6510 06520 6505 06521 6540 PCI 06522 6055 EXIT 06523 6400 PCM. TAD I SAVPC 06524 1400 PCM. TAD I SAVPC 06525 7104 CLL RAL 06526 7104 CLL RAL	/ THE TABLE OF POINTERS / CET THE MEMORY DATA THRU SAVPC / ROTATE OVER ONE OCTAL DIGIT	06676 3133 TOZE. DCA SWI 06677 1400 TAB I S 06700 3135 DCA SAV 06701 1160 TAB SAV 06702 3156 DCA SAV 06703 4161 CAL 06704 6225 DDISLD 06705 5246 JPP MSF	AVPC / SMITCH QUEST THE INSTRUCTION SO FAR C PLACE IN DISPLAY #IMPRESS C PET THE ASSOLUTE ADDRESS PACE IN THE SECUND DISPLAY LOAD THE DISPLAY HERMAY LOCATION
06330 1150 TAT TEMP 06331 4161 CALL 06332 7361 PLACE 06332 7361 CALL 06334 7360 DCI. CLA CLL CHL CHA 06354 0000 DO TAG SAUPC 06354 0000 DO TAG SAUPC 06355 0000 DO TAG SAUPC 06357 7000 PCI. 152 SAUPC 16367 7000 PCI. 152 SAUPC 1	ACO IN THE MENT DIGIT PLACE IN THE MENT PROPER COLORY THE MENT DIGIT SET THE AC AND THE LIM- DEFINEMENT THE MEST PO MESTIVE THE BC OCCUPANT THE MEST PO COLORY THE MEST DIGIT / INCREMENT THE MEST PC / IN CASE THE PC AND (7777 / OCCUPANT THE MEST PC / IN CASE THE PC / I	06706 1160 ADTS. TAD SAV 06707 0351 AMD TUG. 06710 7450 SNA 06711 5323 JHP PURM	/ MASK OUT THE PAGE ADDRESS / TEST: IS IT PAGE ZERO
- MONITIA 2 - IFFOS PAL	12 16-APR-77 PAGE 7	/ MONITOR 2 06712 3146 DCA HOL	IFDOS PAL 1A 06-APR-77 PAGE 8 D / STORE IN MOLD
0-54-3 41-1 SETPC. CALL 0-54-4 0-441 MEI 0-54-5 31-50 DEA TEMP 0-54-6 11-50 TAL TEMP 0-54-7 0-550 MSS-5 SNA CLA 0-525-0 7-50 MSS-5 SNA CL	THE SETTE FRONTING THE AL AND LINE MAKE LOST / CET A HEE NAMEES FROM THE PEYRAD / STORE IN TEMP / FEST IN THE VALUE FROM TEMP / MEST COT THE VALUE 7 / MOST GO TO LOAD THE FC / YEST CET THE VALUE	06713 1000 K1000, TAB SAV, 06714 0251 06715 7041 06715 7041 06716 TAB 640 TUG 06716 TAB 640 TUG 06720 5352 UPF LA CAL 06722 7252 UPF LA CAL 06722 7252 UPF LA CAL 06722 7252 06723 1160 PUPP TAB SAV 06724 0250 AND TUG	1 / MASY OUT THE PAGE NUMBER 1 NEGATE THE PAGE NUMBER OF THE 1 MASSOLUTE ADDRESS 1 TEST: ARE HE IN CURRENT PAGE 1 MOS FLASH AN ERROR COMULTION 1 YES: SET THE CURRENT PAGE BIT 5 / OET THE ABSOLUTE ADDRESS 1 MASS OUT THE PAGE BIT 1 MASS OUT THE PAGE BIT
06553 1947 100 AC IT 06554 1750 ECA TEMP- 06555 1559 1AD I TEMP- 06556 1550 ECA TEMP- 06550 100K 0CCM, TAU SAVPC 06560 100K 0CCM, TAU SAVPC 06560 100K 0CCM, TAU SAVPC	ALLUS TO POPUT AT THE TABLE CHARCE IN TERM THE TABLE CET THE POINTER FROM THE TABLE PLACE THE POINTER IN TEMP OUT OF THE PROPER ROUTINE CET THE USER PC	06725 1400 TAD 1 S 06726 4161 CALL 06727 7561 PLACE 04730 7340 CLA CLL 04731 3133 DCA SWI 04732 4161 CALL 04733 6156 CLKPD	AVPC / COMEINE WITH THE OP CODE IN / THE INSTRUCTION LOCATION / PLACE IN THE MEMORY CHA / SET THE AC TCH / SET THE SOFTMARE SWITCH TO / WAIT FOR THE END OF THE KEYPIRESS
06552 7104 CLL RAL 08563 7104 CLL RAL 08564 1150 TAD TEMP 08565 3000 Cc SAVP: 08566 5343 WP SETPC 08570 6842 0547 RLT-7 08570 68542 55150	SHIFT IT OVER ONE OCTAL DIGIT PLACE THE NEW DIGIT PLACE IN THE USER PC LOCATION GO GET THE NEXT DIGIT THE TABLE OF POINTERS	06734 5345 JMP MEX 06735 1400 ZONE. TAD I S 06736 7106 CLL RTL 06740 7132 CLL CRL 06741 7012 RTR 06742 4161 CRL	AVPC / GET THE INSTRUCTION / CLEAR THE LINE AND POSITION / THE INDIRECT BIT
06571 6051 MAVE. EXIT 06573 6460 SURF. SHELL		06743 7561 PLACE 06744 5276 JMP TOZ 06745 2000 NEXT, ISZ SAV	E / GO GET THE NEXT VALUE

,	THIS IS THE MICROINTERPRETER
,	PROGRAM WHICH IS ENTERED FROM THE
	MONITOR BY DEPRESSING THE "MICRO"
	KEY FOLLOWING A "RED" OF CONTRL
	KEY PRESS. THE PROGRAM IS EXITED BY
,	THO CONTRL PEYPRESSES IN SUCCESSION.

/-----

/ CROSS THE PAGE BOUNDARY TO PAGE 84

*6600 *START+600-

06732 41. 06733 43. 06734 53. 06735 14. 06736 71. 06737 70. 06742 71. 06743 75. 06744 52. 06745 20. 06746 52. 06746 52.	33 61 56 45 00 ZONE. 06 06 32 12 61 61 76 00 NEXT. 00 00	JUP MEXT TAD I SAVPC CLL RTL	WAIT FOR THE END OF THE MEMPESS THE ASSENDED INSTRUCTION OF CET THE NEXT MICRO COMMAND OF THE INSTRUCTION THE LIME AND POSITION THE INDIRECT BIT SET THE BIT AND RESISTION PLACE IN THE MEMORY GO GET THE MEXT VALUE INCREMENT THE ADDRESS GO BACY TO MICRO
06753 41 06754 61 06755 64 06756 13 06757 31 06760 31	56 00 76 52 44 44	DCA SAVS CALL CLKPD 64U0 TAD THA	FLASH ERROR ROUTINE / CLEAR THE ABSOLUTE ADDRESS MAIT FOR A CLEAR KEYPAD / CLEAR THE DISPLAY / GET THE FIRST TIME CONSTANT PLACE IN STORE / CLEAR THE TIMER / CLEAR THE TIMER / COUNT THE TIME CYCLES

INTERSIL

```
/ MONITOR 2 IFDOS PAL IA 06-APR-77 PAGE °
                                                                      JRP .-3
TAD TKB
DCA STORE
CALL
SMDB
SZA CLA
JRP TOZE
1SZ STORE
JRP .-5
JRP FLASH
04744 5341
04745 1377
04746 3152
04747 4141
04770 4200
04771 7640
04772 5276
04773 2152
04774 5347
04775 5352
                                                                                                                                                                                                                                                                                                                                                                                                                                  TAD ZOL2
CALL
PLACE
CALL
HEX
TAD GUR
DCA POINT.
TAD I POINT
UMP I POINT
                                                                                                                                                           / GET THE SECOND TIME CONSTANT
/ PLACE IN STORE
/ GET A SMITCH READING
                                                                                                                                                                                                                                                                                                                                                             07125 1337 AOPR2.
07126 4161
07127 7561
07130 4161
07130 4441
07132 1365
07133 3147
07134 1547
07136 5547
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         / SET THE AC EDUAL TO 7400 / PLACE IN THE MEMORY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        / GET A MEX DIGIT FROM THE
/ KEYPAD
ADJUST TO POINT AT THE TABLE
/ PLACE IN THE POINTEY
GET THE JAMP ADDWESS FROM THE TABLE
/ PLACE IN PCINT
CO TO THE PROPER ROUTINE
                                                                                                                                                        / TEST FOR ANY KEYPRESS
                                                                                                                                                           / COUNT DOWN THE DISPLAY ON STORE
  06776 7775 TKA-
06777 7720 TKB-
                                                                                                                                                                                                                                                                                                                                                               07137 7400 ZOL2.
                                              /-----
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         / SET THE PROPER BITS IN THE / INSTRUCTION
                                            / CROSS THE PAGE BOUNDARY TO PAGE #50
                                                                                                                                                                                                                                                                                                                                                             07140 4161 JB4.
07141 7252
07142 5330
                                                                                                                                                                                                                                                                                                                                                                                                                                     CALL
BSET4
JMP AGPR2+3
                                           /--------
                                                                                                                                                                                                                                                                                                                                                                                                                                     CALL
BSET5
JMP ACPR2+3
                                                                                                                                                                                                                                                                                                                                                              07143 4161 JB5-
07144 7254
07145 5330
                                                                                                                                                                                                                                                                                                                                                              07146 4161
07147 7256
07150 5330
07000 7333 AIOT.
07001 4141
07001 4141
07002 7341 "
07003 3140
07004 4141
07005 4141
07005 4441
07006 1150
07010 0211
07011 7850 COB.
07012 $223
07013 1150
07013 1150
07013 15571
07017 $204
                                                                CLA CLL CML IAC RTA
CALL
PLACE
DCA SAV5
CALL
HEA TEMP
AND COB
SMA CLA
JPP SOB
TAD TEMP
100
TAD T
                                                                                                                                                            / SET THE AC TO 6000 / PLACE IN THE MEMORY
                                                                                                                                                                                                                                                                                                                                                              07151 4161
07152 7260
07153 5330
                                                                                                                                                                                                                                                                                                                                                                                                                                         CALL
BSET7
JMP AGPR2+3
                                                                                                                                                           / CLEAR THE ABSOLUTE ADDRESS
/ GET A HEX DIGIT FROM THE KEYPAD
                                                                                                                                                           / OCT A MEX DIGIT FROM THE KE

/ PLACE IN TEMP
OCT THE VALUE
/ MAN, OUT BIT 80
/ TEST: IS THE VALUE
/ TO TO THE VALUE
/ TEST: IS THE VALUE
/ TEST: IS IT A "C" KEYPRESS
/ YES; OO TO NEXT
/ MOI OO GET THE MEXT DIGIT
                                                                                                                                                                                                                                                                                                                                                              07154 4161
07155 7262
07156 5330
                                                                                                                                                                                                                                                                                                                                                                                                                                         CALL
BSET#
JMP AOPR2+3
                                                                                                                                                                                                                                                                                                                                                             07157 4161 JR9.
07160 7264
07161 5330
                                                                                                                                                                                                                                                                                                                                                                                                                                       CALL
RSETO
UMP ACPR2+3
                                                                                                                                                                                                                                                                                                                                                               07162 4161
07163 7266
07164 5330
 07020 7765 SN0T
07021 7000 SOC.
07022 0777 CUS.
                                                                       7765
7000
0777
                                                                                                                                                                                                                                                                                                                                                                                                                                    GUR+1
UB7
UB9
AOPR2+3
AOPR2+3
UB10
AOPR2+3
UB10
UB5
UB5
                                                                                                                                                                                                                                                                                                                                                               07164 7366

07165 7166

07166 7151

07167 7157

07170 7130

07171 7130

07172 7130

07173 7142

07174 7130

07175 7140

07177 7149
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         . THE TABLE OF POINTERS
  07023
07024
07025
07026
07027
07030
07031
07032
                       1400
0221
4161
7561
1160
7104
7104
                                                                      TAD I SAVPC
AND SOC
CALL
PLACE
TAD SAVS
CLL RAL
CLL RAL
CLL RAL
                                                                                                                                                            / OET THE DEVICE CODE
                                                                                                                                                            / ROTATE IT OVER ONE OCTAL DIGIT
                                               / MONITOR 2 IFDOS PAL IA 06-APR-77 PAGE 8-2
                                                                                                                                                                                                                                                                                                                                                                                                            / MONITOR 2 IFDOS PAL IA 06-APR-77 PAGE 2-1
                                                                                                                                                           / ADD IN THE MEN DIGIT
/ BOUND THE CODE TO BITS 82 TO 811
/ BOUND THE MEN CODE IN SAVS
/ GET THE MEN CODE IN SAVS
/ COMBINE WITH THE INSTRUCTION
PLACE IN THE MEHORY
  07033 1150
07034 0222
07035 3160
07036 1160
07037 1400
07040 4161
07041 7561
07042 5204
                                                                        TAD TEMP
AND CUS
DCA SAV5
TAD SAV5
TAD I SAVPC
CALL
PLACE
JMP AIOT+4
                                                                                                                                                                                                                                                                                                                                                                                                             / CROSS THE PAGE BOUNDARY TO PAGE BE
                                                                                                                                                           . GO GET THE NEXT DIGIT
                                                                                                                                                                                                                                                                                                                                                                07200 7154
07201 6745
                                                                                                                              / THE OPERATE GROUPS ASSEMBLEY / ROUTINES
                                                                                                                                                                                                                                                                                                                                                                                                                                         JB8
NEXT
                                                                                                                                                                                                                                                                                                                                                               07202 1214
07203 4164
07204 7561
07205 4164
07206 6441
07207 1215
07210 3147
07211 3147
07212 3147
                                                                                                                                                                                                                                                                                                                                                                                                                                     TAD 2013
CALL
PLACE
CALL
MEX
TAD BOR
DCA POINT
TAD I POINT
DCA POINT
JMP I POINT
                                                                       TAD SOC
CALL
PLACE
CALL
MEX
TAD GUM
DCA POINT
TAD I POINT
DCA POINT
UNP I POINT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         / SET THE AC ECUAL TO 7401
/ PLACE IN MEMORY
   07043 1221
07044 4161
07045 7561
07046 4161
07047 4416
07050 1255
07051 3147
07052 1547
07053 3147
07054 5547
                                                                                                                                                             / SET THE AC TO 7000 / PLACE IN THE MEMORY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         OET A HEX READING FROM
THE KEPPAD
ADJUST A POINTER TO THE TABLE
PLACE IN POINT
CET THE ADDRESS FROM THE TABLE
PLACE IN POINT
OG TO THE PROPER ROUTINE
                                                                                                                                                             / GET A HEX VALUE FROM THE TABLE
                                                                                                                                                             ADJUST A POINTER TO THE TABLE / PLACE IN POINT / GET THE POINTER FROM THE TABLE / PLACE IN POINT / GO TO THE ROUTINE
                                                                                                                                                                                                                                                                                                                                                                07214 7401 20L3-
                                                                                                                                                                                                                                                                                                                                                                                                                                  7401
                         7036 GLP1,
7046
7114
7111
7106
7103
7100
7075
7072
7046
7046
7117
6745 SOT.
                                                                       GUH+1
ADPR1+3
JA10
JA9
JA6
JA7
JA6
JA5
JA4
AOPR1+3
AOPR1+3
BSET11
NEXT
                                                                                                                                                                                                                                                                                                                                                              07214 7401 20.3.
07215 7216 B08.
07216 7205
07217 7205
07220 7205
07221 7205
07221 7205
07222 7205
07224 7205
07224 7205
07226 7240
07227 7235
07226 7240
07227 7235
07230 7205
                                                                                                                                                                                                                                                                                                                                                                                                                                    908+1
AOPR3+3
AOPR3+3
AOPR3+3
AOPR3+3
AOPR3+3
AOPR3+3
JC4
JC5
AOPR3+3
NEXT
   07095
07056
07057
07060
07061
07062
07063
07064
07065
07066
07067
07070
                                                                                                                                                             / THE TABLE OF POINTERS
                                                                                                                                                                                                                                                                                                                                                                                                                                    CALL
BSET4
JMP AOPR3+3
                                                                                                                                                                                                                                                                                                                                                               07232
07233
07234
                                                                                                                                                                                                                                                                                                                                                                                      4161 JC4-
7252
5205
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         / SET THE PROPER BIT IN THE / INSTRUCTION
                                                                         CALL
BSET4
JMP AOPR1+3
   07072 4161 JA4.
07073 7252
07074 5246
                                                                                                                                                            / SET THE PROPER BITS IN THE / INSTRUCTION
                                                                                                                                                                                                                                                                                                                                                               07235 4161
07236 7254
07237 5205
   07075 4161
07076 7254
07077 5246
                                                JA5.
                                                                           CALL
BSET5
JMP AOPRI+3
                                                                                                                                                                                                                                                                                                                                                               07240 4161 JC7.
07241 7260
07242 5205
                                                                                                                                                                                                                                                                                                                                                                                                                                      CALL
BSET7
JMP AOPR3+3
    07100 4161 JA6-
07101 7256
07102 5246
                                                                           CALL
BSET:
JMP AOPR1+3
                                                / MONITOR 2 IFDOS PAL 1A 06-APR-77 PAGE 8-3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          / THE BIT SET SUBROUTINES
    07103 4161 JA7.
07104 7260
07105 5246
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       / SET BIT #10
/ SET BIT #9
/ SET BIT #9
/ SET BIT #7
/ SET BIT #6
/ SET BIT #6
/ SET BIT #4
                                                                                                                                                                                                                                                                                                                                                               07243 0002 AAA.
07244 0004 AAB.
07245 0010 AAC.
07246 0020 AAD.
07247 0040 AAE.
07250 0100 AAF.
07251 0200 AAG.
   07106 4161 JAG
07107 7262
07110 5246
   07111 4161
07112 7264
07113 5246
                                                                                                                                                                                                                                                                                                                                                                07252 1251 BSET4, TAD AAG
07253 5267 JHP HBST
   07114 4161
07115 7266
07116 5246
                                                                                                                                                                                                                                                                                                                                                               07254 1250 BSET5, TAD AAF
07255 5267 JMP MBST
   07117 1400
07120 7010
07121 7124
07122 4161
07123 7561
07124 5246
                                                                         TAD I SAVPC
RAR
CLL CML RAL
CALL
PLACE
JMP ACPRI+3
                                                                                                                                                             / GET THE INSTRUCTION
                                                                                                                                                                                                                                                                                                                                                                07256 1247 BSET6. TAD AAE
07257 5267 JMP MBST
                                                                                                                                                                                                                                                                                                                                                               07260 1246 BSET7, TAD AAD 07261 3267 JMP MBST
                                                                                                                                                                                                                                                                                                                                                                07262 1245 BSET8. TAD AAC
07263 5267 JHP MBST
                                                                                                                                                                                                                                                                                                                                                                 07264 1244 BSET9: TAD AAB
07265 5267 JMP MBST
                                                                                                                                                                                                                                                                                                                                                                 07266 1243 BSET10. TAD AAA
                                                                                                                                                                                                                                                                                                                                                                07267 7521 MBST, SMP
07270 7300 CLA CLL
07271 1400 TAD I SAVPC
07272 7501 MGA
07273 4161 CALL
07274 7561 PLACE
07273 3564 RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           / PLACE THE SET CONSTANT IN THE MO
/ CLEAR THE AC AND LIM-
/ OET THE INSTRUCTION
/ OR IN THE BIT TO BE SET
/ PLACE IN THE MEMORY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               / THE RINSAC ROUTINE / TO TOGGLE THE AC DISPLAY FLAG
                                                                                                                                                                                                                                                                                                                                                                                                            RINSAC, TAD SWITCH
BSW
RAL
CML RAR
BSW
DCA SWITCH
RETURN
                                                                                                                                                                                                                                                                                                                                                                                        1133
7002
7004
7030
7002
3133
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        / GET THE SOFTWARE SWITCH / POSITION THE FLAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         / RESTORE THE SWITCH / RETURN TO THE PROGRAM
```

/ REFER TO THE END OF THIS LISTING FOR / THE SOURCE OF THE DUMP PROGRAM / WHICH RESIDES IN THIS ADDRESS SPACE.

/ HONITOR 2 IFDOS PAL 1A 06-APR-77 PAGE 11 TAD SAMPC / DET THE CUMPENT ADDRESS IAC / IMPRENTI IT THE MEET LOCATION OF THE PROPERTY OF THE MEET LOCATION OF THE PROPERTY OF TH / CROSS THE PAGE BOUNDARY TO PAGE 97 / SET THE AC TO 0002
/ BUMP THE RETURN ADDRESS BY 2
/ GO TO THE EXEC MOUTINE WITH
/ THE ADDRESS OF THE RETURN
/ POINT OF THE SUBROUTINE CALLED. 07956 7305 KALL: CLA CLL 1AC RAL 07957 1000 TAD SAMPC 07560 5265 URP EXEC+2 #7400 #START+1400 7240 SIM. CLA CLL CM
2122 CCA SHITCH
4141 CCA SHITCH
4141 CCA SHITCH
4141 CCA SHITCH
1227 CCA STORE
1227 CCA STORE
1227 TAB PLIPT
1229 CCA STORE
1229 CCA STORE
1229 CCA STORE
1229 CCA STORE
1220 CCA ST / THE SINGLE INSTRUCTION ROUTINE / SET THE AC / SET THE SHITCH TO DISPLAY PC AND HD / WAIT FOR A CLEAR KEYPAD 07400 07401 07402 07403 07404 07405 07406 07406 07411 07412 07413 07414 07417 07422 07423 07423 07424 07423 MAIT FOR A CLEAR KEYPAD

/ BET THE RETURN LINE INSTRUCTION
PLACE IT IN STORE
/ BET LINE ADDRESS
/ BET HE LINE ADDRESS
/ BET HE LINE ADDRESS
/ BET HE HISTRUCTION TO BE PERFORMED
/ ADD -CALL
/ PEST IS THE HISTRUCTION A CALL
/ YES' 00 TO KALL
/ YES' 10 THE HISTRUCTION
/ MAD DO TO KE PECODE
/ MAD DO TO KE PECODE
/ YES' 15 IT A JMS
/ YES' EXECUTE A PSEUDO-JMS
/ YES' EXECUTE A PSEUDO-JMP
/ MOI DO TO THE MORMAL EXECUTE
/ ROUTINE JMP 1 SHIFT 7000 4000 RET 3000 -CALL 07427 9553 KJRP, 07430 7000 HK, 07431 4000 KIT, 07432 7524 PLURI, 07433 3000 KAT, 07434 3617 KAL, TAD S SAVPC AND NOT DCA TIME TAD I SAVPC AND OUT SNA CLA JRP INDB 1400 INAD. 0257 3114 1400 0261 7650 5250 OET THE INSTRUCTION
/ MASY OUT THE PAGE ADDRESS
/ PLACE IN TIME
/ OET THE INSTRUCTION
/ MASK OUT THE CURRENT PAGE BIT
/ TEST: IS THIS CURRENT PAGE
/ MO! GO TO INDB / MONITOR 2 | IFDOS PAL 1A 06-APR-77 | PAGE 12 / MONITOR 2 1FDOS PAL 1A 06-APR-77 PAGE 10-1 / YES: GET THE CURRENT ADDRESS
/ MASK OUT THE PAGE NUMBER
/ COMBINE WITH THE PAGE ADDRESS
/ PLACE IN TIME 07444 1000 07445 0240 07444 1144 07447 3144 TAD SAVPC AND PUD TAD TIME DCA TIME THE PLACE ROUTINE 07561 3145 PLACE, DCA SAVE 07542 1000 TAD SAVPC 07563 7450 SMA 07564 3564 RETURN / PLACE THE DATA IN SAVE / GET THE ADDRESS / TEST IF IT IS LOCATION 0000 / YEST DO NOT LOAD AND RETURN / WITH THE AC CLEAR OETTHE INSTRUCTION
MAKE OUT THE INDIRECT BIT
TEST IS THIS ON INDIRECT
NOI RETURN WITH THE ADDRESS
IN TIME
THESE OET THE TRUE ADDRESS
PRACE IN TIME
PRETURN WITH THE ADDRESS IN TIME
PRETURN WITH THE ADDRESS IN TIME
PRETURN WITH THE ADDRESS IN TIME 07450 07451 07452 07453 1400 0262 7650 3564 TAD I SAVPO AND LOT SNA CLA RETURN TAD PUD SHA CLA JRP -+5 TAD SAVPC TAD KH142 SHA CLA JRP -+3 TAD SAVE DCA I SAVPC RETURN NO: ADD -177

TEST: IS THE PC > 177

YES: IS TO LOAD

NO DET THE PC

ADD -137

TEST: IS THE PC <143

TEST: IS THE PC <143

YES: Or TO LOAD

YES: OR TO LOAD

LOAD TO THE USER HEMORY

RETURN TO THE PROGRAM 07565 1240 07566 7700 07567 5374 07570 1000 07571 1377 07572 7700 07573 5376 07574 1145 07575 3400 07576 5564 07454 1544 07455 3144 07456 3564 TAD I TIME DCA TIME RETURN 07457 0177 NDT-07460 7600 PUB-07461 0200 DUT-07462 0400 LOT-0177 7600 0200 0400 07577 7635 KM143. 7635 07443 1000 EXEC, TAD SAVPC 07444 7001 IAC 07445 3144 DCA TIME / GET THE CURRENT ADDRESS / GENERATE PC+1 / PLACE IT IN TIME / NOW HE CONTINUE WITH "NEXT" / IN TIME / THE FOLLOWING ROUTINES USE THE / PIE-WART INTERFACE IN TIME
OET THE MEST ADDRESS
OBERNATE MEST-I
STORE IN SAME
OET THE MEST INSTRUCTION
STORE IT IN SAME
OET THE INSTRUCTION
OET THE SECURITY
PLUCE IT IN "MEST-I"
OET THE SECURITY
OET THE SE 1144 7001 3145 1544 3154 1545 3155 1323 3544 1323 3545 1323 7041 1540 5722 1323 7041 1545 7640 5722 07446 07447 07471 07472 07473 07474 07475 07476 07501 07502 07503 07504 07507 07507 07507 07507 07507 07507 / THE PIE-WART INSTRUCTION EQUATES / ADD "NEXT" TO "BREAKPOINT / TEST: DID IT GET PLACED / NOI MUST BE ROM OR SOMETHING / GET THE BREAKPOINT / ADD "NEXT+1" TO -BREAKPOINT / TEST: DID IT GET PLACED / NOPE /-----/ IF ME GOT THIS FAR
/ IF WERYTHING MUST BE COOL SO
/ ME MILL NOW EXECUTE THE INSTRUCTION / REENTER PAGE 02 07913 1142 TAD SAVMO / RESTORE THE USER NO / MONITOR 2 IFDOS PAL 1A 06-APR-77 PAGE 12-1 +6340 +START+340 HOL TAD SAVEL / RESTORE THE LINK RAL CLA TAD SAVAC / CLEAR THE AC / RESTORE THE AC 07521 5400 JPP I SAVPO / GO EXECUTE THE INSTRUCTION / THE PIE INITALIZE ROUTINE 07522 6434 HOT, HALT 07523 4151 TAL, JMS BACK 06340 4007 INP1E, 06341 4400 06342 137 06343 4165 06344 137 300 06345 1360 06346 173 06346 7300 06346 6173 06346 06351 1361 06354 6171 06355 7300 06355 5564 CAF \$400 TAD KCRA NCRA ICLA TAD KCRB NCRB NCRB ICAR TAD KVR HVR CLA CLL TAD KVR HVR CLA CLL TAD KTTY HRITE2 CLA CLL RETURN / BAD SIN / BREAMPOINT INSTRUCTION / CLEAR ALL FLAGS / CLEAR THE DISPLAY / DET THE CRA WORD / WRITE IT TO THE PIE 07524 3140 RE1. 07525 6004 07526 314 07527 7521 07530 1144 07530 1154 07530 1155 07534 3545 07534 3545 07535 1155 07536 1151 07537 3000 HIC. 07537 3000 HIC. DCA SAVAC OTF DCA SAVFL SMP DCA SAVFD TAD SAVI DCA I TIME TAD SAVI DCA I SAVE CLA CLL CMA TAD BACK DCA I SAVE CLA SAVPC DCA SAVPC DCA SAVPC DCA SAVPC DCA SAVPC DCA SAVPC DCA SAVEC DCA SAVEC DCA SAVEC DCA SAVEC DCA SAVEC / SAVE THE USER AC / SAVE THE USER FLAGS / SAVE THE USER MQ / GET THE CRB WORD / WRITE IT TO THE PIE / SHIP USER PALE INSTRUCTION / RESTORE IN "MEXT" / OET THE ORIGINAL INSTRUCTION / RESTORE TO "MEXTH" / SET THE AC TO -1 OET THE AC TO -1 OET THE ACTO THE USER PC / MRITE IT URE PIE
/ LOAD IT TO THE VECTOR REGISTER
/ LOAD IT TO THE VECTOR REGISTER
/ LEAR THE AC AND LINK
/ GET THE WART CONTROL MORD
/ MRITE TO THE UNART
/ CLEAR THE AC AND LINK
/ OD BACK TO THE PROGRAM / 00 TO THE MONITOR SHELL 06357 7200 KCRA-06360 1560 KCRB-06361 7600 KTTY. 06362 0200 KVR-07542 4161 EJRP-07543 7435 07544 1144 07545 5337 CALL IMAD TAD TIME JMP HIC / GET THE MEXT ADDRESS INTO / TIME / GET THE ADDRESS INTO THE AC / PLACE IT IN SAVPC AND END / THE ROUTINE / OET THE NEXT ADDRESS / INTO TIME 07546 4161 EJMS. CALL 07547 7435 INAD / CROSS TO PAGE 08. THE LAST PAGE /------+7600 +START+1600 / THE TTY OUTPUT ROUTINE / Skip on Clear Whit Buffer / Whit Buffer Not Clear Yet / White The AC TO THE UNAT / WHITE THE AC TO THE UNAT / CLEAR THE AC AND STORE THE / OLD CHARACTER IN TIME / RETURN TO THE PROCRAW 07600 6163 TALK. 07601 5200 07602 6161 SKIP2 JMP . -1 MRITEI 07603 3144 DCA TIME 07604 9564 RETURN

/ THE LISH ROUTINE TO DET A CHARACTER

INTERSIL

/ MONITOR 2 1FD05 PAL IA 06-APR-77 PAGE 12-2

/ FROM THE TTY KEYBOARD

07605	6172 L 7000	15N.	\$8.1P3 NOP	/ RESET THE START BIT SENSE FLAC
07404			SFLAGI	/ SET THE READER RUN FLAG
07607	6166			
07410	6172		Sk1P3	/ WAIT FOR THE FIRST START BIT
07611	5210		JPP1	/ NOT YET
			CFLAG1	CLEAR THE READER RIN FLAG
07612	4167		CFEMOI	. CEEM ING MEMBER WINE LEMO
07413	6162 R	EAD.	SK IF1	/ WAIT FOR DATA READY FLAG
			JHP1	/ NOT YET
07414	5213			
07415	7200		CLA	/ CLEAR THE AC
07414	4160		READI	/ READ THE WART BUFFER INTO
0,0.0				/ THE AC
07417	0221		AND TTYR	/ MASE OUT THE UNMANTED BITS
07420	5544		RETURN	/ GO BACK TO THE PROGRAM
0/820				. SE ETTE IS THE PROGRAM
07421	0377 T	TYM.	0377	/ TTY MASK
V - 64 +	43. 1			

/ HONITOR 2 IFDOS PAL 1A 06-APR-77 PAGE 13-2 07721 4161 07722 7561 07723 2000 07724 7300 07725 1152 07726 3150 07727 1146 07730 3151 07731 5234 CALL
PLACE
1SZ SAVPC
CLA CLL
TAD THIRD
DCA FIRST
TAD HOLD
DCA SEC
JHP BEGG / PLACE THE COMPLETE WORD
/ IN THE MEMORY
/ INCREMENT THE ADDRESS
/ CLEAR THE AC AND LINK
/ MOVE UP ONE PAIR OF CHARS / GO GET ANOTHER CHAR 07732 1150 PCL, 07733 0366 07734 7002 07735 3000 07736 3150 07737 1146 07740 3152 07741 7040 07742 5236 TAD FIRST AND PMSK BSN DCA SAVPC DCA FIRST TAD HOLD DCA THIRD CMA JRP BEG / LOAD THE DRIGIN TO THE ADDRESS / MASK OUT THE CHANNEL 7 PUNCH / LOAD THE FIRST HALF TO SAVPO / CLEAP FIRST / UPDATE THE CHAR / SET PC2 . 07743 07744 07745 07746 07747 DCA LT TAD LAST TAD KCHR SNA CLA JMP BEGG 3156 LTC-1157 1367 7650 5234 / CLEAR LT / GET THE LAST CHAR RECEIVED / TEST: WAS THE LAST CHAR AN LT / YES: GO GET ANOTHER CHAP JMP BEGG
TAD FIRST
AND PMSV
BSSW
TAD SEC
CIA
TAD CHKSUM
CIA
TAD FIRST
TAD SEC
DCA SAVAC
TAD MIAU
TAD FIRST
TAD FIRST
TAD FIRST
TAD SEC
DCA SAVAC
TAD MIAU
MALT AND END OF THE LOAD
COMPUTE THE CHASUM HAS OUT
STRAY BIT WHICH APPEARS ON SOME
PAL-8 GENERATED TAPES.
ADD TO THE ACCUMULATED SUM
NOW COMPENSATE FOR ADDIM.
THE LAST TWO CHARS THICE 07750 07751 07752 07753 07754 07755 07756 07757 07760 07761 07762 07763 07764 1150 0366 7002 1151 7041 1160 7041 1150 1151 3140 1375 3000 5765 6434 / STORE THE RESULT IN THE AC / GO TO HALT 07766 07767 07770 07771 07772 07773 07774 97775 0077 PHSK. 7600 KCH8. 0100 KLONG. 0200 K200. 7500 KFD. 7401 KRUB. 0102 K102. 0140 K149. 0077 7600 0100 0200 7500 7401 0102 0140 / THE TABLE OF CONSTANTS

/ MONITOR 2 IFDOS PAL IA 06-APR-77 FAGE 13

/ THE BIN LOADER FOR MENITOR

/ THIS PROGRAM LUBDS TAPES IN BIN

/ COMMET COMMERCATE BY TAILS SENTER.

/ COMMET COMMERCATE BY TAILS SENTER.

/ COMMERCATE BY TAILS SENTER.

/ FAULTIL ETC. 1 THIS LOADER TOMORES

/ ALL CHANNER FIELD INSTRUCTIONS ON

/ THOSE TARES. IT ALSO ECHOS

/ ALL CHANNER FIELD INSTRUCTIONS ON

/ THOSE TARES.

/ THESE SYMBOLS ARE FOR THE BIN LOADER

0154 LT-SAV3
0150 CHESUM-SAV5
0157 LAST-SAV4
0150 FIRST-TEMP
0158 BET-SAV4
0150 FIRST-TEMP
0159 TOMORD CHESUM-CHEST

/ THE LOADER ALSO USES HOLD AND SAVPC

122 4161 BIN. CAL

/ RESET THE PIE-ART CAPD
/ AND CLEAR CHESUM
/ THESE THE PIE-ART CAPD
/ AND CLEAR CHESUM
/ AND CLEAR CHESUM-

| 076.22 | 4141 BIN. | CALL | RESET THE PIE-ART CARD |
076.23 | 4340 | 10P1E CMSLM | AND CLEAR CM-SUM |
076.23 | 3151 | D.C. | SEC | C.E. |
076.26 | 7040 | C.E. |
076.27 | 315 | D.C. |
076.20 | 3137 | TAD N.CO |
076.21 | 3137 | TAD N.CO |
076.22 | 3137 | TAD N.CO |
076.23 | 3154 | D.C. |
076.23 | 3154 | D.C. |
076.24 | 3154 | D.C. |
076.25 | D.C. |
076.26 | C.E. |
076.27 | C.E. |
076.28 | 3154 | D.C. |
076.29 | 3154 |
076.20 | 3154 | D.C. |
076.21 | 3154 | D.C. |
076.22 | C.E. |
076.23 | 3154 | D.C. |
076.24 | 3154 | D.C. |
076.25 | D.C. |
076.26 | 3154 |
076.27 | 3154 |
076.28 | 3154 |
076.29 | 3154 |
076.20 | 3154 |
076.20 | 3154 |
076.21 | 3164 |
076.21 | 3164 |
076.21 | 3164 |
076.21 | 3164 |
076.21 | 3173 |
076.21 | 3174 |
076.21 | 3174 |
076.21 | 3175 |
076.21 | 3175 |
076.22 |
076.23 | 3175 |
076.24 | 3175 |
076.25 |
076.26 | 3175 |
076.26 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |
076.27 |

7/30 JP RIP / VES: GO TO A RUBOUT ROUTINE
97445 1340 JP RIP / VES: GO TO A RUBOUT ROUTINE
97446 1340 TAD HOLD / NO: GET THE CHAR
7/447 1367 TAD YCH6 / TEST: [S IT AN LT CHAR*

/ MONITOR 2 IFDOS PAL 1A 06-APR-77 PAGE 13-1

SMA CLA 07650 7650 07651 5343 TAD HOLD DCA LAST / NOT STORE THE CHAR IN LAST 07652 1146 07653 3157 / TESTI HAVE HE HAD AN LT YET? TAD LT SZA CLA JAP BEG 07654 1156 07655 7640 07656 5236 / NO! JONORE THE CHAR 07457 1146 07440 1372 07441 7700 07462 5236 TAD HOLD TAD KFD SMA CLA JMP SEG / WE HAVE HAD AN LT SO GO AMEAD / TEST: IS THE CHAR A CHANGE FIELD? / YES: IGNORE IT TAD HOLD TAD CHKSUM DCA CHKSUM 07643 1146 07644 1160 07665 3160 / NO: OF TO ADD TO CHESUM 07444 1150 . TAD FIRST / DET THE FIRST CHAR FROM THE / PREVIOUS PAIR OF CHARS / TEST: IS IT AN ORIGIN? 07667 0370 07670 7640 KLING. 07671 5332 AND KLONG SZA CLA JPP PCL / YES: 00 TO PC LOAD / ARE ME IN THE MIDDLE OF A PC / LOAD? / NO: GO ON TO MORE 07672 2134 1SZ PC2 07673 5311 JMP HORE 07674 1000 PCL2. 07675 1151 07676 3000 07677 5324 TAD SAVPC TAD SEC DCA SAVPC JMP BAG / YES: GET THE ADDRESS
/ COMBINE WITH THE SECOND HALF
/ STORE THE NEW ADDRESS
/ GO TO CHAR UPDATE 07700 4161 RLH-07701 7605 07702 4161 07703 7600 07704 1144 07705 1373 07706 7700 07707 5237 07710 5300 CALL LISN CALL TALK TAD TIME TAD KRUB SMA CLA JMP BEG+1 JMP RUM / BETHEEN RUBOUTS HE ECHO THE / CHARS READ / GET THE CHAR FROM TIME
/ TEST: IS IT A RUBOUT?
/ IF A RUBOUT IT MILL SET AC TO ZERO
/ YES: GO ON MITH THE LOADING
/ NO: CONTINUE TO IGNORE CHARS

07705 1372 740 KRUB / TEST: IS IT A RUBOUT" 7700 7704 7700 994 CLP / IF A RUBOUT 1 14 RUBOUT 1 15 RUBO

/ DET THE FIRST CHAR / POSITION / DET THE SECOND HALF

TAD FIRST BSW TAD SEC

07716 1150 DL2. 07717 7002 07720 1151 . HOLLTON 2 15005 DOL 14 1/4-495-77 PAGE 1

RENTER PAGE 86

+7305 +START+1305

THIS IS THE NEMBER DUMP USER
PROGRAM THE PROGRAM IS TO BE USED
PROGRAM THE PROGRAM IS TO BE USED
TO DUMP SECTIONS OF MEMORY OUT ONTO
PAPER TAPE IN THE PLANARY ISIN'
FORMAT FOR OFFILINE STORAGE
THESE THESE HAVE LATER BE LADRED USING
THESE THESE HAVE LATER BE LADRED USING
THESE THESE HAVE LATER BE LADRED USING
THESE THE ADDRESS MANUEL OF THE SECTION
YOU MANT TRUMHED. PLANE THE ADDRESS INC
TO SET THE ADDRESS RANGE OF THE SECTION
YOU MANT TRUMHED. PLANE THE ADDRESS INC
LOCATION ISING THESE HAS ADDRESS
OF THE FIRST MICH OF THE SECTION OF THE THE SECTION
THE DUMP PROGRAM WILL FRUNK COTT A PTIN'
TAPE MITH LEATHER THAN ES. ALL CONTROL
FROM FIRST TO LOST AND A CHIEF.

07305	7340	DUMP.	CLA CLL CMA	/ SET THE AC TO 7777
07306	6402	/ DISARLE THE CF TIMER	CARL	/ DISARLE THE CF TIMER
07310	6340	CARL	/ INVITALIZE THE PIE-ART CARD	
07311	7344	CLA CLL CMA RAL	/ PLACE THIS IN BACY	
07312	3151	DCA BACY	/ PLACE THIS IN BACY	
07313	3160	DCA SAYS	/ CLEAR THE CHECKSUM	
07314	4161	CALL	/ PLACE THIS IN BACY	
07315	6363	THIT	/ THIS IN BACY	
07316	1131	TAD HOLD2	/ PLACE THE CARD THE	

/ REENTER PAGE #2

8-36

6K MEMORY UTILIZED

CHAPTER 9 INTERCEPT JR. AUDIO CARD

FIGURE 9-1

INTRODUCTION

The INTERCEPT JR. AUDIO MODULE, 6957-AUD/VIS, pictured in Figure 9-1, is used in microprocessor tutorial courses developed by INTERSIL INC.

The user can "click" the speaker or produce tones by controlling the rate at which the speaker clicks; the user can read a switch register and load data to an LED display register in either binary or in both binary and octal.

DISCUSSION

The AUDIO card makes use of the three unused IOT instruction codes 64X1, 64X4 and 64X5 brought out to connector pins Y, C and 15 of the INTERCEPT JR. module.

The card should be plugged in with the LED display on top and the speaker below using the card edge connector designated "to INTERCEPT JUNIOR".

The switch register is connected to the DX bus via two 340098 three-state hex buffers. The LED binary register is driven by three 74C175 quad D-latches with their inputs connected to the DX bus. The true outputs of the latches drive three 4511 BCD to 7 segment decoder drivers. The D input of each of the 4511's is grounded so that the seven segment display can only display in octal. The display can be blanked by pulling the blanking inputs on the 4511's low via the Display Control Switch S12.

All the switch outputs are pulled up to V_{CC} via the 10K resistor pack.

IOT 6401 along with DEVSEL and XTC drives a 4025 three input NOR so that during IOTA·DEVSEL·XTC the 74C74 flip-flop is clocked by the execution of this instruction. The flip-flop toggles every time it is clocked as its $\overline{\mathbb{Q}}$ output is connected back to the D input. This turns the transistors in the push-pull driver alternately ON or OFF, charging and discharging the 68 microfarad capacitor through the speaker voice coil and producing an audible click.

IOT 6404 is also an output instruction and thus is gated with DEVSEL and XTC to produce a load pulse (inverted by a 4069) to the three quad D-latches connected to the DX bus. The latches will thus store the contents of the AC which are placed on the bus by the IM6100 during $IOTA \cdot \overline{DEVSEL} \cdot \overline{XTC}$.

IOT 6405 is an input instruction and is decoded along with DEVSEL and XTC to produce a strobe pulse at IOTA·DEVSEL·XTC time. This pulse is inverted by a 4069 and enables the tristate buffers onto the DX bus and also turns ON the two 2N2222 transistors driving the \underline{CO} and \underline{CI} lines. The IM6100 thus reads the DX bus during IOTA· \underline{DEVSEL} ·XTC and loads the data into the accumulator.

The INTREQ and SKP lines to the IM6100 are multiplexed onto the same line. The data read strobe generated by an IOT 6405 enables the SKP line so that depression of the SKP switch will drive the SKP line low. The INTREQ line is always enabled except during DEVSEL time. Actually, the SKP line is sampled only during DEVSEL·XTC, but for simplicity, interrupt requests are disabled even during DEVSEL·XTC. In any case, the INTREQ line is sampled only during the last cycle of an instruction execution during the first major state time.

The LINK bit drives an LED diode directly via a 4069.

CHAPTER 10

INTERCEPT JR CASSETTE INTERFACE CARD

INTRODUCTION

The INTERCEPT JR AUDIO CASSETTE INTERFACE MODULE, 6954-AC1 is pictured in Figure 10-1.

Figure 10-1

The 6954 Cassette Interface module allows the Intercept Jr. user to store programs on an inexpensive cassette tape recorder. The recording technique used is a variation of the proposed "Byte Magazine" standard. In addition to this standard signal, a multiple of the data clock is recorded on the tape. The data and the clock are recovered from the tape by using phaselock loops. The use of phaselock loops makes the system insensitive to amplitude variations, noise, and A.C. line interference. The self-clocking feature allows the system to operate independent of tape speed variations. Data is recorded and played back at 300 baud rate. Thus, approximately 200,000 characters may be recorded on a standard two hour cassette.

The record/playback system is shown in Figure 10-2.

The system can be subdivided into three main sections:

- 1. Transmitter section consisting of a clock, divider, clock gating, digital frequency generator mixer and low pass filter.
- 2. Receiver section consisting of two phaselock loops and a comparator.
- 3. DC-DC converter to generate -5v from the +5v Jr. supply.
- 4. Digital section composed of a UART and a PIE chip.

The transmitter section takes the serial data being transmitted from the UART and converts it to standard frequency shift signals -- a higher frequency (Mark) for a digital "1" and a lower frequency (Space) for a digital "0". The ones and zeroes at the UART transmit line are converted to a series of marks and spaces on the magnetic tape. A tape casette designed specifically for a digital system would write ones and zeroes directly on the tape by using a tape saturation techniques. The record system on an audio cassette

is not designed to operate in the saturation mode. Therefore, digital information is best stored in the form of two different frequencies, both within the frequency range of the recording system. This recording system is similar to techniques used to transmit data over telephone lines. Where telephone lines have phase distortion (harmonics arriving out of phase with the fundamental frequency), tape systems have speed variation problems. The speed variation problem in this system is resolved by recording the clock with data on the tape.

The receiver section has two phaselock loops. One loop is locked to the data mark and space frequencies. The DC control voltage for the Voltage Controlled Oscillator (VCO) is sensed by a comparator circuit. As the input frequency varies, so does the DC control voltage, as a result, the comparator output is a one for the mark frequency and a zero for a space frequency. The ones and zeroes are sent to the UART as received data.

Another PLL (phaselock loop) locks onto the clock signal and supplies the UART with a receiver clock. Any speed variations in the tape recorder are tracked by the data and clock PLLs, thereby making the system immune to speed variation.

The digital section consists of a standard Intersil UART (Universal Asynchronous Receiver Transmitter) and PIE (Parallel Interface Element).

THE RECORDER

Practically any cassette recorder can be used in this system. A number of different brands of recorders have been successfully used to record and playback digital data. There may exist certain recorders whose circuitry is so poor as to be unusable in this system. Some recorders may have excessive AC hum which will create data errors. Sometimes the hum problem can be reduced by reversing the line plug. If a recorder with hum problems has provisions for batteries, you can run the unit from batteries to eliminate the hum problem.

The MIC output from the 6954-ACI board is a low-level signal which should be connected to the microphone input jack of the recorder. Most recorders label the microphone input "MIC". A shielded cable should always be used for the MIC interconnection. Failure to use a shielded cable may cause noise to be recorded along with the useful signal. Numerous jumper pads are provided near the 6954 MIC jack to allow the user to tailor the output to any special application. The 'from the factory' jumper set-up sets the output level to an optimum level for most recorders. If you have a recorder with an 'AUX' input, which is an input meant for a high-level signal, you may want to use the AUX input instead of the MIC input. The use of the AUX input would only be necessary in an extremely noisy environment. To create a high-level output from the 6954 board, cut the trace between jumper pads 2 and 3 and then connect pad 2 to pad 1. An even higher signal can be obtained by connecting pad 2 to TP10.

Some recorders have a monitor feature in which the signal being recorded is amplified and sent out on the earphone (EAR) jack during the recording process. This may be a quality signal which can be used to test and set-up the receiver portion of the board. Usually there is no volume control for this monitor signal and in some cases it may not be of sufficient level or quality to be used as a valid receiver signal. If a good monitor signal is not available, all testing should be done in two passes -- the first to record a signal and the second to play the signal back to the receiver section.

During data playback, the setting of the volume control is not critical. Unplug the EAR plug on the recorder and adjust the volume to a normal listening level -- this position of the control can then be marked for future reference. If at any time the system will work only for a narrow range of volume settings, a system problem exists and should be debugged. If a scope is available, the volume control should be adjusted so that a one volt peak-peak signal is present at the EAR jack of the 6954 board.

Although inexpensive cassette cartridges are usable since tape quality is not a significant factor, the mechanical quality of the better cassettes help reduce jamming problems that cassette recorders experience.

A recorder that has a "tape counter" feature is very useful for locating the approximate position of data stored on a tape.

SOURCES OF NOISE INTERFERENCE

The possibility of either recording errors or playback errors exists when there is an excessive amount of noise interference present. Possible sources of noise in this system are ground loops, AC line interference, RF interference, and supply voltage transients.

Ground loops are currents flowing through the ground traces, shields, and recorder frame which may create false signals either on the board or in the recorder. If an Intercept system has external equipment connected to it, improper grounding techniques can create system problems. A good method for dealing with grounding problems is to first draw a block diagram of all components in the system and then draw <u>all</u> ground connections that are present. An analysis can then be made of the path that ground currents must take.

AC line interference can be caused either by equipment connected to the system or by proximity to sources of AC voltages. An AC problem caused by a piece

of peripheral equipment must usually be solved by eliminating the problem at that particular piece of equipment. Interference caused by nearby AC sources is caused by removal of the source or by shielding the ACI interface circuitry.

Strong RF fields near the interface circuitry can create problems. Remember that the Intercept Jr. components are not in shielded boxes and any operational situations where strong fields exist must be dealt with by shielding the circuitry.

Supply voltage transients are present when heavy loads are switched on and off. Also when weak batteries are supplying the power, internal battery resistance increases the possibility of transients. Power supply problems can be minimized by using a line operated power source and by decoupling high current loads. LEDs and TTY current loops are examples of high current loads.

6954 ACI BOARD

The 6954 board is designed to work with +5 volts and -5 volts. The +5 volts are supplied by the Intercept Jr. batteries and the -5 volts are generated by a voltage converter. The 6954 board should not be operated over a wide range of supply voltages. If batteries are being used and they are being heavily loaded, it may be necessary to use a line operated power supply to maintain a more constant +5 volt supply voltage. If the supply voltage drops too low, the phaselock loops (IC1 and IC2) may have to be readjusted to correctly receive data.

For each card in the system that uses a 6101 PIE chip, a unique address must be assigned to that card so that I/O instructions can be directed to a particular board. If a TTY interface is not being used, the address normally used for the TTY can be assigned to the ACI board. The advantage of doing this is that there are ROM programs that reference the TTY board address. The ROM programs allow you to initialize the PIE, write data to the recorder, and read data from the recorder simply by calling the existing programs from ROM. If a TTY card and an ACI are both being used, a different address must be assigned and the ROM routines cannot be used. A listing of the ROM is in the Intercept Jr. manual. The pertinent routines are listed below and can be used as a guide to writing your own program. Note that the I/O instructions that address the standard TTY card must be modified for other addresses.

```
/ THE PIE INITIALIZE ROUTINE
                               / CLEAR ALL FLAGS
INPIE.
          CAF
                              / CLEAR THE DISPLAY
           6400
                              / GET THE CRA WORD
           TAD KCRA
                              / LOAD IT TO CRA IN PIE
           WCRA
           CLA CLL
                             / GET THE CRB WORD
           TAD KCRB
                              / LOAD IT TO THE CRB WORD IN PIE
           WCRB
           CLA CLL
                              / GET THE TTY-UART CONTROL WORD
           TAD KTTY
                              / LOAD IT TO UART CONTROL WORD
           WRITE2
           CLA CLL
                              / WRITE ALL ZEROS INTO THE VECTOR WORD
           WVR
           DCA SAV5
                              / CLEAR SAVS
           RETURN
                               / GO BACK TO THE PROGRAM
KCRA.
           7200
KCRB,
           1560
           7600
KTTY.
                               / THE PRINT TO TTY ROUTINE
           SKIP2
                              / SKIP ON CLEAR XMIT BUFFER
TALK,
                              / XMIT BUFFER NOT YET CLEAR
           JMP .-1
           WRITE1
                              / WRITE THE AC TO THE UART
                              / CLEAR THE AC AND STORE THE DATA
           DCA TIME
                              / IN TIME FOR POSSIBLE RECOVERY
           RETURN
                               / GO BACK TO THE PROGRAM
                               / LISN IS THE ROUTINE TO GET A
                               / CHARACTER FROM THE TTY KEYBOARD
                               / CR READER
                               / WAIT FOR DATA READY FLAG
READ,
           SKIP1
           JMP .-1
                               / CLEAR THE AC
           CLA
                               / READ THE UART BUFFER AND ERROR
           READ1
                              / FLAGS, CLEAR THE DATA READY FLAG
           AND TTYM
                              / CLEAR OUT THE UNWANTED BITS
           RETURN
                               / GO BACK TO THE PROGRAM
TTYM,
           0377
```

USER ASSIGNED ADDRESS

The user should consult the 6101-PIE data sheet and thoroughly understand its operation in order to write effective data transfer programs.

I/O instructions are of the format

0	1	2	3	4	5	6	7	8	9	10	11
1	1	0		I	Addres	S			Сот	ntrol	·

Bits 3-7 are compared with the SEL3-SEL7 inputs of the PIE.

SEL3-SEL7 represent the PIE address to be selected. The standard teletype address is SEL3 and SEL4 zero and SEL5, SEL6 & SEL7 a high logic level -- so all TTY I/O instructions are of the form 11000111XXXX, where the X's represent the type of I/O instruction to be implemented. The following are examples of TTY I/O instructions: WRITE2 (OCTAL 6171), READ1 (OCTAL 6160), and SKIP2 (OCTAL 6163).

WRITING A MEMORY WORD TO THE CASSETTE

Assume that we set the PIE address as follows:

SEL3=0

SEL4=0

SEL5=0

SEL6=1

SEL7=1

The WRITE1 command is used to send an eight bit character out on the DX bus to the UART where it is transmitted as serial data. Due to our choice of PIE address, the octal code for WRITE1 will be 6061. In addition to the WRITE1 command, we must use a SKIP2 command to form a waiting loop - the loop is necessary since the UART may not be ready to transmit a character at all times. A program segment which will write an eight bit word is:

0020	6063	LOOP, SKIP2
0021	5020	JMP LOOP
0022	6061	WRITE1

The program will cycle between the first two instructions until the UART is ready to transmit a new character - at that time the program will skip the second instruction and go to the WRITE1 instruction. Note that only eight bits can be transferred and it will take two transfers to write a 12 bit memory word.

READING A MEMORY WORD FROM THE CASSETTE

The reading routine is very similar to the write routine and is shown below. Note that the four most significant bits are masked off.

0030	6062	LOOP, SKIP1
0031	5030	JMP LOOP
0032	7200	CLA
0033	6060	READ1
0034	0040	AND MASK
	•	
	•	
	•	
0040	0377	MASK, 0377

INITIALIZING THE PIE

At the start of a program, the internal registers of the PIE chip must be initialized. The ROM routine which does this has the label INPIE. If the standard TTY address is not used, the I/O instructions must be modified to conform to the address being used.

THEORY OF RECEIVER SECTION OPERATION

ICl is a 565 phaselock loop that locks on to the mark and space frequencies from the cassette. The center frequency of the phaselock loop is controlled by C4, R5, and P1. The center frequency is preset at the factory with P1. Capacitor C5 is necessary to prevent oscillations. The signal from the tape recorder is AC coupled through C1 filter. Pins 6 and 7 are the 565 output terminals. Pin 6 is a reference DC voltage while pin 7 is a control voltage that goes above and below the reference voltage--depending on whether a mark or a space is being received. The control voltage passes through a low pass filter. The filtered control voltage goes to pin 4 of IC3.

IC3 is a precision comparator which compares the ICI reference output with IC1 control voltage. The output of the comparator at pin 9 is a one (5 volt) level when a mark frequency is being received and is a zero when a space is received.

IC2 is a 565 phaselock loop which acquires the recorded clock signal and tracks any variations in clock speed. The composite signal (clock and data) is applied to pin 2. C14 and R15 are set so that the PLL center frequency is equal to the normal clock frequency. The phaselock loop VCO output at pins 4 and 5 supply the clock signal to a UART. When the PLL is locked onto the clock, pins 4 and 5 represent recovered clock data.

The following test points are available in the receiver section:

TP1	MARK/SPACE CONTROL VOLTAGE
TP2	REFERENCE VOLTAGE
TP3	RECEIVED DIGITAL DATA
TP4	RECOVERED CLOCK SIGNAL

Figure 2 shows typical waveforms for the test points.

THEORY OF TRANSMITTER SECTION OPERATION

The transmitter section consists of IC4, IC5, IC8, IC9 and IC10.

The circuit consisting of IC9 and a crystal oscillator is the main time base from which the transmitted clock is derived and from which the mark and space frequencies are derived. The oscillator output is at pin 5 at a frequency of 2.4576 MHz. The oscillator signal is fed to pin 10 of IC10. IC10 is a multistage divider chip that provides three different frequencies -- 19200 Hz and 9600 Hz for the mark/space generation and 4800 Hz for the UART transmit clock. The 4800 Hz signal is also supplied to a mixer (R18 and R22) and eventually recorded on the tape. The circuitry of IC5 is a multiplexer which either sends 19200 Hz or 9600 Hz to the digital sinewave generator (IC4).

The counter, IC4, is used to digitally generate the mark/space sinewave frequency. The outputs of IC4 are pins 3, 6 and 11. R19, R20, R21 and R22 comprise a mixer circuit -- as the counter outputs go high, they are mixed with the composite signal across R22. Also appearing at R22 will be the clock signal. The composite signal passes through an active filter (Q2 and associated components). The output of the filter is divided down to an optimum record signal and sent to the recorder through the "MIC" plug. Optional jumpers are available to accommodate special recorder requirements.

The following test points are available in the transmitter section:

TP5	Composite Sinewave
TP7	19200 Hz Digital Signal
TP8	4800 Hz Digital Signal
TP9	9600 Hz Digital Singal

Figure 3 shows typical waveshapes. Note that the signal to the recorder is a low level signal intended for the microphone input, <u>not</u> the auxiliary input. Some recorders have an "AUX" input, but all recorders have a "MIC" input.

D.C.-D.C. CONVERTER

IC13 is a Texas Instrument TL497 switching converter. IC13 switches current into L1 at a frequency determined by C30. As the current through L1 is switched off, a negative voltage is present at pin 8 of IC13. CR1 passes this negative pulse to C31 where it is filtered and sent to the circuits requiring -5 volts. The voltage at the output is set by the resistor ratio of R32 and R33. R34 is used as a current limit and to reduce noise on the +5 volt line.

CIRCUIT OPTIONS

The 6954-ACI board allows the user to implement a remote power ON/OFF control to a recorder if desired. PIE flag Fl is used via a gate and transistor to operate a DIP relay. The contacts are brought to the plug bracket. An extra hole is provided on this bracket for a 2.5 mm plug. One way to use this feature is to parallel the remote foot-switch or PAUSE switch available on many recorders. Another possibility is to shut off all power to the system on a user program decision. Optional resistor locations and jumper pads have been provided in the filter output circuit to adjust voltage levels. In most cases, the factory settings should be adequate.

APPENDIX A INTERCEPT JR. PROGRAMMING FUNDAMENTALS

NUMBER SYSTEMS

INTERCEPT JR., as most digital computers, uses the binary system. Representation of binary numbers by positional notation is analogous to the common representation of decimal numbers by assigning ten different "weights" to each position. Any number of n digits may be written as the string of digits.

$$c_{n-1}$$
 c_{n-2} c_1 c_0

where C's can range from 0 to 9.

This actually stands for

$$C_{n-1}$$
 followed by (n-1) zeros + C_{n-2} followed by (n-2) zeros + C_{n-3} followed by (n-3) zeros + C_1 followed by 1 zero + C_0

or
$$C_{n-1} (10)^{n-1} + C_{n-2} (10)^{n-2} + ... C_1 (10)^1 + C_0 (10)^0$$

For example, 1234 is 1000 + 200 + 30 + 4 or $1 \times 10^3 + 2 \times 10^2 + 3 \times 10^1 + 4$.

Similarly, in the binary system, any number may be represented by a string of coefficients

$$B_{n-1}$$
 B_{n-2} B_0 B_1

which stands for

$$B_{n-1} (2)^{n-1} + B_{n-2} (2)^{n-2} + B_1 (2)^1 + B_0 (2)^0$$

where the B's may be 0 or 1.

The "radix", or base of the binary system is 2, whereas it is 0 in the case of the decimal system.

In theory, binary numbers may be used to describe the condition of these flip-flops.

A system with 12 flip-flops could be represented by a 12 bit number, for example 1 0 1 1 0 0 1 1 1 0 0 1, where each bit represents the set or reset state of a particular flip-flop. Binary numbers are unwieldy to handle because of the long strings involved, so often a simplification is introduced.

Consider the numbers 0 through 15 written in their binary equivalent.

2 ³	22	21	20	
8	4	2	1	
2 ³ 8 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1	2 ² 4 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1	2 ¹ 2 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1	20 1 0 1 0 1 0 1 0 1 0 1 0 1	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0	į	į	Ō	6
0	l O	l O	1	/ ያ
į	0	0	1	9
1	0	1	1	11
]]]	0	0 1	12
į	į į	Ĭ	0	14
ı	ı	ı	ı	13

Observe that in the "units", or 2^0 position, the state changes, or "toggles" most often, for example every time the number increments. In the next or 2^1 position, the bits toggle every two increments, and in the 2^2 position, every four times, etc.

Or, looking at this another way, the one bit groups 0 and 1 alternate every time, the two bit groups 00, 01, 10, 11 recur every fourth time, the three bit groups

000) 001) 010) 011) 100) 101) 110)

recur every eight times, and so on.

Thus, to shorten binary numbers, we could encode these groups. The tradeoff is between the length of the number string, and the number of symbols required.

Our 12 bit number may now be represented by three of the above codes:

	1011	0011	1001
or	В	3	9

So, we have doubled the number of symbols to sixteen but reduced the length of our string only by one, from four to three. The code itself has also become a little unwieldy because the number of different symbols.

As a matter of fact, this representation by four bit groups is known as the hexadecimal system (base 16 system) and is widely used.

The system of representation with three bit groups encoded with the eight symbols 0 through 7 is known as the octal number system and is also in wide use.

We shall adopt the octal numbering system for INTERCEPT JR.

It should be evident by now that the choice is based purely on convenience and consistency with the available literature as almost all digital computers are fundamentally binary machines.

At this point, it is instructive to turn your machine ON. Press the CNTRL key and the MEM key and then keep pressing the MEM key. The address display will increment in an octal progression. By watching the addresses increment, the user can become familiar with the octal system.

To recapitulate, conversion from binary to octal is done by taking groups of three bits, starting from the least significant bit, filling in a zero or zeros to the most significant group, if necessary, and writing down the octal equivalent for each group.

Conversion from octal to binary is done by directly writing down three bits from each octal number.

INTERCEPT JR. uses two's complement arithmetic in its processing logic.

The processor performs binary addition between two operands but binary subtraction is best done adding the "negative" of one operand to the other. This requires an extra symbol to indicate the sign of the number. To avoid this, a form of representation known as two's complement has been devised to represent negative numbers.

APPENDIX B INTRODUCTION TO LOGIC

INTRODUCTION

This appendix briefly reviews truth tables as applied to simple logic elements, both combinatorial and sequential. Timing diagrams and state diagrams are illustrated using flip-flops as examples.

TRUTH TABLES

AND FUNCTION

Symbol for AND gate

Output is true only if all inputs are true, that is, input 1 AND input 2 AND...AND input N $\,$

Input 1	Input 2	• • • •	Input N	Output
0 0 0 1 1	1 0 0 0 0	••••	1 1 0 1 0	0 0 0 0
1	1	all 1's	1	1

This table shows a conventional positive logic AND gate, with 1 representing logic high or true, and 0 representing logic low or false. Thus, only one combination of the inputs gives a <u>high</u> output.

OR FUNCTION SYMBOL FOR OR GATE

Output is true if at least <u>one</u> of the inputs is true, for example Input 1 OR Input 2 $\overline{\text{OR}}$...Input N OR any combination of true inputs yields a true output.

Input 1	Input 2	• • • •	Input N	Output
0	0	all 0's	0	0
0	1		0	7
1	1	• • • •	0	1
0	0		1	1

Here, only one of the 2^N possible input combinations namely all $\overline{0}$'s will yield a false or low output.

NOT FUNCTION

Symbol for inverter

Output is logical inversion of input.

Input	Output	
1	0	
0]	

The position of the "bubble" tells you what the active level of the input is expected to be by the designer. Quite often, it is drawn as in A above.

NAND FUNCTION

This is the same as an AND gate followed by an inverter.

NOR FUNCTION

Symbol for NOR gate

This is the same as an OR gate followed by an inverter.

EXCLUSIVE-OR FUNCTION

Symbol for EX-OR gate

Α	В	С
0	0	0
0	1 0	i
1	ĺ	0

Output is true if Input A OR B but not BOTH are true. Note that this gate can be used to detect the fact that the inputs are identical. Thus, it is used quite often in digital comparators.

	Inj	out		<u>Output</u>
D	Clock	Clear	Preset	$Q \overline{Q}$
Χ	Χ	0	0	1 1
Χ	Χ	0	7	0 1
Χ	Χ	1	0	1 0
Χ	0	1	1	STABLE
Χ	1	1	1	STABLE
Χ	+	1	1	STABLE
0	†	1	1	0 1
1	†	1	1	1 0

The truth table for a D flip-flop is complicated by the sequential nature of this logic device. Strictly speaking, truth tables should represent combinatorial logic properties only.

In this case, the truth table also shows the edgetriggered action of the flip-flop with ≠ representing the negative going edge and ↑ the positive going edge. O and I show stable levels. The table is really a hybrid of a combinatorial truth table and a state table.

This flip-flop is a synchronous storage element. In other words, it stores data using a clock signal to synchronize the operation. In this case, the device is positive-going edge triggered, or simply, positive edge triggered.

The bottom two lines show that as long as the clear and present inputs are high, the positive clock edge loads the flip-flop with the data at D such that the Q output reflects the D input. The \overline{Q} output is always supposed to be the inverse of the Q input.

All other conditions of the clock--high, low, or negative edge, have no effect and the outputs remain stable (at the value loaded on the previous positive edge).

The D flip-flop thus delays data by one clock period. Note that during the preceding discussion, the clear and preset inputs were assumed high.

These inputs are asynchronous, and so can change the outputs regardless of the clock or data input.

The bubbles indicate active low operation.

When both asynchronous, or "direct" inputs are low, both Q and \overline{Q} go high, so this condition is normally forbidden.

In sequential circuits, other time related parameters are generally specified. Thus data inputs generally have to meet setup and hold times with respect to the active edge of the clock, or "interrogating" edge. A setup time is the time the data must be present before the active edge, and the hold time is the time for which it must continue to be present—"held", after the active edge in order for proper operation. Sequential device operation can be much better understood using another graphical technique known as a timing diagram. Such diagrams bring out the time-sequential interactions in these devices much more clearly. The next section will deal with timing diagrams.

TIMING DIAGRAMS

Shown below is a timing diagram for a D flip-flop.

STATE DIAGRAMS

Sequential circuits inherently contain storage elements each of which may be in one of two stable states. Each "state" of a digital system, as explained in the section on truth tables, could be represented by a binary number. The system changes states in response to internal and/or external conditions. The state transition may be synchronous to a clock pulse train or asynchronous. Asynchronous sequential circuits will not be covered in detail in this book, and we shall deal only with clocked logic.

State tables and state transition diagrams are additional tools of analysis and design that digital engineers use.

As an example, we shall show the state table and state transition diagram for the J-K flip-flop.

$Q_{\mathbf{n}}$	J _n	K _n	⁽⁾ n+1
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
7	0	0	1
]	0	1	0
1	7	0	1
1	1	1	0

The transition, if any, from Q_n to Q_{n+1} (Q at time t_n and Q at time t_{n+1}) is triggered by the negative going edge of the clock.

In words, when J and K are zero, the outputs do not change. When J and K are both one, the output toggles at every clock pulse and when J and K are at opposite levels, Q follows J (and \overline{Q} follows K).

Another form of the state table shows this relationship:

	$J_{n}=0, K_{n}=0$	$J_{n}=0, K_{n}=1$	J _n =1, K _n =0	$J_{n}=1, K_{n}=1$
Present State \mathbb{Q}_n	Next State	Next State	Next State	Next State
	^Q n+1	^Q n+1	Q _{n+1}	^Q n+1
0	0	0]	1
1	1	0]	0

The number of inputs and outputs in a digital system are not related to the number of states. They only determine the number of paths along which a change of state may occur. In this specific case, the output is also the state.

The state diagram shows the different states of a digital system and the conditions necessary to cause the system to change states.

Information that is not shown on a state transition diagram is presented in other visual aids such as timing diagrams.

Thus, in general, a complex system must be studied with the aid of many different tools in order to gain insight into the operation of the system from many different angles.

Digital systems may be "hardwired" or programmable. Hardwired digital systems have many logic devices scattered at random and many operations are done in parallel.

This "random logic" consists of such standard SSI and MSI functions as counters, multiplexers, decoders, latches, registers, etc.

Programmable logic systems usually have denser, more regularly arrayed chips such as ROMs, PROMs, RAMs, FPLAs, microprocessors, etc. and substitute many sequential operations for a single parallel operation, though this is not always the case.

Such systems replace the "randomness" in the logic with random bit patterns in the memory components. Programmable logic systems are gaining popularity with the advent of inexpensive LSI storage and processor devices.

APPENDIX C OCTAL-DECIMAL INTEGER CONVERSION TABLE

		 0 1	2 3	4 5	6 7	Ì		0	1		3	4	5	6 7	ļ		0	1	3	3	4	5	6 7
0000 0000 to 0777 0511 (Octal) (Decimal) 0000 to 0511 (Octal) (Decimal) 0000 - 4096 20000 - 8192	0000 0010 0020 0030 0040 0050 0060 0070	0000 0001 0 0008 0009 00 0016 0017 00 0024 0025 00 0032 0033 00 0040 0041 00 0048 0049 00 0056 0057 00	010 0011 018 0019 026 0027 034 0035 042 0043 050 0051	0012 0013 0020 0021 0028 0029 0036 0037 0044 0045 0052 0053	0014 0015 0022 0023 0030 0031 0038 0039 0046 0047 0054 0055	1000 0512 to to 1777 1022 (Octal) (Decim	1000 1010	0520 0528 0536 0544 0552 0560	0 0521 8 0529 8 0537 9 0545 9 0553 0 0561	0522 0530 0538 0546 0554 0562	0523 0531 0539 0547 0555 0563	0524 0 0532 0 0540 0 0548 0 0556 0	525 05 533 05 541 05 549 05 557 05 565 05	518 0519 526 9527 534 0535 42 0543 50 0551 58 0559 66 0567 74 0575	(Octal) (Decimal]	2000 2010 2020 2030 2040 2050 2060 2070	1032 1040 1048 1056 1064 1072	1033 1041 1049 1057 1065 1073	1034 1042 1050 1058 1065 1074	1035 1 1043 1 1051 1 1059 1 1067 1	036 1- 044 1 052 1 060 1- 068 1- 076 1-	037 10 045 10 053 10 061 10 069 10	030 1031 039 1039 046 1047 154 1055 062 1063 070 1071 078 1079 086 1087
30000-12288 40000-16384 50000-20480 60000-24576 70000-28672	0100 0110 0120 0130 0140 0150 0160 0170	0064 0065 06 0072 0073 06 0080 0081 06 0088 0089 00 0096 0097 00 0104 0105 01 0112 0113 01 0120 0121 01	974 0075 982 0083 990 0091 998 0099 106 0107 114 0115	0076 0077 0084 0085 0092 0093 0100 0101 0108 0109 0116 0117	0078 0079 0086 0087 0094 0095 0102 0103 0110 0111 0118 0119		1100 1110 1120 1130 1140 1150 1160 1170	0584 0592 0600 0608 0616 0624	0585 0593 0601 0609 0617 0625	0586 0594 0602 0610 0618 0626	0587 0595 0603 0611 0619 0627	0588 0 0596 0 0604 0 0612 0 0620 0 0628 0	589 05 597 05 605 06 613 06 621 06 629 06	82 0583 90 0591 98 0599 06 0607 14 0615 22 0623 30 0631 38 0639		2100 2110 2120 2130 2140 2150 2160 2170	1096 1104 1112 1120 1128 1136	1097 1105 1113 1121 1129 1137	1098 1106 1114 1122 1130	1099 1 1107 1 1115 1 1123 1 1131 1	100 1 108 1 116 1 124 1 132 1 140 1	101 11 109 11 117 11 125 11 133 11	094 1095 102 1103 110 1111 118 1119 126 1127 34 1135 142 1143 50 1151
	0200 0210 0220 0230 0240 0250 0260 0270	0128 0129 01 0136 0137 01 0144 0145 01 0152 0153 01 0160 0161 01 0168 0169 01 0176 0177 01 0184 0185 01	38 0139 46 0147 54 0155 62 0163 70 0171 78 0179	0140 0141 0148 0149 0156 0157 0164 0165 0172 0173 0180 0181	0142 0143 0150 0151 0158 0159 0166 0167 0174 0175 0182 0183		1200 1210 1220 1230 1240 1250 1260 1270	0648 0656 0664 0672 0680 0688	0649 0657 0665 0673 0681 0689	0650 0658 0666 0674 0682 0690	0651 0659 0667 0675 0693	0652 0 0660 0 0668 0 0676 0 0684 0 0692 0	653 06 661 06 669 06 677 06 585 06	46 0647 54 0655 62 0663 70 0671 78 0679 86 0687 94 0695 02 0703		2200 2210 2220 2230 2240 2250 2260 2270	1160 1168 1176 1184 1192 1200	1161 1169 1177 1185 1193 1201	1162 1170 1178 1186 1194 1202	1163 1 1171 1 1179 1 1187 1 1195 1 1203 1	164 11 172 11 180 11 188 11 196 11 204 12	165 11 173 11 181 11 189 11 197 11	58 1159 66 1167 74 1175 82 1183 90 1191 98 1199 06 1207 14 1215
	0310 0310 0320 0330 0340 0350 0360 0370	0192 0193 01 0200 0201 02 0208 0209 02 0216 0217 02 0224 0225 02 0232 0233 02 0240 0241 02 0248 0249 02	02 0203 110 0211 118 0219 126 0227 134 0235	0204 0205 0212 0213 0220 0221 0228 0229 0236 0237 0244 0245	0206 0207 0214 0215 0222 0223 0230 0231 0238 0239 0246 0247		1300 1310 1320 1330 1340 1350 1360 1370	0712 0720 0728 0736 0744 0752 0760	0713 0721 0729 0737 0745 0753 0761	0714 0722 0730 0738 0746 0754 0762	0715 0723 0731 0739 0747 0755 0763	0716 0 0724 0 0732 0 0740 0 0748 0 0756 0 0764 0	717 07 725 07: 733 07: 741 07: 749 07: 757 07:	10 0711 18 0719 26 0727 34 0735 42 0743 50 0751 58 0759 96 0767	 	2300 2310 2320 2320 2330 2340 2350 2360 2370	1224 1232 1240 1248 1256 1264	1225 1233 1241 1249 1257 1265	226 234 242 250 258 266	227 1: 235 1: 243 1: 251 1: 259 1: 267 1:	228 12 236 12 244 12 252 12 260 12 268 12	29 12 37 12 45 12 53 12 61 12 69 12	22 1223 30 1231 38 1239 46 1247 54 1255 62 1263 70 1271 78 1279
	0400 0410 0420 0430 0440 0450 0460 0470	0256 0257 02 0264 0265 02 0272 0273 02 0280 0281 02 0288 0289 02: 0296 0297 02: 0304 0305 03: 0312 0313 03	66 0267 74 0275 92 0283 90 0291 98 0299 06 0307	0268 0269 0276 0277 0284 0285 0292 0293 0300 0301 0308 0309	027G 0271 0278 0279 0286 0287 0294 0295 0302 0303 0310 0311		1400 1410 1420 1430 1440 1450 1460 1470	0776 0784 0792 0900 0808 0816	0777 0785 0793 0801 0809 0817	0778 0786 0794 0802 0810 0818	0779 0787 0795 0803 0811 0819	0780 01 0788 01 0796 01 0804 01 0812 01 0820 01	781 07: 789 07: 797 07: 805 08: 813 08:	74 0775 82 0782 90 0791 98 0799 96 0907 14 0815 22 0823 30 0831		2400 2410 2420 2430 2440 2450 2460 2470	1288 1296 1304 1312 1320 1328	1289 1 1297 1 1305 1 1313 1 1321 1	290 1 298 1 306 1 314 1 322 1 330 1	291 12 299 13 307 13 315 13 323 13 331 13	292 12 300 13 308 13 316 13 324 13	93 12: 01 13: 09 13: 17 13: 25 13: 33 13:	86 1287 94 1295 02 1303 10 1311 18 1319 26 1327 34 1335 42 1343
	0500 0510 0520 0530 0540 0550 0560 0570	0320 0321 033 0328 0329 033 0336 0337 033 0344 0345 034 0352 0353 034 0360 0361 034 0368 0369 037 0376 0377 037	30 0331 (38 0339 (46 0347 (54 0355 (62 0363 (70 0371 (0332 0333 0340 0341 0348 0349 0356 0357 0364 0365 0372 0373	0334 0335 0342 0343 0350 0351 0358 0359 0366 0367 0374 0375		1500 1510 1520 1530 1540 1550 1560 1570	0840 0848 0856 0864 0872 0880	0841 0849 0857 0865 0873 0881	0842 0850 0859 0866 0874 0882	0843 0851 0859 0867 0875 0883	0844 08 0852 08 0860 08 0868 08 0876 08	145 084 153 085 161 086 169 087 177 087 185 088	38 0939 16 0847 54 0855 52 0863 70 0871 78 0879 86 0887 94 0895		2500 2510 2520 2530 2540 2550 2560 2570	1352 1360 1368 1376 1394 1392	1353 1361 1369 1377 1385 1393	354 1 362 1 370 1 378 1 386 1 394 1	355 13 363 13 371 13 379 13 387 13 395 13	356 13 364 13 372 13 180 13 188 13	57 134 65 134 73 131 81 134 89 136 97 139	50 1351 58 1359 66 1367 74 1375 82 1383 90 1391 98 1399 96 1407
	0600 0610 0620 0630 0640 0650 0660 0670	0384 0385 038 0392 0393 039 0400 0401 040 0408 0409 041 0416 0417 041 0424 0425 042 0432 0433 043 0440 0441 044	94 0395 0 02 0403 0 10 0411 0 18 0419 0 26 0427 0 34 0435 0	0396 0397 (0404 0405 (0412 0413 (0420 0421 (0428 0429 (0436 0437 (0398 0399 0406 0407 0414 0415 0422 0423 0430 0431 0438 0439		1600 1610 1620 1630 1640 1650 1660	0904 0912 0920 0928 0936 0944	0905 0913 0921 0929 0937 0945	0906 (0914 (0922 (0930 (0938 (0946 (0907 (0915 (0923 (0931 (0939 (0908 06 0916 09 0924 09 0932 09 1940 09	09 091 17 091 25 092 33 093 41 094 49 095	92 0903 10 0911 8 0919 16 0927 14 0935 2 0943 10 0951 8 0959		2600 2610 2620 2630 2640 2650 2660 2670	1416 1424 1432 1440 1448 1456	1417 1 1425 1 1433 1 1441 1 1449 1 1457 1	418 1 426 1 434 1 442 1 450 1 458 1	419 14 427 14 435 14 443 14 451 14 459 14	120 14 128 14 136 14 144 14 152 14 160 14	21 142 29 143 37 143 45 144 53 148 61 146	14 1415 22 1423 30 1431 38 1439 46 1447 54 1455 32 1463 70 1471
	0710 0720 0730 0740 0750 0760	044R 0449 045 0456 0457 045 0464 0465 046 0472 0473 047 0480 0481 049 0496 0497 049 0504 0505 050	58 0459 0 56 0467 0 74 0475 0 82 0483 0 90 0491 0 98 0499 0	0460 0461 (0468 0469 (0476 0477 (0484 0485 (0492 0493 (0500 0501 (9462 0463 0470 0471 0478 0479 0486 0487 0491 0495 0502 0503		1700 1710 1720 1730 1740 1750 1760	0968 0976 0984 0992 1000 1008	0969 (0977 (0985 (0993 (1001)	0970 (0978 (0986 (0994 (1002	0971 (9979 (9987 (9985 (9995 (1003 1	972 09 980 09 988 09 1996 09 1004 10	73 097 81 098 89 099 97 099 05 100 13 101	6 0967 4 0975 2 0983 0 0991 8 0999 6 1007 4 1015 2 1023		2700 2710 2720 2730 2740 2750 2760 2770	1480 : 1488 : 1496 : 1504 : 1512 : 1520 :	1481 1 1489 1 1497 1 1505 1 1513 1	482 1 490 1 498 1 506 1 514 1 522 1	483 14 491 14 499 15 507 15 515 15 523 15	184 14 192 14 190 15 108 15 16 15 124 15	85 148 93 149 01 150 09 151 17 151 25 152	78 1479 36 1487 34 1495 32 1503 10 1511 18 1519 26 1527 34 1535

3000 1536			4000 : 2048 tu to 4000	2048 2049 2050 2051 2052 2053 2054 2055	5000 2560 to to	5000 2560 2561 2562 2563 2564 2565 2566 2567
to to 3777 2047 (Octal) (Decimal)	3000 3010 3020 3030	1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1550 1551 1562 1563 1564 1565 1566 1567	4777 2559 4010 (Octal) (Decimal) 4020 4030 4040	2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071	5777 3071 (Octal) (Decimal)	2500 2501 2502 2503 2504 2505 2506 2507 5010 2558 2507 2570 2571 2572 2573 2574 2575 5020 2576 2577 2578 2579 2580 2581 2582 2583 2580 2581 2582 2583 2580 2581 2582 2583 2580 2581 2582 2583 2580 2581 2582 2583 2580 2581 2582 2583 2580 2581 2582 2583 2584 2583 2584 2585 2586 2587 2589 2589 2589 2589 2589 2589 2589 2589
	3040 3050 3060 3070	1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1577 1579 1569 1581 1582 1584 1585 1586 1587 1588 1589 1590 1591 1692 1593 1594 1595 1596 1597 1598 1599	4050 4060 4070	2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2108 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119		5050 2600 2601 2602 2603 2604 2605 2506 2607 5060 2608 2609 2610 2611 2612 2613 2614 2615 5070 2616 2617 2618 2619 2620 2621 2622 2623
	3100 3110 3120 3130	1800 1801 1602 1603 1604 1605 1606 1807 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631	4110 4120 4130 4140	2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143		5100 2624 2625 2626 2627 2628 2629 2830 2831 5110 2632 2633 2634 2634 2635 2636 2635 2636 2635 2636 2636 2636 2636 2636 2636 2646 2647 2648 2649 2650 2631 2652 2653 2646 2647 2648 2649 2650 2650 2650 2660 2661 2662 2663 2663 2662 2663 26
	3140 3150 3160 3170	1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1643 1649 1650 1651 1652 1653 1656 1657 1658 1659 1650 1661 1662 1663	4150 4160 4170	2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175		5150 2664 2665 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2679 <td< td=""></td<>
	3200 3210 3220 3230	1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695	4200 4210 4220 4230 4230	2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207		5200 2688 2689 2690 2691 2692 2693 2694 2695 5210 2696 2697 2698 2699 2700 2701 2702 2703 5220 2704 2705 2707 2708 2709 2708 2709 2701<
	3240 3250 3260 3270	1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727	4250 4260 4270	2224 2225 2226 2227 2228 2229 2230 2231		5240 2720 2721 2722 2723 2724 2725 2727 2727 5250 2728 2729 2730 2731 2732 2733 2734 2735 5260 2736 2737 2738 2739 2740 2741 2742 2743 5270 2744 2745 2747 2747 2748 2749 2750 2751
	7300 3310 3320 3330	1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1755 1757 1757 1759 1750	4300 4310 4320 4330	2255 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271		5300 2752 2753 2754 2755 2756 2757 2758 2759 5310 2760 2761 2762 2763 2764 2765 2766 2767 3320 2768 2769 2770 2771 2772 2773 2774 2775 3330 2776 2777 2778 2780 2781 2782 2783
•	3340 3350 3360 3270	1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1798 1787 1788 1789 1790 1791	4340 4350 4370 4370	2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295		5340 2784 2785 2789 2782 2789 2790 2790 2790 2790 2790 2790 2790 2790 2790 2790 2791 2798 2799 2799 2799 2799 2799 2790 <td< td=""></td<>
	3400 3410 3420 3430	1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1806 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823	4400 4410 4420 4430	2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335		5400 2816 2817 2818 2819 2820 2821 2822 2823 5410 2824 2825 2826 2827 2828 2829 2830 2831 5420 2832 2832 2833 2834 2835 2836 2837 2838 2839 5430 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2849 2841 2842 2843 2844 2845 2846 2847
	3440 3450 3460 3470	1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855	4440 4450 4460 4470	2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2350		5440 2848 2849 2850 2851 2852 2853 2854 2856 5450 2857 2857 2859 2860 2861 2862 2863 5460 2864 2865 2867 2867 2869 2870 2871 2872 2879 2879 5470 2872 2873 2874 2875 2876 2877 2878 2879
	3500 3510 3520 3630	1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887	4500 4510 4520 4530	2376 2377 2278 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399		5500 2880 2881 2882 2883 2884 2885 2886 2887 5510 2881 2899 2490 2891 2892 2893 2894 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 29
	3540 3550 3560 3570	1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919	4540 4550 4560 4570	2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2114 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431		5540 2912 2913 2914 2915 2916 2917 2918 2919 5550 2920 2921 2922 2923 2924 2926 2926 2926 2926 2926 2926 2926 2927 2936 2931 2932 2932 2934 2934 2935 2934 2942 2943 2943 2942 2943 2943 2944 2941 2942 2943
	3600 3610 3620 3630	1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951	4600 4610 4620 4630	2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463		5600 2944 2945 2946 2947 2948 2949 2950 2951 5610 2952 2953 2954 2955 2966 2957 2958 2968 2961 2957 2973 2974 2975 2975 29
	3640 3660 3660 3670	1932 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983	4640 4650 4660 4670	2464 2465 2467 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2490 2491 2492 2493 2494 2496		5440 2976 2977 2978 2990 2981 2982 2983 5450 2984 2985 2987 2987 2989 2981 2989 2991 5560 2992 2993 2994 2995 2997 2998 2991 2999 5670 3000 3001 3002 3003 3004 3005 3006 3007
	3700 3710 3720 3730	1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015	4700 4710 4720 4730	2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527		5700 3008 3009 3010 3011 3012 3013 3014 3015 5710 3016 3017 3018 3019 3020 3021 3022 3023 5720 3024 3025 3024 3027 3029 3020 3031 3031 5730 3032 3033 3034 3035 3036 3037 3038 3039
	3740 3750 3760 3770	2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047	4740 4750 4760 4770	2528 2529 2530 2531 2532 2533 2534 2538 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2549 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2259		5740 3040 3041 3042 3043 3044 3045 3046 3047 5750 3049 3049 3050 3051 3032 3033 3054 3045 5770 3054 3055 3058 3057 2058 3059 3050 3061 3071 3071 5770 3054 3065 3067 3067 3068 3069 3070 3071
			l		_	
6000 3072 to to	8000	0 1 2 3 4 5 6 7 3072 3073 3074 3075 3076 3077 3078 3079				0 1 2 3 4 5 6 7 7000 3584 3585 3586 3587 3588 3589 3580 3591
6777 3583 (Octal) (Decimal)	6010 6020 6030 6040 6050	3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119			(Octal) (Decimal)	7010 3592 3593 3594 3595 3596 3597 3598 3599 7020 3690 3601 3602 3603 3604 3605 3606 3607 7030 3608 3609 3610 3611 3612 3613 3614 3615 7040 3618 3617 3618 3619 3620 3621 3622 3623 7050 3624 2625 3626 3627 3628 3629 3630 363
	6060 6070 6100	3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143				7060 3832 3633 3634 3635 3636 3637 3638 3639 7070 3640 3641 3642 3643 3644 3645 3646 3647 3640 3641 3652 3653 3654 3657 2658 2659 3660 3661 3662 3663 3654 3655 2658 2659 3660 3661 3662 3663
	6110 6120 6130 6140	3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3154 3165 3166 3167 3168 3189 3170 3171 3172 3173 3174 3175				7110 3664 3665 3666 3667 3668 3669 3670 3671 7130 3672 3673 3674 3675 3676 3677 3678 3679 7140 3680 3681 3682 3683 3684 3685 3686 3687 7150 3688 2689 2690 3691 3692 3693 3694 3695
	6150 6160 6170 6200	3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3185 3185 3187 3187 3189 3190 3191 3192 3193 3194 3195 3197 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207				7160 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3708 3709 3710 3711 3714 3715 3716 3717 3718 3719
	6210 6220 6230 6240	320% 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 322% 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239				7210 3720 3721 3722 3723 3724 3725 3726 3727 2720 3728 3729 3730 3731 3732 3733 3734 3735 2736 3737 3736 3737 3738 3739 3740 3741 3742 3743 7740 3744 3745 3746 3747 3748 3749 3750 3751 3750 3751 3750 3751 3750 3751 3750 3751 3750 3751 3750 3751 3750 3751 3750 3751 3750 3751 3750 3751 3750 3751 3750 3751 3750 3751 3750 3750 3751 3750 3750 3750 3750 3750 3750 3750 3750
	6250 6260 6270	3240 3241 3442 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3267 3267 3268 3269 3270 3871				7260 3760 3761 3762 3763 3764 3765 3766 3767 7270 3768 3769 3770 3771 3772 3773 3774 3775 7300 3776 3777 3778 3779 3780 3781 3782 3783
	6310 6320 6330 6340	3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3290 3301 3302 3003				7310 3784 3785 3786 3787 3788 3789 3790 3791 37920 3792 3893 3794 3795 3796 3797 3798 3799 3796 3797 3798 3799 3796 3797 3798 3799 3796 3797 3798 3799 3796 3893 3894 3895 3896 3897 3841 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
	6350 6360 6370	3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335				7360 3824 3825 3826 3827 3828 3829 3830 3831 7370 3832 3833 3834 3835 3836 3837 3838 3839 3837 3840 3841 3840 3840 3841 3842 3843 3844 3845 3846 3847 7410 3848 3849 3850 3851 3852 3853 3854 385
	6410 6420 6430	3336 3337 3334 3339 3340 3341 3342 3343	Į.			
	6440	3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367			i.	7420 2856 3857 3858 3859 3860 3861 3862 3863 7430 3864 3865 3866 3867 3868 3869 3870 3871 7440 3872 3873 3874 3875 3876 3877 3878 3879
		3344 3345 3346 3347 3347 3349 3359 3351 332 3352 3353 3352 3352 3353 3360 3361 3352 3353 3360 3361 3362 3363 3364 3365 3366 3367 3365 3366 3375 3376 3376				7420 2-56 3-57 3-55 3-59 3-80 3-61 3-82 3-83 3-74 3-75 3-71 3-71 3-71 3-71 3-71 3-71 3-71 3-71
	6440 6450 6460 6470 6500 6510 6520 6530 6540	3344 3345 3346 3347 3347 3349 3359 3359 3359 3359 3359 3369 354 3354 3355 3359 3369 354 356 357 357 358 359 359 359 359 359 359 359 359 359 359				74201 2-S6 3-S7 3-S5 3-S9 3-80 3-80 3-80 3-80 3-80 3-80 3-80 3-80 3-87 3-70 3-71 3-74 3-75 3-76 3-70 3-71 3-74 3-75 3-76 3-77 3-77 3-77 3-77 3-77 3-77 3-77 3-77 3-77 3-77 3-77 3-77 3-77 3-77 3-77 3-77 3-77 3-77 3-77 3-77 <t< td=""></t<>
	6440 6450 6460 6470 6510 6520 6530 6540 6550 6560 6570	3344 3345 3346 3347 3347 3349 3359 3359 3359 3359 3359 3369 354 336 3369 3369 3369 3369 3369 3369 3369				7420 2-56 3-57 3-55 3-59 3-90 3-91 3-92 3-93 3-93 3-93 3-93 3-93 3-93 3-93
	6440 6450 6460 6470 6510 6520 6530 6540 6550 6570 6610 6620 6630 6640	3344 3345 3346 3347 3348 3349 3359 3359 3359 3359 3359 3369 3369 336				74201 2-Si6 3-Si <
	6440 6450 6450 6470 6510 6510 6520 6540 6550 6560 6570 1 6620 6630 6640 6650 6660	3344 3345 3346 3347 3347 3348 3349 3359 3359 3359 3359 3359 3369 3364 3354 3353 3368 3367 3368 3367 3368 3367 3368 3367 3368 3367 3368 3367 3368 3367 3368 3367 3368 3367 3368 3367 3368 3367 3368 3368				7420
	6440 6450 6450 6470 6510 6510 6520 6540 6550 6570 1 6600 6610 6620 6640 6660	3344 3345 3346 3347 3348 3349 3359 3359 3359 3359 3359 3359 3369 336				7420 2-56 3-57 3-55 3-59 3-50 3-61 3-62 3-63 3-64 3-64 3-64 3-65 3-66 3-65 3-66 3-65 3-66 3-67 3-76 3-77 3-76 3-76 3-76 3-76

APPENDIX D INSTRUCTION SUMMARY AND BIT ASSIGNMENTS

BASIC INSTRUCTIONS

	OCTAL										N	O. OF	STATES	S
MNEMONIC	CODE			0	PERA	TION				DIR		IN	D	AUTO
AND	0000		Logical AND							10 15			5	16
TAD	1000			ary A						10		13		16
ISZ	2000				nt, and					16		2		22
DCA	3000		De	posit :	and cle	ear ÀC	;			11		1/		17
JMS	4000		Jui	mp to	subro	utine				11		1		17
JMP	5000		Jui							10		1:	5	16
IOT	6000				ınsfer					17		-	-	_
OPR	7000		Op	erate					10/15*			_		
MEMORY	_	0	1	2	3	4	5	6	7	8	9	10	11	*For ROTATES
REFERENCE		OF	CODE	l 0-5 I	IA	мР		! !	1	I ADDRES	I iS I	1		and OSR
INSTRUCTION FORMAT	•							-		PAGE TIVE ADI	DRESS	-		
		INDIRECT ADDRESSING O DIRECT I INDIRECT MEMORY PAGE O PAGE O 1 CURRENT PAGE												

PROCESSOR IOT INSTRUCTIONS

MNEMONIC	COD					OPE	RATIC	ON .				NO	. OF STATES
SKON ION	6000						rruptio urn on					-	17
IOF SRQ	6002	2			Inte	rrupt t	urn off reque						17 17
GTF RTF	6004 6005				Get	flags urn fla	•	••					17
SGT CAF	6006 6007				Ope		is dete	rmined	by e	xterna	l devic	es, if a	ny 17 17
BIT ASSIGNMENTS	0	1	2	3	4	5	6	7	8	9	10	11	
IOT	1	1	0		1 D	T EVICE S	T SELECTION	I I		(CONTRO	T DL I]

CROTTE	LODED	ATE MICE	CINICADII	CTIONS
(_K() P	I ()PER	AIF. MIL.R	CHINSTRIL	C. HUJNS

MNEMONIC	OCTAL CODE	OPERATION	LOG SEQ.	NO. OF STATES
NOP	7000	No operation	1	10
IAC	7001	Increment accumulator	3	10
RAL	7004	Rotate accumulator left	4	15
RTL	7006	Rotate two left	4	15
RAR	7010	Rotate accumulator right	4	15
ATA	7012	Rotate two right	4	15
BSW	7002	Byte swap	4	15
CML	7020	Complement link	2	10
CMA	7040	Complement accumulator	2	10
CIA	7041	Complement and increment accumulator	2,3	10
CLL	7100	Clear link	1	10
CLL RAL	7104	Clear link-rotate accum, left	1,4	15
CLL RTL	7106	Clear linkrotate two left	1.4	15
CLL RAR	7110	Clear link-rotate accum. right	1,4	15
CLL RTR	7112	Clear link-rotate two right	1,4	15
STL	7120	Set the link	1,2	10
CLA	7200	Clear accumulator	1	10
CLA IAC	7201	Clear accumulator Increment accumulator	1,3	10
GLT	7204	Get the link	1,4	15
CLA CLL	7300	Clear accumulator—clear link	1	10
STA	7240	Set the accumulator	1,2	10

BIT ASSIGNMENTS GROUP 1

LOGICAL SEQUENCES

1.--CLA, CLL
2.--CMA, CMI,
3.--IAC
4.--RAR, RAL, RTR, RTL, BSW

GROUP 2 OPERATE MICROINSTRUCTIONS

MNEMONIC	OCTAL CODE	OPERATION	LOG SEQ	NO. OF
NOP	7400	No operation	1	10
HLT	7402	Halt	3	10
OSR	7404	Or with switch register	3	15
SKP	7410	Skip	1	10
SNL	7420	Skip on non-zero link	1	10
SZL	7430	Skip on zero link	1	10
SZA	7440	Skip on zero accumulator	1	10
SNA	7450	Skip on non-zero accumulator	1	10
SZA SNL	7460	Skip on zero accum, or skip on non-zero link, or both	1	10
SNA SZL	7470	Skip on non-zero accum, and skip on		
		zero link	1	10
SMA	7500	Skip on minus accumulator	1	10
SPA	7510	Skip on positive accumulator	1	10
SMA SNL	7520	Skip on minus accum, or skip on		
		non-zero link or both	1	10
SPA SZL	7530	Skip on positive accum, and skip on		
		zero link	1	10
SMA SZA	7540	Skip on minus accum, or skip on		
		zero accum, or both	1	10
SPA SNA	7550	Skip on positive accum, and skip on non-zero accum.	1	10
SMASZASNL	7560	Skip on minus accum, or skip on		
		zero accum, or skip on non-zero link		
		or all	1	10
SPA SNA SZL	7570	Skip on positive accum, and skip on		
		non-zero accum, and skip on zero link	1	10
CLA	7600	Clear accumulator	2	10
LAS	7604	Load accumulator with switch register	1,3	15
SZA CLA	7640	Skip on zero accum, then clear accum.	1,2	10
SNA CLA	7650	Skip on non-zero accum, then clear		
		accumulator	1,2	10
SMA CLA	7700	Skip on minus accum, then clear		
		accumulator	1,2	10
SPA CLA	7710	Skip on positive accum, then clear	·	
	· ·	accumulator	1,2	10

BIT ASSIGNMENTS GROUP 2

GROUP 3 OPERATE MICROINSTRUCTIONS

MNEMONIC	OCTAL CODE	OPERATION	LOG SEQ	NO. OF STATES
NOP	7401	No operation	3	10
MQL	7421	MQ register load	2	10
MQA	7501	MQ register into accumulator	2	10
SWP	7521	Swap accum, and MQ register	3	10
CLA	7601	Clear accumulator	1	
CAM	7621	Clear accum, and MQ register	3	10
ACL	7701	Clear accum. and load MQ register into accumulator	3	10
CLA SWP	7721	Clear accum, and swap accum, and MQ register	3	10

BIT ASSIGNMENTS GROUP 3

ú	1	2	3	4	5	6	7	8	9	10	11
1	1	1	1	CLA	MQA		MQL	1			,
OGICA	L SEQL	ENCE		I	Ь				L	.0:	on I Car

1 - CLA 2 - MQA MQL 3 - ALL OTHERS

APPENDIX E GLOSSARY

- ABSOLUTE ADDRESS: A binary number that is permanently assigned as the address of a memory storage location.
- ACCESS TIME: The time required to locate an off-line storage location.
- ACCESSING DATA: The process of locating the off-line storage location with which data is to be transferred.
- ACCUMULATOR: A 12-bit register in which the result of an operation is formed; abbreviation: AC.
- ADDRESS: A label, name, or number which designates a location where information is stored.
- ADDRESSING: The term given to the act of selecting a word in memory.
- ALGORITHM: A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- ALPHANUMERIC: Pertaining to a character set that contains both letters and numerals, and usually other characters.

ARGUMENT:

- 1. A variable or constant which is given in the call of a subroutine as information to it.
- 2. A variable upon whose value the value of a function depends.
- 3. The known reference factor necessary to find an item in a table or array (i.e. the index).
- ARITHEMETIC AND LOGIC UNIT (ALU): The unit which performs both arithmetic and logic operations.
- ARITHMETIC UNIT: The component of a computer where arithmetic and logical operations are performed.
- ASCII: An abbreviation for American Standard Code for Information Interchange.
- ASSEMBLE: To translate from a symbolic program to a binary program by substituting binary operation codes for symbolic operation codes and absolute or relocatable addresses for symbolic addresses.
- ASSEMBLER: A program which translates symbolic op-codes into machine language and assigns memory locations for variables and constants.
- AUTO-INDEXING: When one of the absolute locations from 0010 through 0017 is addressed indirectly, the content of that location is incremented by one, rewritten in that same location, and used as the effective address of the current instruction.

- AUXILLARY STORAGE: Storage that supplements memory such as disk or tape.
- BASE ADDRESS: A given address from which an absolute address is derived by combination with a relative address, synonymous with address constant.
- BINARY: Pertaining to the number of system with a radix of two.
- BINARY CODE: A code that makes use of exactly two distinct characters, O and 1.
- BIT: A binary digit. In the IM6100 microprocessor each word is composed of 12 bits.
- BLOCK: A set of consecutive machine words, characters, or digits handled as a unit, particularly with reference to I/O.
- BOOTSTRAP: A technique or device designed to bring a program into the computer from an input device.
- BRANCH: A point in a routine where one of two or more choices is made under control of the routine.
- BUFFER: A storage area.
- BUG: A mistake in the design or implementation of a program resulting in erroneous results.
- BYTE: A group of binary digits usually operated upon as a unit.
- CALL: To transfer control to a specified routine.
- CALLING SEQUENCE: A specified set of instructions and data necessary to set up and call a given routine.
- CENTRAL PROCESSING UNIT: The unit of a computing system that includes the circuits controlling the interpretation and execution of instructions—the computer proper, excluding I/O and other peripheral devices.
- CHARACTER: A single letter, numeral, or symbol used to represent information.
- CLEAR: To erase the contents of a storage location by replacing the contents, normally with zeros or spaces; to set to zero.
- CODING: To write instructions for a computer using symbols meaningful to the computer, or to an assembler, compiler or other language processor.

- COMMAND: A user order to a computer system, usually given through a Teletype keyboard.
- COMMAND DECODER: That part of a computer system which interprets used commands. Also called command-string decoder.
- COMPATIBILITY: The ability of an instruction or source language to be used on more than one computer.
- COMPILE: To produce a binary-coded program from a program written in source (symbolic) language, by selecting appropriate subroutines from a subroutine library, as directed by the instructions or other symbols of the source program. The linkage is supplied for combining the subroutines into a workable program, and the subroutine and linkage are translated into binary code.
- COMPILER: A program which translates statements and formulas written in a source language into a machine language program, e.g. a FORTRAN Compiler. Usually generates more than one machine instruction for each statement.
- COMPLEMENT: (One's) To replace all O bits with I bits and vice versa. (Two's) To form the one's complement and add 1.
- CONDITIONAL ASSEMBLY: Assembly of certain parts of a symbolic program only if certain conditions have been met.
- CONDITIONAL SKIP: Depending upon whether a condition within the program is met, control may transfer to another point in the program.
- CONSOLE: Usually the external front side of a device where controls and indicators are available for manual operation of the device.

CONVERT:

- 1. To change numerical data from one radix to another.
- 2. To transfer data from one recorded format to another.
- CORE MEMORY: The main high-speed storage of a computer in which binary data is represented by the switching polarity of magnetic cores.
- COUNT: The successive increase or decrease of a cumulative total of the number to times an event occurs.
- COUNTER: A register or storage location (variable) used to represent the number of occurrences of an operation.

- CURRENT LOCATION COUNTER: A counter kept by an assembler to determine the address assigned to an instruction or constant being assembled.
- CURRENT PAGE: The page of memory "pointed to" or addressed by the Program Counter. The page we are on.
- CYCLE TIME: The length of time it takes the computer to reference one word of memory.
- DATA: A general term used to denote any or all facts, numbers, letters and symbols. It connotes basic elements of information which can be processed or produced by a computer.
- DATA BREAK: A facility which permits I/O transfers to occur on a cycle-stealing basis without disturbing program execution.
- DEBUG: To detect, locate and correct mistakes in a program.
- DEVICE FLAGS: One-bit registers which record the current status of a device.
- DIGITAL COMPUTER: A device that operates on discrete data, performing sequences of arithmetic and logical operations on this data.
- DIRECT ADDRESS: An address that specifies the location of an instruction operand.
- DOUBLE PRECISION: Pertaining to the use of two computer words to represent one number. In the IM6100 a double precision result is stored in 24 bits.
- DUMP: To copy the contents of all or part of core memory, usually onto an external storage medium.
- EFFECTIVE ADDRESS: The address actually used in the execution of a computer instruction.
- EXECUTE: To carry out an instruction or run a program on the computer.
- EXTERNAL STORAGE: A separate facility or device on which data usable by the computer is stored (such as paper tape, tape or disk.

FIELD:

- 1. One or more characters treated as a unit.
- 2. A specified area of a record used for a single type of data.
- 3. A division of memory on a IM6100 computer referring to a 4K section of core.

- FILE: A collection of related records treated as a unit.
- FLAG: A variable or register used to record the status of a program or device. In the latter case, also called a device flag.
- FLIP-FLOP: A device with two stable states.
- FLOATING POINT: A number system in which the position of the radix point is indicated by one part of the number (the exponent) and another part represents the significant digits (the mantissa), I/O.
- FLOWCHART: A graphical representation of the operations required to carry out a data processing operation.
- HARDWARE: Physical equipment, e.g., mechanical, electrical or electronic devices.
- HEAD: A component that reads, records or erases data on a storage device.
- INDIRECT ADDRESS: An address in a computer instruction which indicates a location where the address of the referenced operand is to be found.
- INITIALIZE: To set counters, switches, and addresses to zero or other starting values at the beginning of, or at prescribed points in, a computer routine.
- INSTRUCTION: A command which causes the computer or system to perform an operation. Usually one line of a source program.
- INSTRUCTION FETCH (IFETCH): The act of completing an instruction address to memory and returning to the Microprocessor with the instruction.
- INSTRUCTION REGISTER (IR): The register which holds the instruction when it is obtained, or received, from memory.
- INTERNAL STORAGE: The storage facilities forming an integral physical part of the computer and directly controlled by the computer. Also called main memory.
- INTERPRETER: A program that translates and executes source language statements at run time.
- I/O: Abbreviation for input/output.

- JOB: A unit of code which solves a problem, i.e. a program and all its related subroutines and data.
- JUMP: A departure from the normal sequence of executing instructions in a computer.
- K: An abbreviation for the prefix kilo, i.e. 1000 in decimal notation.
- LABEL: One or more characters used to identify a source language statement or line.
- LANGUAGE, ASSEMBLY: The machine-oriented programming language used by an assembly system.
- LANGUAGE, COMPUTER: A systematic means of communicating instructions and information to the computer.
- LANGUAGE, MACHINE: Information that can be directly processed by the computer, expressed in binary notation.
- LANGUAGE, SOURCE: A computer language such as PAL III or FOCAL in which programs are written and which require extensive translation in order to be executed by the computer.
- LEADER: The blank section of tape at the beginning of the tape.
- LEAST SIGNIFICANT DIGIT: The right-most digit of a number.
- LIBRARY ROUTINES: A collection of standard routines which can be incorporated into larger programs.
- LINE FEED: The Teletype operation which advances the paper by one line.
- LINE NUMBER: In source languages such as FOCAL, BASIC, and FORTRAN, a number which begins a line of the source program for purposes of identification. A numeric label.

LINK:

- 1. A one-bit register in the IM6100.
- 2. An address pointer generated automatically by the PAL-D or MACRO-8 Assembler to indirectly address an off-page symbol.
- 3. An address pointer to the next element of a list, or the next block number of a file.

LIST:

- 1. A set of items.
- 2. To print out a listing on the line printer or Teletype.
- LOAD: To place data into internal storage.

- LOCATION: A place in storage or memory where a unit of data or an instruction may be stored.
- LOOP: A sequence of instructions that is executed repeatedly until a terminal condition prevails.
- MACHINE LANGUAGE PROGRAMMING: In this text, synonymous with assembly language programming. This term is also used to mean the actual binary machine instructions.
- MACRO INSTRUCTION: An instruction in a source language that is equivalent to a specified sequence of machine instructions.
- MANUAL INPUT: The entry of data by hand into a device at the time of processing.
- MANUAL OPERATION: The processing of data in a system by direct manual techniques.
- MASK: A bit pattern which selects those bits from a word of data which are to be used in some subsequent operation.
- MASS STORAGE: Pertaining to a device such as disk or tape which stores large amounts of data readily accessible to the central processing unit.
- MATRIX: A rectangular array of elements. Any table can be considered a matrix.

MEMORY:

- 1. The alterable storage in a computer.
- 2. Pertaining to a device in which data can be stored and from which it can be retrieved.
- MEMORY ADDRESS REGISTER (MAR): The register which contains the address where information is to be read from memory or written (stored) into memory.
- MEMORY PAGING: A system by which a memory is subdivided in order to permit addressing with a limited number of binary bits.
- MEMORY PROTECTION: A method of preventing the contents of some part of main memory from being destroyed or altered.
- MICROCOMPUTER: A complete small computing system that usually sells for less than \$5,000 and whose main processor building blocks are made of semiconductor integrated circuits. In function and structure it is similar to a minicomputer, with the main difference being price, size, speed and computing power.

- MICROPROCESSOR: The semiconductor central processing unit (CPU) and one of the principal components of the microcomputer. The elements of the microprocessor are frequently contained on a single chip or within the same package but sometimes distributed over several chips. Microprocessors can contain registers, an arithmetic logic unit, a PLA, and associated timing and control logic.
- MINICOMPUTER: A computer whose main frame sells for less than \$25,000. Usually it is a parallel binary system with 8, 12 16, 18, or 24-bit word lengths incorporating semiconductor or magnetic memory offering 4K words to 32K words of storage. A <u>naked minicomputer</u> is one without cabinet, console and power supplies and consists of as little as a single PC card selling for less than \$1,000.
- MONITOR: The master control program that observes, supervises, controls or verifies the operation of a system.
- MQ REGISTER: A register which is program accessible and interacts with the Accumulator.

NESTING:

- 1. Including a program loop inside loop. Special rules apply to the nesting of FORTRAN DO-loops.
- Algebraic nesting, such as (A+B* (C+D)), where execution proceeds from the innermost to the outermost level.
- NORMALIZE: To adjust the exponent and mantissa of a floatingpoint number so that the mantissa appears in a prescribed format.
- OBJECT PROGRAM: The binary coded program which is the output after translation of a source language program.
- OCTAL: Pertaining to the number system with a radix of eight.
- OFF-LINE: Pertaining to equipment or devices not under direct control of the computer, or processes performed on such devices.
- ON-LINE: Pertaining to equipment or devices under direct control of the computer and to programs which respond directly and immediately to user commands.

OPERAND:

- 1. A quantity which is affected, manipulated or operated upon.
- 2. The address, or symbolic name, portion of an assembly language instruction.

- OPERATOR: The symbol or code which indicates an action (or operation) to be performed, e.g. + or TAD.
- OR: (Inclusive) A logical operation such that the result is true if either or both operands are true, and false if both operands are false. (Exclusive) A logical operation such that the result is true if either operand is true, and false if either or both operands are false. When neither case is specifically indicated, Inclusive OR is assumed.
- ORIGIN: The absolute address of the beginning of a section of code.
- OUTPUT: Information transferred from the internal storage of a computer to output devices or external storage.
- OVERFLOW: A condition that occurs when a mathematical operation yields a result whose magnitude is larger than the program is capable of handling.
- PAGE: A 128-word section of IM6100 memory beginning at an address which is a multiple of 200.
- PASS: One complete cycle during which a body of data is processed. An assembler usually requires two passes during which a source program is translated into binary code.
- PATCH: To modify a routine in a rough or expedient way.
- PERIPHERAL EQUIPMENT: In a data processing system, any unit of equipment distinct from the central processing unit which may provide the system with outside storage or communication.
- POINTER ADDRESS: Address of a memory location containing the actual (effective) address of desired data.
- PRIORITY INTERRUPT: An interrupt which is given preference over other interrupts within the system.
- PROCEDURE: The course of action taken for the solution of a problem.
- PROGRAM COUNTER (PC): The register which contains, at any given time, the address in memory of the next instruction.
- PROGRAMMED LOGIC ARRAY (PLA): That section of the Microprocessor which correctly sequences the Microprocessor for the appropriate instruction.

- PSEUDO-OP: See Pseudo-operation.
- PSEUDO-OPERATION: An instruction to the assembler; an operation code that is not part of the computer's hardware command repertoire.
- PUSHDOWN LIST: A list that is constructed and maintained so that the next item to be retrieved is the item most recently stored in the list.
- QUEUE: A waiting list. In time-sharing, the monitor maintains a queue of user programs waiting for processing time.
- RADIX: The base of a number system; the number of digits symbols required by a number system.
- RANDOM ACCESS: A storage device in which the addressability of data is effectively independent of the location of the data. Synonymous with direct access.
- RANDOM ACCESS MEMORY: A memory whose content can be predetermined, stored indefinitely, changed at will and retrieved at random
- READ ONLY MEMORY: A memory whose content, once predetermined, is permanent and can not be changed.
- REAL-TIME: Pertaining to computation performed while the related physical process is taking place so that results of the computation can be used in guiding the physical process.
- RECORD: A collection of related items of data treated as a unit.
- RECURSIVE SUBROUTINE: A subroutine capable of calling itself.
- REGISTER: A device capable of storing a specified amount of data, usually one word.
- RELATIVE ADDRESS: The number that specified the difference between the actual address and a base address.
- RELOCATABLE: Used to describe a routine whose instructions are written so that they can be located and executed in different parts of core memory.
- RESPONSE TIME: Time between initialing an operation from a remote terminal and obtaining the result. Includes transmission time to and from the computer, processing time and access time for files employed.

RESTART: To resume execution of a program.

ROUTINE: A set of instructions arranged in proper sequence to cause the computer to perform a desired task. A program or subprogram.

RUN: A single, continuous execution of a program.

SEGMENT:

1. That part of a long program which may be resident in memory at any one time.

2. To divide a program into two or more segments or to store part of a routine on an external storage device to be brought into core as needed.

SERIAL ACCESS: Pertaining to the sequential or consecutive transmission of data to or from memory, as with paper tape: contract with random access.

SHIFT: A movement of bits to the left or right frequently performed in the accumulator.

SIMULATE: To represent the function of a device, system or program with another device, system or program.

SINGLE STEP: Operation of a computer in such a manner that only one instruction is executed each time the computer is started.

SOFTWARE: The collection of programs and routines associated with a computer.

SOURCE LANGUAGE: See Language, source.

SOURCE PROGRAM: A computer program written in a source language.

STATEMENT: An expression or instruction in source language.

STORAGE ALLOCATION: The assignment of blocks of data and instructions to specified blocks of storage.

STORAGE CAPACITY: The amount of data that can be contained in a storage device.

STORAGE DEVICE: A device in which data can be entered, retained and retrieved.

STORE: To enter data into a storage device.

STRING: A connected sequence of entities such as characters in a command string.

- SUBROUTINE, CLOSED: A subroutine not stored in the main part of a program, such a subroutine is normally called or entered with a JMS instruction and provision is made to return control to the main routine at the end of the subroutine.
- SUBROUTINE, OPEN: A subroutine that must be relocated and inserted into a routine at each place it is used.
- SUBSCRIPT: A number or set of numbers used to specify a particular item in an array.
- SWAPPING: In a time-sharing environment, the action of either temporarily bringing a user program into core or storing it on the system device.
- SWITCH: A device or programming technique for making selections.
- SYMBOL TABLE: A table in which symbols and their corresponding values are recorded.
- SYMBOLIC ADDRESS: A set of characters used to specify a memory location within a program.
- SYMBOLIC EDITOR: A system library program which helps users in the preparation and modification of source language programs by adding, changing or deleting lines of text.
- SYSTEM: A combination of software and hardware which performs specific processing operations.
- TABLE: A collection of data stored for ease of reference, generally as an array.
- TEMPORARY REGISTER (TEMP): A register which is used primarily as a latch for the result and ALU operation before it is sent to the destination register to avoid race conditions.
- TEMPORARY STORAGE: Storage locations reserved for immediate results.
- TERMINAL: A peripheral device in a system through which data can enter or leave the computer.
- TIMESHARING: A method of allocating central processor time and other computer resources to multiple users so that the computer, in effect, processes a number of programs simultaneously.
- TIME QUANTUM: In time-sharing, a unit of time allotted to each user by the monitor.

TOGGLE: To use switches to enter data into the computer memory.

TRANSLATE: To convert from one language to another.

TRUNCATION: The reduction of precision by dropping one or more of the least significant digits, e.g. 3.141592 truncated to four decimal digits is 3.141.

UNDERFLOW: A condition that occurs when a floating point operation yields a result whose magnitude is smaller than the program is capable of expressing.

USER: Programmer or operator of a computer.

VARIABLE: A symbol whose value changes during execution of a program.

WORD: With the IM6100, a 12-bit unit of data which may be stored in one addressable location.

WRITE: To transfer information from memory to a peripheral device or to auxiliary storage.

ZERO PAGE: The first page in the subdivided memory.

ZOMBIE: Appearance assumed by programmer attempting to debug undocumented object code.

APPENDIX F ASCII CHARACTER CODES

CHARACTER CODES

8-bit ASCII	6-bit	CHARACTER REPRESENTATION	REMARKS
CODE	CODE		
240 241 242 243 244 245 246 247	40 41 42 43 44 45 46 47	! # \$ %	space (non-printing) exclamation point quotation marks number sign dollar sign percent ampersand apostrophe or acute accent
250 251 252 253 254 255 256 257	50 51 52 53 54 55 56 57	() * + . /	opening parenthesis closing parenthesis asterisk plus comma minus sign or hyphen period or decimal point slash
260 261 262 263 264 265 266 267	60 61 62 63 64 65 66	0 1 2 3 4 5 6 7	
270 271 272 273 274 275 276 277	70 71 72 73 74 75 76 77	8 9 : ; < = > ?	colon semicolon less than equals greater than question mark

8-bit ASCII	6-bit	CHARACTER REPRESENTATION	REMARKS			
CODE	CODE	REFRESENTATION				
300 301 302 303 304 305 306 307	00 01 02 03 04 05 06 07	@ A B C D E F G	at sign ¹			
310 311 312 313 314 315 316 317	10 11 12 13 14 15 16	H I J K L M N O				
320 321 322 323 324 325 326 327	20 21 22 23 24 25 26 27	P Q R S T U V W				
330 331 332 333 334 335 336 337	30 31 32 33 34 35 36 37	X Y Z □ \ \	opening bracket, SHIFT/K backslash, SHIFT/L closing bracket, SHIFT/M up arrow back arrow ²			

Footnotes:

- (1) In 6-bit code, 00_8 represents CARRIAGE RETURN
- (2) In 6-bit code, 37g represents TAB

CONTROL CODES

8-bit ASCII CODE	CHARACTER NAME		REMARKS
000	null		Ignored in ASCII input
200	leader/trailer		Leader/trailer code precedes and follows the data portion of binary files
203	CTRL/C	(1)	IFDOS break character, forces return to Keyboard Monitor, echoed as ↑C
207	BELL		CTRL/G
211	TAB		CTRL/I, horizontal tabulation
212	LINE FEED	(2)	Used as a control character by the Command Decoder and ODT
213	VT		CTRL/K, vertical tabulation
214	FORM		CTRL/L, form feed
215	RETURN		Carriage return, generally echoed as carriage return followed by a line feed
217	CTRL/O		Break Character, used conventionally to suppress Teletype output, echoed as +0
225	CTRL/U		Delete current input line, echoes as ↑U
232	CTRL/Z	(3)	End-of-File character for all ASCII and binary files (in relocatable binary files CTRL/Z is not a terminator if it occurs before the trailer code)
233	ESC		Escape replaces ALTMODE on some terminals Considered equivalent to ALTMODE
375	ALTMODE		Special break character for Teletype input
376	PREFIX		PREFIX replaces ALTMODE on some terminals. Considered equivalent to ALTMODE
377	RUBOUT		Key is labeled DELETE on some terminals Deletes the previous character typed

- (1) IFDOS break character--does not affect INTERCEPT JR. MONITOR
- (2) OCTAL DEBUGGING TECHNIQUE program as supplied on IM6312 ROM
- (3) Applies to IFDOS (INTERSIL FLOPPY DISK OPERATING SYSTEM)

APPENDIX G
LOADING CONSTANTS INTO THE ACCUMULATOR

MNEMONIC	DECIMAL CONSTANT	OCTAL CODE	INSTRUCTIONS			COMBINED	
K0000 =	0	7300	CLA	CLL			
K0001 =	1	7301	CLA	CLL	IAC		
K0002 =	2	7305	CLA	CLL	IAC	RAL	
		(or)					
K0002 =	2	7326	CLA	CLL	CML	RTL	
K0003 =	3	7325	CLA	CLL	CML	IAC	RAL
K0004 =	4	7307	CLA	CLL	IAC	RTL	
K0006 =	6	7327	CLA	CLL	CML	IAC	RTL
K0100 =	64	7203	CLA	IAC	BSW		
K2000 =	1024	7332	CLA	CLL	CML	RTR	
K3777 =	2047	7350	CLA	CLL	CMA	RAR	
K4000 =	-0	7330	CLA	CLL	CML	RAR	
K5777 =	-1025	7352	CLA	CLL	CMA	RTR	
K6000 =	-1024	7333	CLA	CLL	CML	IAC	RTL
K7775 =	- 3	7346	CLA	CLL	CMA	RTL	
K7776 =	- 2	7344	CLA	CLL	CMA	RAL	
K7777 =	-1	7340	CLA	CLL	CMA		

APPENDIX H

OPERATION OF THE PHASELOCK LOOP

INTRODUCTION

The phaselock loop (PLL) is an analog circuit that is available as a single integrated circuit but is in fact a system composed of a few different analog circuits combined together on one chip. The detailed analysis of a PLL uses the mathematics of servomechanism systems. Although there are times that mathematical analysis is desirable, it is not needed to gain a basic understanding of PLL operation. If the following description of PLL operation is studied carefully, the reader will gain the required knowledge to apply the PLL to new designs and to understand how the PLL operates in existing systems. Figure 1 shows the block diagram of a PLL system.

Figure 1

The phase of an input signal and an internal frequency are compared at the phase comparator. Any phase difference between the input signal and the internal frequency produces an error voltage at the output of the phase comparator. The error voltage is filtered by a low-pass filter and is applied as a control voltage to the voltage controlled oscillator (VCO). The VCO is an oscillator whose frequency is controlled by a voltage. The control voltage changes the frequency of the oscillator so as to track the input signal frequency.

A better understanding of PLL operation can be acquired by considering the phase comparator, the low-pass filter, and the VCO as separate elements--each with its own input and output. The individual components can then be analyzed as a closed loop system

PHASE COMPARATOR

The type of phase comparator that is easiest to understand is the type which has a sinewave input and a squarewave VCO internal frequency. Sinewave input and squarewave VCO is a common PLL configuration. When other types of signals are used, the principles are the same but the waveshapes are harder to visualize. Referring to figure 2, this type

Figure 2

of phase comparator acts as a switchable inverter—on the positive half of the VCO the phase comparator acts as a noninverting amplifier. During the negative half of the VCO cycle, the phase comparator is effectively an inverting amplifier. Note in the waveshapes that there exists a 90° phase shift between the VCO frequency and the input frequency. If the relative phase of the two signals tries to change, the average positive or negative value of the output will shift. A measure of the sensitivity of a comparator is expressed as a gain value equal to:

 $\frac{\text{Change in average output voltage}}{\text{Change in relative phase}} = \frac{\text{dv}}{\text{d0}}$

LOW PASS FILTER

The low-pass filter takes the phase comparator output and smooths it out to be applied as a d.c. voltage to the VCO. Although many types of filters can be used, the single resistor-capacitor pair is the most frequently used filter. The valves used in the filter are seldom critical. If the

low pass filter has to long of a time constant, the PLL will be slow to lock up and will not lock on the desired range of input signals. If the time constant is too short, the PLL may lock on unwanted signals or this VCO will have excessive phase jitter.

VOLTAGE CONTROLLED OSCILLATOR

The VCO is an oscillator whose output frequency is determined by a control voltage. A lower d.c. voltage generates a lower frequency and visa versa. A figure of merit of a VCO is its ability to convert voltage changes into frequency changes. The VCO gain is expressed as:

Change in output frequency Change in control voltage

THE COMPLETE PLL

Refer to figure 1 to see how the individual components are interconnected to form a closed loop PLL system. As the input signal changes phase or frequency, an error voltage will be generated which changes the VCO frequency so that it is again in lock with the input.

The following terms are frequently used to describe PLL characteristics:

Capture range (f_C)

The range of input frequencies which when applied to the PLL will cause it to lock on to the input signal.

Lock range (f_L)

Once the PLL has locked on to an input signal, the lock range is the frequency band over which the PLL will remain locked. The lock range is always greater than the captive range.

Center frequency (f₀)

The frequency of the VCO when no input signal is applied.

APPLICATIONS OF THE PLL

The PLL can be used as an FM detector. As the frequency of the input varies, the control voltage to the VCO will follow the frequency changes—therefore the useful output in this case is the control voltage.

The PLL can be used to generate a clean digital signal from a low level input signal. The output signal from the PLL will now be the VCO output.

Frequency multiplication can be accomplished by dividing the VCO frequency before it is applied to the phase comparator, thus the VCO will be an exact multiple of the input frequency as long as the PLL is locked.

There are numerous applications of PLL's and there exist PLL's designed for analog, R.F., and digital applications.

REFERENCES FOR FURTHER STUDY

- 1. Gardner, F.M., Phaselock Techniques, (Wiley 1966)
- 2. Viterbi, A.J., Principles of Coherent Communication, (McGraw 1966)
- 3. National Semiconductor Applications Note AN-46, June 1971
- 4. Signetics Linear Phase Locked Loops Applications Book, 1972

INTRODUCTION

The remote data station (RDS) board is capable of monitoring a number of different D.C. measurement channels under the control of a microprocessor. The D.C. voltages are converted to a digital format and sent as serial data to the microprocessor. The microprocessor determines which channel is to be measured and when the measurement cycle is to begin. The RDS and microprocessor system communicate via a 4-wire current loop or any other form of 2-way link. When a reading is desired, the microprocessor sends a signal which selects the appropriate channel and simultaneously starts the measurement cycle. After the measurement is complete, the digital value of the D.C. voltage is sent to the microprocessor. The RDS/microprocessor pair is also capable of selecting measurement rate, transmitting and receiving digital control signals, and receiving over/underrange information. Data received by the microprocessor can be used for any of the following operations or any combination of them:

- 1. Print measured data
- 2. Perform arithmetic on data
- 3. Make decisions based on data value
- 4. Digital control of process functions

Figure 1 is a block diagram of a basic RDS/microprocessor system. A number of D.C. voltages can be sequentially measured by the RDS. Digital input and output signals are also available which are transmitted to and received from the microprocessor.

FIGURE 1 BASIC SYSTEM DIAGRAM

Figure 2 is a block diagram of an RDS board. The IH5060 Analog Multiplexer takes one of the D.C. measurement lines and connects it to the input of the A-D converter. The line selected is determined by the control lines coming from the UART. The A-D converter changes the D.C. voltage at its input to binary coded decimal digits. The operation of the IH5060 and 8052A/7103A A-D pair is discussed in the Intersil Analog Products Catalog, Volume I and II. The IM6402 UART takes the converted data and sends it out as serial data to the microprocessor. The receive portion of the UART is used by the microprocessor to determine which channel is selected. An Intersil 7209 oscillator is used as a clock for both the A-D converter and the UART. The 4020 divider provides the necessary frequencies. Transistor circuitry is provided to develop and receive the 20 mA current loops for the communications link. Variations of this link could be RS-232 signals or Modem signals for landline, microwave or RF transmission. The RDS board must be provided with 5 volt ± 15 volt power connections.

FIGURE 2 RDS BLOCK DIAGRAM

DEMONSTRATION SYSTEM

The demonstration system is a remote data station that measures pressure and transmits the pressure information to the Intercept Jr. microprocessor system.

Three optional cards are plugged into the Intercept Jr.; a serial I/O card which is used to communicate with the RDS, a PROM (Programmable Read-Only Memory) card that contains the RDS control program, and a visual display board. The batteries in the Jr. module supply power to both units. The voltage measured from the pressure transducer will light LEDs on the visual display board. The display will represent the transducer offset voltage, ambient pressure voltage, and any pressure voltage generated by squeezing the air bulb. The display format is as follows:

AUDVIS BOARD LEDS

CHANNEL MSD-BCD CODE LSD-BCD CODE
SELECTED

DEMONSTRATION SYSTEM WAVESHAPES

Figure 3 shows the key signals present in the demonstration system. When an RDS reading is requested by the program, a UART TBRL (Transmit Buffer Register Load) signal causes the serial transmit data to be sent to the RDS UART. After the RDS UART receives the serial word, an A-D converter cycle is started. After the A-D cycle is complete, the RDS UART transmits five digits to the microprocessor. Strobe pulses from the A-D converter initiate the transmission of each of the five digits. The data format for each digit is shown below:


```
FROS DEMONSTRATION PROGRAM MAY 9, 1977
                      DEMONSTRATION PROGRAM
                THIS DEMO PROGRAM READS A D.C. VOLTAGE
                PRODUCED BY A PRESSURE TRANSDUCER AND
                DISPLAYS THE MEASURED VALUE AT THE
                MICROPROCESSOR SITE.
                THE VALUE DISPLAYED IS THE SUM OF
                TRANSDUCER OFFSET, AMBIENT PRESS-
                URE, AND APPLIED BULB PRESSURE.
                ABSOLUTE PRESSURE CAN BE DERIVED BY
                SUBTRACTING THE TRANSDUCER OFFSET
                FROM THE READING. GUAGE PRESSURE
                CAN BE CALCULATED BY SUBTRACTING
                THE AMBIENT PRESSURE READING FROM
                THE MEASURED VALUE.
                 OPERATING INSTRUCTIONS
       /1.
            BATTERIES IN THE INTERCEPT UR. SUPPLY POWER
               BOTH UNITS.
                             INSTALL BATTERIES.
            RDS POWER SWITCH ON.
            UR. RESET SWITCH TO STOP.
       /3.
       /4.
           UR. POWER SWITCH ON.
       /5.
            UR. RESET SWITCH TO UP POSITION.
       16.
            PRESS CNTRL KEY.
            PRESS SETPC KEY.
       /7.
            PRESS THE FOLLOWING KEYS IN SEQUENCE: 2 0 0 0.
       78.
       /9.
            PRESS ONTRL KEY.
       /10. PRESS RUN KEY.
       /11. CHANGE READING BY PRESSING PRESSURE BULB.
       /12. NORMAL READING WITH NO BULB PRESSURE SHOULD BE
            APPROXIMATELY .50 VOLTS.
       VORIGIN AND EQUATE STATEMENTS
*2000
               *2000
4161
               CALL=4161
0100
               COUNT=0100
0101
               VALUE=0101
7445
               INFIE=7445
7466
               TALK=7466
               READ=7501
7501
6404
               DISP=6404
       /INITIALIZATION
```

```
7201
                     CLA IAC
                                     /DISABLE CONTROL PANEL
12000
J2001
       6402
                     6402
                                     /INITIALIZE PIE CHIP
                     CALL
02002
       4161
       7445
                     INPIE
02003
             /SELECT CHANNEL AND DELAY
             LOOP,
02004
       7200
                     CLA
                                     COUTPUT A CONTROL WORD
02005
      4161
                     CALL
02006
       7466
                     TALK
       7200
                     CLA
02007
                     DCA COUNT
02010
       3100
                     ISZ COUNT
                                     VIIME DELAY LOOP
02011
       2100
                     JMP . - i
02012
       5211
02013
       7000
                     NOP
             /START MEASUREMENT CYCLE
02014
       7200
                     CLA
                                      ZOUTFUT A CONTROL WORD
                     CALL
02015
       4161
02016
       7466
                     TALK
             /RECEIVE MEASURED DATA
02017
                                     VREAD D5
      4161
                     CALL
02020
       7501
                     READ
 2021
       4161
                     CALL
                                     VREAD D4
02022
       7501
                     READ
02023
       4151
                     CALL
                                     VREAD D3
02024
       7501
                     READ
02025
       0241
                     AND MASK
02026
       7106
                     CLL RTL
                     CLL RTL
                                     JOHIFT BITS LEFT
02027
       7106
02030
       3101
                     DCA VALUE
                                     VIENPORARY STORAGE
                                     VREAD D2
02031
       4161
                     CALL
       7501
                     READ
02032
                                     VSTRIP OFF VALUE BITS
02033
       0241
                     AND MASK
02034
       1101
                     TAD VALUE
                                     /ADD TO PREVIOUS CHARACTER
02035
       6404
                     DISP
                                     /DISPLAY ON AUDVIS BOARD
02036
       4161
                     CALL
                                     /READ DI
02037
       7501
                     READ
02040
       5204
                     UMP LOOP
                                     /CONTINUE LOOPING
             /CONSTANT:
             MASK,
 2041
       0017
                     0017
```

/RDS DEMONSTRATION PROGRAM MAY 9, 1977 IFDOS PAL 1A 13-MAY-77 PAGE 2

CALL 4161 **COUNT 0100** DISP 6404 INPIE 7445 LOOP 2004 MASK 2041 READ 7501 TALK 7466 VALUE 0101

/RDS DEMONSTRATION PROGRAM MAY 9, 1977

IFDOS PAL 1A 13-MAY-77 PAGE 3

NO ERRORS DETECTED

NO LINKS GENERATED

9 SYMBOLS

5K MEMORY UTILIZED

A FACTORY PROCESS EXAMPLE

In this example (figure 4) we have a factory process in which a mixture is maintained at a constant pH and temperature. The pH is adjusted by adding either chemical A or chemical B to the mixture. An electric heater is used to heat the mixture. A pH sensor converts the mixture pH value to a D.C. voltage and a temperature sensor generates a voltage proportional to the temperature. The levels of both chemical A and B are monitored by sensors which convert the levels to a proportional D.C. voltage. The RDS board accepts all sensor outputs, converts the information to a serial data format and transmits the data to the microprocessor system. The microprocessor continuously monitors the value of pH, if the pH goes beyond an allowable range, the microprocessor sends control signals to the RDS which activate values for either chemical A or chemical B. Similarly, when the temperature exceeds the preset bounds, the microprocessor sends control signals which either increase or decrease the amount of power applied to the heater element. The microprocessor has the ability to correct certain sensor errors, do self-calibration routines, and to run troubleshooting programs which aid maintenance personnel in correcting production problems. The microprocessor system can either be located next to the RDS or placed some distance away. This flexibility allows the process system designer to place the RDS at the location most suitable to the manufacturing process.

METHODS OF COMMUNICATING WITH THE MICROPROCESSOR

Figure 5 shows the method used on the demonstration unit to communicate with the microprocessor system. A logic one is represented by a 20 mA current (mark), and a logic zero is represented by the absence of a current (space). Figure 12 shows a voltage level link using RS-232 standard signals. For transmission over a significant distance, it is possible to convert the digital signals to sinewave frequencies and transmit the data over landline or radio links. Figure 13 shows a MODEM link. The digital signal is fed to the MODEM (Modulator-Demodulator) which converts a logic one to an audio frequency and a logic zero to a lower audio frequency. The MODEM then sends the audio signal out for transmission over telephone lines or some form of RF link. The RF link could either be a microwave, high-frequency radio, or any other form of radio transmission. At the receive end, the MODEM takes the received audio and converts it back to digital ones and zeros and sends the data to the microprocessor system.

FIGURE 4 A FACTORY PROCESS

FIGURE 5 CURRENT LOOP

IMPROVING TRANSDUCER CHARACTERISTICS

The RDS/microprocessor pair is capable of measuring transducer signals and applying correction factors to reduce sources of transducer errors. Offset, nonlinearity, and temperature drift are three of the more prominent transducer errors. Figure 14 is a generalized transfer characteristic of a transducer. An offset error is the amount of output voltage present when the input quantity is at its zero reference. Without a microprocessor it is necessary to use active circuits to remove this offset. The microprocessor system is capable of storing the offset value and subtracting it from all measurements. This procedure of storing error values and correcting received data can also be used to correct nonlinearity errors. Depending on the accuracy required and memory available, errors at various points along the transfer characteristic are stored. During a data measurement, the error for that particular reading is referenced and the error is subtracted out. If power or space requirements restrict the ability to hold the transducer at a constant temperature, the microprocessor can make a temperature reading and correct the transducer as required.

THEORY OF DEMONSTRATION SYSTEM

Reference should be made to figure 9 for the following description. The demonstration board is a simplified version of a complete 16-channel data acquisition system. This board is capable of measuring up to 4 D.C. channels.

ICl is a sixteen channel analog multiplexer. The D.C. inputs are present on pins 19-20. The channel to be selected is determined by the digital inputs on pins 15-17. The output of the multiplexer is available at pin 28 and is sent through R8 to the input of the precision A-D converter pair consisting of IC2 and IC3. The output of the A-D converter is in the form of multiplexed BCD characters. The BCD value is available at IC2 pins 20 to 23 and the digit selected is determined by the signals at pins 24 to 27. Both the BCD information and the digit select information is sent to the UART (IC4) to be transmitted as serial data. When the UART receives serial data from the microprocessor, an analog channel is selected and the A-D converter is commanded to start a measurement cycle. At the end of the measurement cycle the data on T1 through T8 (IC4 pins 26 to 33) is transmitted to the microprocessor. IC6 is an Intersil 7209 oscillator. The 4020 is a divider which provides the clock for both the A-D converter and for the UART. The 20 mA loop current is generated by a 2N3638 and associated components. The 20 mA received signal is converted to standard CMOS levels by the 4069, pins 12 and 13. A complete description of the Intersil parts is available in the Analog Products Catalog and the IM6100 Microprocessor Booklet.

I-14

APPENDIX J KEY BOARD TENNIS PROGRAM WITH INTERCEPT JR.

DEMO PROGRAM: "PING"

IN 'PING', THE PLAYER PLAYS AGAINST THE MACHINE. THE COMPUTER "SERVES" FROM THE LEFT, AND THE "BALL" TRAVELS ALONG THE LED'S UNTIL IT REACHES BIT 11, THE RIGHTMOST LED.

IF THE PLAYER PRESSES THE YELLOW BUTTON (IAC), THE BALL WILL BE RETURNED WITH A 'CLICK'. THE MACHINE WILL RETURN THE BALL AND THE SEQUENCE IS REPEATED.

IN ORDER TO ADD EXCITEMENT TO THE GAME, EACH TIME THE PLAYER RETURNS THE BALL, IT SPEEDS UP.

WHEN THE PLAYER MISSES, BY PRESSING THE BUTTON TOO SOON OR TOO LATE, THE MACHINE BUZZES, DELAYS, THEN SERVES AT THE SLOWEST RATE.

HAVE FUN!

(NOTE: THE CONTENTS OF LOCATION 0262 DETERMINE THE ORIGINAL SPEED OF THE BALL, AND LOCATION 0263 DETERMINES HOW FAST IT SPEEDS UP)

"PING"

ADDRESS ₈	CONTENTS ₈	ADDRESS ₈	CONTENTS ₈	ADDRESS ₈	CONTENTS ₈
0201	7300	0223	7320	0245	1263
0202	1262	0224	6404	0246	3264
0203	3264	0225	6401	0247	7004
0204	7330	0226	2265	0250	3265
0205	6401	0227	5223	0251	1264
0206	6404	0230	7010	0252	3266
0207	3265	0231	2265	0253	1265
0210	1264	0232	5231	0254	6404
0211	3266	0233	7440	0255	7450
0212	7604	0234	5230	0256	5204
0213	7440	0235	5201	0257	2266
0214	5236	0236	6401	0260	5255
0215	2266	0237	7300	0261	5247
0216	5212	0240	1265	0262	0000
0217	1265	0241	7010	0263	1000
0220	7010	0242	7440	0264	_
0221	7440	0243	5223	0265	_
0222	5206	0244	1264	0266	_

FLOWCHART FOR KEYBOARD TENNIS PROGRAM WITH INTERCEPT JR.


```
/KEY BOARD TENNIS WITH INTERCEPT JR-
              /RULES:
                      START AT LOCATION #200.
                      SINCE JR IS WAITING FOR SIGN OF STARTER,
                      PRESS IAC OR CTR WHCIHEVER STARTS FIRST
                      TO PREPARE FOR SERVICE-
                      THEN, SERVE THE BALL BY PRESSING THE KEY.
                      THE OPPONENT MUST PRESS KEY BEFORE BALL
                      HITTING THE SIDE BUT IN THE NEAREST 2 BITS
                      NOT TO LOSE POINTS.
                      SCORE IS +1 FOR ONE SUCCESSFUL GOAL AND
                      +1 BY THE OPPONENT'S FAULT. THE HIGHEST
SCORE WHICH CAN BE HANDLED 15 99.
              /DEFINITIONS:
                      WRI TED= 6400
                                       /WRITE DISPLAY.
       6488
                                       /CLICK SPEAKER.
       6481
                      CLICK=6481
       6482
                      TIMER= 6402
                                       /TIMER ON OR OFF.
                                       /WRITE DISPLAY OF I/O BRD.
       6484
                      WRITES=6484
             / SUBPRO GRAMS:
       8828 +28
       8888 KEY.
                              /TO DETECT KEY BOARD.
66626
                      CLA CLL
68621
       7300
                                       /LOAD AC WITH SR-
86622
       7684
                      LAS
00523
       7884
                      RAL.
                                        /CTR= 4008.
88824
       7438
                      SZL
                                        /CTR KEY PRESSED?
                      JMP IDØ
                                        /YES.
66625
       5848
66626
       7684
                      RAL
                                        /IAC=2666.
                                        /IAC KEY PRESSED?
                      SNL CLA
66627
       7628
                                        /NEITHER PRESSED.
                      JMP I KEY
88838
       5426
                                       /PUT ALL 1'S IN AC-
/ID=1 FOR IAC PLAYER-
/STOP FURTHER EXECUTION
                      CLL CMA
90031
       7148
                      DCA ID
88832
       3128
00033
       7684 GO.
                      LAS
                      SZA CLA
                                        /UNTIL KEY IS RELEASED.
00034
       7648
86635
       5033
                      JMP .-2
                      ISZ KEY
                                        /TO GET OUT OF WAITING LOOP.
88836
       2020
06637
       5428
                      JMP I KEY
....
       7360
            I Dø,
                      CLL CLA
06841
       3120
                      DCA ID
                                       /ID=0 FOR CTR PLAYER.
66642
       5033
                      JMP GO
                                       /RETURN.
                      SUBROUTINE TO DISPLAY SCORES:
88843 8888 SHOW,
58844
       7388
86845 3117
                      DCA DIGIT2
                                        /CLEAR REGISTER DIGIT2.
       1124
                      TAD SCORE!
                                        /BRING IAC PLAYER'S SCORE-
99946
       4874
                      JMS DECIML
                                        /CONVERT OCTAL TO DECIMAL.
86647
                                        /IST DECIMAL DIGIT-
/STORE IT IN SAVEI-
88858
       1116
                      TAD DIGITI
66651
       3121
                      DCA SAVE!
                      TAD DIGIT2
                                        /STORE 2ND DECIMAL DIGIT
86852
       1117
                      DCA SAVEIØ
                                        /IN SAVEIO.
69653
       3122
                                        /CLEAR DIGITE-
                      DCA DIGIT2
66854
       3117
                       TAD SCORE2
                                        /BRING CTR PLAYER'S SCORE.
86655 1125
                      JMS DECIML
                                        /CONVERT IT INTO DECIMAL NO.
88856 4874
88857 1116
                       TAD DIGIT!
                                        /SHIFT IST DECIMAL NO. INTO
                       CLL RTL
                                        /2ND BITE FROM RIGHT.
88861 7886
                      RTL
                      TAD SAVEI
                                        /JOIN TO IAC PLAYER'S SCORE.
88862 1121
                                        /SET BIT #0 TO DISPLAY THEM.
88863 1133
                      TAD KASSO
                                        /DISPLAY IST DECIMAL DIGITS
                       JMS DELAY
88864 4186
                       TAD DIGIT2
                                        /OF BOTH PLAYER'S SCORES.
88865
       1117
                                        /SHIFT 2ND DECIMAL NO.
90066
       7166
                       CLL RTL
       7996
                       RTL
88867
86678
       1122
                       TAD SAVEID
                                        /JOIN TO IAC PLAYER'S SCORE.
88671
       1132
                       TAD K2000
                                       /SET BIT #1.
/DISPLAY 2ND DECIMAL DIGITS
84872
       4186
                       JMS DELAY
                                        /OF BOTH SCORES & RETURN.
                      JMP I SHOW
86873 5443
                             /SUBROUTINE TO CONVERT OCTAL TO DECIMAL.
88874 8888 DECIML. 8
                                  /KILL LINK BIT.
66675 7188
                       CLL
                                       /AC=-12.
/NO MORE 2ND DECIMAL DIGITS?
/IF NOT, OUTPUT RESULTS.
                       TAD M12
       1127
                      SNL
JMP OUT
86677
       7420
00100
       5103
```

```
86161
       2117
                       ISZ DIGIT2
                                        /IF YES, COUNT THE DIGITS.
                       JMP DECIML+1
                                        /EXHAUST 10TH DIGIT-
80162
       5875
66163
       1130
              OUT,
                       TAD P12
                                        /ADD 10 TO COMPENSATE.
                       DCA DIGITI
                                        /STORE IT.
66164
88185
       547A
                       JMP I DECIML
       9996
              DELAY.
                               /SUBROUTINE TO DISPLAY & DELAY TIME.
66166
                       ø
                       VRI TED
                                        /DISPLAY AC CONTENTS.
88187
       6400
                       CLA CLL
88118
       7366
86111
                       TAD M7688
                                        /TO COUNT 512-
00112
       3123
                       DCA TEMP
66113
       2123
                       ISZ TEMP
                                        /COMPLETED COUNTING?
88114
       5113
                       JMP --1
                                        /NOT YET.
80115
       5506
                       JMP I DELAY
                                        /YES.
              /DATA (1):
                       DIGITI. 6
08116
       9699
                       DIGITA. 6
00117
       6666
66126
       6666
                       I D.
                       SAVE 1.
00121
       6666
                       SAVE10,
00122
       0000
66123
       6686
                       TEMP.
00124
       0000
                       SCO RE 1.
66125
       8666
                       SCORE2.
88126
        777A
                       M4.
                                - 4
80127
                       M12,
                                -12
       7766
00130
       8612
                                0012
                       P12.
                       M7000,
66131
        7888
                                7888
00132
       2000
                       K2080,
                                2000
66133
        4868
                       K4000,
                                4000
66134
        7788
                       K7700,
                                7700
              /PROGRAM FOR GAME STARTS HERE:
                       /STARTING ADDRESS.
       0266
              *256
88288
                       CLA CLL IAC
                                        /AC=1 FOR TIMER OFF.
       7361
                                         /AC MUST BE & FOR TIMER ON-
00201
        6482
                       TIMER
00202
        7288
                       CLA
00263
       3124
                       DCA SCORE!
                                        /INITIAL SCORE.
00204
        3125
                       DCA SCORE2
                                        /CLICK SPEAKER 64 TIMES
66265
       1134
              DI SPLY.
                       TAD K7788
                                        /IN 1.5 SEC FOR STARTING SIGN.
                       DCA COUNT
88286
       3361
                       CL.I CK
44267
       6491
                       JMS SHOW
                                        /TO KEEP DISPLAYING.
00216
       4843
                       ISZ COUNT
00211
       2361
00212
       5287
                       JMP --3
00213
        7301
                       CLA CLL IAC
                                        /AC=1.
00214
       6484
              RLEFT,
                       VRITES
                                         /DISPLAY AC.
86215
                       DCA SR
                                         /SAVE DISPLAY BIT
       3362
                                         /CHECK KEY COMMAND.
86216
        4355
                       JMS BOARD
                                         /48 MS TIME DELAY
/TO KEEP DISPLAYING.
66217
        4843
                       JMS SHOW
                       JMS SHOW
00220
        4643
                                         /BRING DISPLAY BIT BACK-
/SHIFT LEFT ONE-
                       TAD SR
86221
        1362
88222
        7884
                       RAL
                       SNL
                                         /REACHED TO EDGE?
66223
        7428
                       JMP RLEFT
                                         /NOT YET.
60224
        5214
89225
        7818
                       RAR
                                         /YES.
88226
        6484
              RRI GHT,
                       WRITES
                                         /DISPLAY.
                                         /SAVE IT.
88227
        3362
                       DCA SR
                       JMS BOARD
                                         /CHECK KEY INPUT-
88238
        A355
                                         /48 MS TIME DELAY TO
                       JMS SHOW
86231
        4643
86232
                       JMS SHOW
                                         /DISPLAY.
        4643
66233
        1362
                       TAD SR
                                         /SHIFT RIGHT ONE.
66234
        7818
                       RAR
88235
        7428
                       SNL
                                         /REACHED TO EDGET
                                         /IF NOT, KEEP SHIFTING-
/IF YES, CHANGE DIRECTION-
ØØ236
        5226
                       JMP RRIGHT
88237
        7864
                       RAL.
                       JMP RLEFT
84246
        5214
              START.
                       TAD ID
                                         /CHCK WHICH PLAYER FIRST.
86241
        1128
                                         THE FOLLOWING ROUTINE
00242
                       SNA CLA
        7650
66243
        5251
                       JMP .+6
                                         BRINGS BALL TO THE
                       CLL IAC
                                         /PLAYER'S SIDE.
66244
        7181
88245
                       WRI TES
        6484
88246
        3362
                       DCA SR
                                         /SAVE DISPLAY BIT.
88247
        1364
                       TAD LEFT
                                         /LEFT= RAL.
00250
        5255
                       JMP .+5
                       TAD KARRE
88251
        1133
                       WRITES
00252
        6484
ØØ253
        3362
                       DCA SR
                                         /SAVE DISPLAY BIT.
                       TAD RIGHT
                                         /RIGHT=RAR-
88254
        1365
00255
                       DCA ROTATE
                                         /DEFINE SHIFT DIRECTION.
        3266
00256
        4826
                       JMS KEY
                                         /GAME STARTED?
88257
        5261
                       JMP .+2
                                         NOT YET.
                       JMP . +3
                                         /YES, STARTED.
88268
        5263
                       JMS SHOW
                                         /TO KEEP DISPLAYING.
46261
        4843
                                         /CHECK KEY AGAIN.
66262
        5256
                       JMP --4
                       TAD SPEED+1
                                         /INITIALIZE SPEED.
86263
        1274
        3273
                       DCA SPEED
88264
```

```
TAD SR
                                       /BRING DISPLAY BIT TO SHIFT.
00265 1362
                                        /RAL OR RAR IS STORED HERE.
       8000 ROTATE, 0
99266
                      SZL
                                        /SUCCEEDED TO GOAL?
00267
       7430
                      JMP SCORE
                                        /IF YES, SCORE 4 CLICK.
88278
       5341
                                        /DISPLAY NEW SHIFTED BIT.
                      WRI TES
00271
       6484
                                        /SAVE DISPLAY BIT-
00272
       3362
                      DCA SR
                      JMS SHOW
00273
       4043
             SPEED.
                                        /THIS IS ONLY FOR SERVER.
00274
                      JMS SHOW
                                        /20 MS TIME DELAY.
       4043
00275
       4043
                      JMS SHOW
                                        /20 MS.
                                        /28 MS.
00276
       4043
                      JMS SHOW
                                        /FASTEST=AR MS. SLOVEST=188 MS.
00277
       4843
                      JMS SHOW
                                        OPPONENT KEY PRESSED?
00300
       4020
                      JMS KEY
                                        /NOT YET, SO KEEP SHIFTING.
00301
       5265
                      JMP ROTATE-1
                      TAD ID
00302
       1120
                                        /WHICH PLAYER RECEIVED BALL?
00303
       7640
                      SZA CLA
                      JMP CTR
                                        /CTR SIDE.
00304
       5321
                       TAD SR
                                        /IAC SIDE.
00305
       1362
                       TAD M7666
                                        /DETERMINE RETURN SPEED.
00306
       1131
                                        /HIT BALL AT 2ND BIT?
00307
        7448
                       SZA
                      JMP AI
                                        /NO.
00310
       5314
                                        /IF YES, GIVE EASY BALL.
/M7000="NOP".
             EASY,
                       TAD M7666
00311
        1131
00312
       3273
                       DCA SPEED
                                        /RETURN THE BALL.
                      JMP CHANGE
00313
       5330
                                        /IS IT FAULT OR BEST BIT?
       7710
                       SPA CLA
00314
             Ala
                                        /HIT IN WRONG REGION.
                      JMP FAULT
00315
       5351
                                        /IT WAS BEST HIT. SO, RETURN
              DFFCLT.
                      TAD JMPDFF
00316
       1363
                       DCA SPEED
                                        /BALL FASTEST.
00317
       3273
00320
                       JMP CHANGE
        5330
00321
        1362
             CTR.
                       TAD SR
00322
       1126
                       TAD NA
                                        /AC=-4.
                                        /HIT AT 2ND BIT.
00323
       7450
                       SN A
                      JMP EASY
                                        /YES.
00324
       5311
                                        /IS IT FAULT HIT?
66325
       7700
                       SMA CLA
                       JMP FAULT
00326
       5351
                                        /YES.
                       JMP DFFCLT
                                        /NO. IT WAS BEST HIT.
00327
        5316
             CHANGE.
                      TAD ID
                                        /CHANGE DIRECTION.
00330
       1120
00331
                       SNA CLA
        7650
                       JMP ++3
00332
       5335
00333
       1364
                       TAD LEFT
00334
       5336
                       JMP .+2
                       TAD RIGHT
80335
       1365
                       DCA ROTATE
                                        /DEFINE NEW DIRECTION.
00336
       3266
                                        /CLEAR USELESS LINK BIT-
00337
        7100
                       CLL
88348
                       JMP ROTATE-1
                                        /SHIFT TO THE DIRECTION.
        5265
              SCORE,
                       CLA CLL
88341
        7300
00342
        1120
                       TAD 1D
                                        /WHICH SCORED?
88343
        7650
                       SNA CLA
80344
        5347
                       JMP .+3
                                        /IAC SIDE.
                       ISZ SCORE!
00345
       2124
                       JMP DISPLY
00346
       5265
                                        /CTR SIDE-
ØØ347
        2125
                       ISZ SCORE2
                       JMP DISPLY
96350
        5205
00351
        1120
              FAULT.
                       TAD ID
                                        /CHECK WHO WAS AGAINST RULE.
00352
        7848
                       CMA
                                        /GIVE POINT TO THE OPPONENT.
00353
        3120
                       DCA ID
00354
       5342
                       JMP SCORE+1
                               /SUBROUTINE BOARD.
              BO ARD,
                       ø
60355
        0000
90356
        4020
                       JMS KEY
                                        /CHECK KEY.
                                        /IF NO INPUT, RETURN TO LOOP-
/IF SIGN, START GAME-
88357
        5755
                       JMP I BOARD
                       JMP START
88368
        5241
              /DATA (2):
66361
        6686
                       COUNT,
66362
        8888
                       SR
88363
        5276
                       JMPDFF. 5276
88364
        7864
                       LEFT.
                                7664
##365
        7818
                       RIGHT.
                               7010
88366 7888 NOP
```

A1 #314
BQARD #3355
CL1CK 6481
CUNT #3361
CTR #321
DECIML 9876
DFFCLT #316
DIGIT1 #116
DIGIT2 #116
DIG

APPENDIX K

OCTAL DEBUGGING TECHNIQUE ROM

IM6312-001 CMOS OCTAL DEBUGGING TECHNIQUE (ODT) ROM

The 63S003 version of the INTERSIL ODT ROM may be used in the INTERCEPT JR. in place of the IM6312-002 MONITOR ROM. With the addition of a 6953-PIEART serial I/O board and a 110 baud ASCII terminal, the ODT program provides the user an easy way to enter, edit and execute programs in the INTERCEPT JR. from a terminal.

Upon operating the RESET switch, the following sequence is executed:

7772	7301	CLA CLL IAC	/SET AC TO 0001
7773	6400	6400	/CLEAR INTERCEPT JR. DISPLAY
7774	6402	6402	/TURN OFF CP TIMER
7775	5776	JMP.+1	/GO TO START OF ODT
7776	6000	INIT	/START ADDRESS OF ODT
7777	5372	JMP5	/ENTRY POINT FOR CP REQUEST

This results in a blanked display, disabled CP timer and ODT running in control panel memory. ODT may be run in main memory (thus allowing all instructions to work normally) by entering the following instructions through the terminal and executing them:

0200	6407	IOT RUN	/RESET CP FF AFTER
0201	6001	ION	/EXECUTING NEXT INSTRUCTION
0202	5603	JMP.+1	/GO TO JR
0203	7777	7777	/INITIALIZATION SEQUENCE

INTERSIL ODT requires a RUN/HLT switch and manipulation of punch ON/OFF switch for proper tape punch operation so it is recommended that the MONITOR ROM memory dump routines be used to punch tape. INTERSIL ODT also contains commands for working with multiple fields. These commands have no effect in the INTERCEPT JR. which does not contain hardware for handling fields. All other ODT functions will run properly with INTERCEPT JR. hardware.

The following is a summary of the keyboard commands used with ODT:

nnnn/ Open location designated by octal number nnnn. When a location is opened, its content is printed and may be altered.

Reopen latest opened location.

CR Closes location

LF Closes location, then opens next

sequential location

(SHIFT/O) Closes location and opens indirect

reference (content of location taken

as an address, and new location is opened)

(SHIFT/N) Closes location and opens new location

referenced when contents of old location are treated as a memory reference instruction

•

nnnnG Begin executing program at nnnn

nnnnB Set breakpoint at nnnn

C Resume execution (continue after breakpoint)

A Examine/modify AC, MQ, L

M Open search mask, lower bound upper bound

nnnnW Search memory between specified bounds for

octal value nnnn

T Punch header/trailer

nnnn;mmmmP Punch binary memory image defined by limits

nnnn and mmmm

E Punch checksum and trailer

Load BIN tape from tape reader and print

checksum at end of load

For complete documentation, consult the INTERSIL CMOS Family Sampler Manual and Change Notice SAMPLR 001 in Appendix L.

ODT LISTING

```
EEGIN PASS 2
57.
58.
59.
                              /ODT-F VERSION 5 TAPE 1
60.
             2
                              /OCTAL DEBUGGING TECHNIQUE PROGRAM
61.
             3
                              /WITH CAPACITY FOR HANDLINE FIELDS
62.
             5
                              /AND BROKEN INTO ROM AND RAM SECTIONS
63.
64.
                              / COMMANDS ARE THE SAME AS FOR DEC OUT PLUS
65.
             8
66.
67.
             9
                              / N. -- SET CURRENT FIEDD TO FIELD N
                                        (CURRENT FIELD IS SAME AS INSTRUCTION FIELD)
68.
            10
                              / A<LF><LF> -- OPENS A RECISTER EQUIVALENT TO MQ
69.
            11
                              / A < LF > < LF > < LF > -- OPENS A REQISTER CONTAINING DATA FIELD
 70.
            12
                              / THESE COMMANDS HAVE NO EFFECT OR PRODUCE HARMEDSS GARBAGE
71.
            13
                              / ON IM6100 SYSTEMS AND OTHER SYSTEMS WHICH DO NOT HAVE
 72.
            14
                              / EMA CAPABILITY.
            15
 73.
 74.
            16
 75.
            17
                              / L. -- LOAD FROM THE TAPE READER USING BIN FORMAT
 76.
            18
                                        (WILL IGNORE CHANGE FIELD CHARACTERS)
            19
77.
                              / TO USE COMMAND. GIVE AN CLAFTER THE PROMET THEN PLACE TAPE
            20
 78.
                              / IN READER ON LEADER-TRAILER AND START THE TAFE BEADER.
 79.
            21
                              / THE BIN TAPE WILL BE READ INTO THE CURRENT FIELD AND
 80.
            22
                              / THE CHECKSUM WILL BE PRINTED OUT ON THE ITY FOILOWING
 81.
            23
                              '/ THE END OF THE LOAD.
            24
 82.
 83.
            25
 84.
            26
 85.
            27
 86.
            28
 87.
            29
 88.
            30
                              / **** DEFINITIONS *****
 99.
            31
                                               /FIELD OUT-F IS IN
                              F1=0
 90.
            3.2
                       0000
                                               /FIELD OUT-F IS IN, IN BITS 6-8
 91.
            33
                       0000
                              F1A=00
                                               /FIRST ACCRESS FOR TWO WORDS OF BREAKPOINT
 92.
            34
                       0005
                              ZPAT=5
                                               /LINKAGE IN FIELD OF PROGRAM TO BE DEBUGGED
 93.
            35
                                               /STARTING LOCATION FOR ODT-F.
 94.
            36
                       6000
                               START=6000
            37
                                    / THE I/O INSTRUCTIONS
 95.
            38
 96.
                       6160
                              RUART=6160
 97.
            39
                              WUART=6161
 98.
            40
                       6161
                       6171
                              WITY=6171
            41
99.
                              SKPDR=6162
100.
            42
                       6162
            43
                       6163
                              SKPTBR=6163
101.
                       6165
                              WCRA=6165
102.
            uu
                              WCRE=6175
103.
            45
                       6175
                       6174
            46
                              WV R=6174
104.
                              SFLAG1=6166
            47
                       6166
105.
                              CFIAG1=6167
            48
                       6167
106.
107.
            49
                       6176
                              SFLAG3=6176
                              CFLAG3=6177
168.
            50
                       6177
                              SKIP3≈6172
            51
                       6172
109.
            52
                       6173
                              SKIP4=6173
110.
                              THE FOLLOWING DEFINE LOCATIONS OF VARIABLES
            5.3
111.
                              /ALL VARIABLES ARE IN PAGE O
112.
            54
                                               /TEMPORARY STORAGE
            55
                       0020
                              TEMP=20
113.
                       0021
                              TEMP2=21
                                               /MORE TEMPORARY STORAGE
114.
            56
```

APPENDIX L

```
57
                       0023
                              TOT E= 23
                                               /DIGIT COUNT
115.
116.
            5.8
                       0024
                               WORD=24
                                               NUMBER READ BY COMMAND SCANNER
            59
                       0025
                               SCHAR= 25
                                               /CHAR INPUT BY COMMAND SCANNER
117.
                                               /POINTER INTO COMMAND TABLE
            60
                       0026
                               SPNTER=26
118.
            61
                       0027
                               CAD=27
                                               /CURRENT AFERESS
119.
                       00 30
                               CADF=30
                                               /CURRENT FIFLD
120.
            62
                       0031
                               OCALF=31
                                               /OLD CADE VALUE
121.
            63
                       0032
                               SHUT=32
                                               /OPEN-SHUT FLAG (- 1-SHUT. 0-OFEN)
            64
122.
                       0033
                               TRAD=33
                                               /ADDRESS BREAKPOINT IS AT
123.
            65
                       0034
                               TRADF = 34
                                               /FIELD BREAKPOINT IS IN
124.
            66
                               CONT=35
                                               /ADDRESS TC CONTINUE FROM
                       0035
125.
            67
                                               /FIELD TO CONTINUE WITH
                       00.36
                               IFSAVE=36
126.
            6.8
                                               /INSTRUCTION TO BE SIMULATED
127.
            69
                       0037
                               INS=37
                                               /EPFECTIVE ADDRESS OF INS
                       0040
                               ADDR=40
128.
            7.0
                       0041
                               DF1=41
                                               /FIELD OF INS OPERAND
            71
129.
                                               /PLACE FOR RAM PROGRAM TO SETURN TO
                       0042
                               JADR=42
130.
            72
                                                /FUTURE JAIR VALUE
                               JADR 1= 25
            73
                       0025
131.
                                                ZENTRY POINT TO RAM PROGRAM
                       0043
                               GOADR=43
            74
132.
                                                /NO OF TIMES TO CONTINUE PAST EXPT (ONES CHELMNT)
            75
                       0044
                               NCONT=44
133.
                                               /PLACE TO SAVE BREAKPOINT CONTENTS
            76
                       0045
                               KEEP=45
134.
                                                /PAPER TAPF CHECKSUM
            77
                       0046
                               CHKSUM=46
135.
                               THE FOLICKING LOCATIONS MAY BE EXAMINED BY ODT-F USERS
136.
            78
            79
                        9047
                               ACSAVE=47
                                               /SAVE AC
137.
                               ISAVE=50
                                                /SAVE LINK
                       0050
            80
138.
                                                /SAVE MO
                        0051
                               MOSAVE=51
            8 1
139.
                       0052
                               DESAVE=52
                                               /SAVE CATA FIELD
            82
140.
                                               /MASK FOR WORD SEARCH
            83
                        0053
                               MASK=53
141.
                                               /LOWER BOUND FOR WORD SEARCH
                       0054
                               LIMLO=54
142.
            84
                                                /TPPER EGUND FOR WORD SEARCH
                        0055
                               I.IMEI=55
143.
            85
                               THE SUBROUTINE LINKAGE LOCATIONS WILL LOOK LIKE
144.
            86
                                               /LINKAGE TO PUSHJ ROLTINE
145.
            87
                               /CALLI, 0
                                       JMP I .+1
146.
            88
147
            89
                                       PUSHJ
                                               /LINKAGE TO POPJ ROUTINE
148.
            90
                               /RETRN1, PCPJ
                               /STACK, STACK 1 /STACK POINTER
149.
            91
                               / Q -- PUNCH CURRENT FIELD IN BIN FORFIT
150.
            92
151.
            93
                               /ACTEMP. 0
                                                /SAVE AC
                               CALL1=56
152.
            GIL
                        0056
                               RETRN 1=61
153.
            95
                        0061
154.
            96
                        0062
                               STACK=62
155.
            97
                        0063
                               ACTEMP=63
                               THE BREAKFOINT RETURN LINKAGE LOCATIONS WILL LOOK LIKE
156.
            9.6
157.
            99
                               /IN FIELD PROG TO DEBUG IS IN, AT ZPAT:
158.
            100
                               /ZPAT, CIF P1A
                                       JMP ZPAT1
159.
            101
                               /IN FIELD F1:
           102
160.
            103
                               /ZPAT1, JMP I .+1
161.
            104
                                       BKPT
162.
                        0064
                               ZPAT1=64
163.
           105
                               TRAM PROGRAM LOCATIONS. THESE LOCATIONS ARE MODIFIED BY
           106
164.
                               /GETCAC, SETCAD AND CDO ROUTINES AND THEN EXECTTED FOR
            107
155.
                               /CHANGING FIELDS AND SIMULATING INSTRUCTION EXECUTION
166.
            108
            109
                               /DFSET 1, 0
                                                /CDF INS FOR MEMORY REFERENCE
167.
                               /NEWINS, 0
                                                /INSTRUCTION TO SIMULATE
168.
            110
            111
                                       SKP
169.
                                       ISZ JADR/SIMULATE SKIP
170.
            112
                               /IFSET, 0
                                                /CIP INSTRUCTION
            113
171.
                                                /CDF INSTRUCTION
           114
                               /DESET, 0
172.
                                       JMP I JADR
                                                        /EACK TO RGM OR PROGRAM TO BE DEBUGGED
173.
            115
                               DFSET1=66
                        0066
174.
           116
                        0067
                               NEWINS=67
175.
            117
```

```
0072
                                IFSET=72
            118
176.
177.
                         0073
                                DFSET=73
            119
                                /FIRST LCCATION OF RETURN ADDRESS STACK
178.
            120
                         0074
                                STACK1=74
179.
            121
180.
            122
                                PAUSE
            123
                                /ODT-F VERSION 5 TAPE 2
181.
                                / ***** FIRST ROM PAGE
182.
            124
                         6000
                                *START
183.
            125
                                / ***** INITIALIZE ROUTINE *****
194.
            126
185.
                  6000
                        7200
                                INIT,
                                        CLA
            127
                                        TAD SUB1
                                                          /INIT SUBROUTINE LINKAGE
            128
                  6001
                        1245
186.
                         3057
                                         DCA CALL1+1
187.
            129
                  6002
                                        TAD SUB2
182.
            130
                  6003
                         1246
                  6004
                         3060
                                         DCA CALL1+2
189.
            131
                                        TAD SUB3
190.
            132
                  6005
                         1247
                  6006
                         3061
                                         DCA RETRN1
191.
            133
                                        TAD STACKI
152.
            134
                  6007
                         1250
                                         DCA STACK
193.
            135
                  6010
                         3062
                                                          /INIT RAM PROGRAM LOCATIONS
                         1251
                                        TAD RAM 1
194.
            136
                  6011
                                        DCA NEW INS+1
195.
            137
                  6012
                         3070
                  6013
                        1252
                                        TAD RAM 2
196.
            133
                                        DCA NEW INS+2
197.
                         3071
            139
                  5014
100.
            140
                  6015
                         1253
                                        TAD RAM3
                                         DCA DFSET+1
199.
            141
                  6016
                         3074
                                                          /INIT BKPT JUMP LINKAGE
                  6017
                                        TAD TRAP3
200.
            142
                         1254
            147
                                         DCA ZPAT1
201.
                  6020
                         3064
202.
            144
                  6021
                         1255
                                        TAD TRAP4
                                        DCA ZPAT1+1
303.
            145
                  6022
                         3065
                                                          /SET DESAVE TO "UNDEPINED" VALUE
            140
                  6023
                        7040
                                        CMA
204.
205.
            147
                  6024
                         3052
                                        DCA DESAVE
206.
            1/4/3
                  6025
                         30.30
                                        DCA CADE
                                                          /START IN FIELD O
207.
            149
                  6025
                        1256
                                        TAD KCRA
            150
                  6027
                        5 165
                                        # CRA
208.
209.
            151
                  6030
                        7300
                                        CIA CLL
                        1257
                                        TAD KCRB
210.
            152
                  5031
211.
            153
                  6032
                        6175
                                        WCRB
            154
                  6033
                        7300
                                        CLA CLL
212.
213.
            155
                  6034
                        1260
                                        TAD KTTY
                        6171
                                        WITTY
214.
            156
                  6035
215.
            157
                  6036
                        7300
                                        CIA CLL
216.
            158
                  6037
                        3031
                                        DCA OCADE
            159
                  6040
                        3046
                                        DCA CHKSUM
                                                          /CLEAR CHECKSUM
217.
                                INIT1,
                                                          TYPE CR.LF
                  6041
                        4056
                                        CALL
218.
            160
                  6042
                        6400
                                        CRLF
219.
            161
                                                          /GD TO COMMAND SCANNER
220.
            162
                  6043
                        5644
                                        JMP I PCREAD
                                / *** CONSTANTS
221.
            163
                        6200
                                PCREAD, READ
            164
                  5044
222.
                                        JMP I CALL1+2
223.
            165
                  6045
                        5460
                                SUB1,
                        6061
                                SUB2,
                                        PUSHJ
224.
           166
                  6046
                  6047
                        6072
                                SUB3,
                                        POPJ
225.
            167
                  6050
                        0074
                                STACKI, STACK1
226.
            168
227.
            169
                  6051
                        7410
                                RAM1,
                                        SKP
                        2042
                                RAM2,
                                        ISZ JADR
           170
                  6052
228.
                                        JMP I JADR
229.
                  6053
                        5442
                                RAM3.
            171
                                        JMP I ZPAT1+1
230.
            172
                  6054
                        5465
                                TRAP3,
                                TRAP4, BKPT
231.
            173
                  6055
                        7236
                                        7200
232.
           174
                  6056
                        7200
                                KCRA,
                                        1560
233.
           175
                  6057
                        1560
                                KCRE,
234.
           176
                  6060
                        7600
                                KTTY,
                                        7600
                                / **** CALL AND RETURN ROUTINES *****
235.
            177
                                JMS WILL NOT WORK IN A ROM SINCE THE FIRST WORD OF THE
           178
236.
```

```
/SUBROUTINE CANNOT BE WRITTEN WITH THE RETURN ADDRESS.SSS.
237.
           179
238.
           180
                               THENCE, A SUBROUTINE IS CALLED BY
239.
           181
                                       CALL
                                       <SUBROUTINE NAME>
240.
           182
                               /ANE RETURNED FROM BY
241.
           183
242.
           184
243.
                               /WHERE
           185
                       4056
                              CALI=JMS CALL1
                                                       /CALL SUBRCUTINE OFCODE
244.
           186
245.
           187
                       5461
                               RETURN=JMF I RETRN1
                                                       /RETURN FROM SUBROUTINE OPCODE
                               /CAIL THE POLLOWING ROUTINES THROUGH THE SUBBOUTINE
246.
           188
247.
                               /LINKAGE IN PAGE ZERO (SEE TAPE 1)
           189
248.
           190
                               /ROUTINE TO CALL A SUBROUTINE AND PUSH
249.
           191
                               /RETURN ADDRESS ON STACK
                               PUSHJ, DCA
                                               ACTEMP /SAVE AC
250.
                 6061 3063
           192
                                       ISZ
                                               STACK /UPCATE STACK PTR
251.
           193
                 6062
                       2062
252.
           194
                 6063
                        1056
                                       TAD
                                               CALL1
                                                       JGHT USER RETURN ADDRESS
                                               /INCREMENT PAST ARGUMENT
                       7001
                                       TAC
253.
           195
                 6064
254.
           196
                 6065
                       3462
                                       DCA
                                               I STACK /PUT IT ON STACK
255.
           197
                 6066
                       1456
                                       TAD
                                               I CALL1 /GET USER ENTRY ADDRESS
                                               CALL1 /PUT IT IN CALL ACTEMP /RESTORE AC
                                       DCA
256.
           198
                 6067
                       3056
257.
           199
                 6070 1063
                                       TAD
258.
           200
                 6071 5456
                                       JMP
                                               I CALL 1 /GC TO USER ROUTINE
                               /ROUTINE TO RETURN PROM A SUBROUTINE, POPPING BETURN ADDRESS
259.
           201
260.
                               JOFF STACK
           202
261.
           203
                 6072 3063
                               POPJ.
                                       DCA
                                               ACTEMP /SAVE AC
                                               I STACK /GIT RETURN ADDRESS
                                       TAD
262.
           204
                 6073 1462
                                               CALL1 /SAVE IT IN CALL1
           205
                 6074 3056
                                       DCA
263.
                                       CMA CML /-1 IN AC, COMPLEMENT L
                 6075
                       7060
264.
           20á
265.
           207
                 6076 1062
                                       TAD
                                               STACK /DECREMENT STACK PIR
                                       /(CARRY RESTORES L)
266.
           208
                                               STACK / RESTORE UPDATED STACK FIR. ACTEMP / RESTORE AC
267.
           209
                 6077 3062
                                       DCA
268.
           210
                 6100 1063
                                       TAD
269.
           211
                 6101 5456
                                       JMP
                                               I CALL1 /RFTURN
                               / ***** PRINT SUBROUTINES *****
270.
           212
271.
           213
                               /SUBROUTINE TO TYPE A CHARACHTER
272.
           214
                               /CHAR ASSUMED IN AC
273.
           215
                 6102 6161
                               TYPE.
                                      WUART
                                                OUTPUT CHAR TO TTY
                                                 /READY GOR NEXT CHAR?
                                       SKPTBR
274.
                 6103 6163
           216
275.
           217
                 6104
                       5303
                                       JMP
                                               .-1
                                                     /LCOP IF NOT
                                               /CLEAR AC
276.
           218
                 6105 7200
                                       RETURN / RETURN
277.
           219
                 6106 5461
278.
           220
                               /SUBROUTHNE TO PRINT A NUMBER
                               PRINT CONTENTS OF AC IN OCTAL FOLLOWED BY A SPACE
279.
           221
280.
                 6107 3020
                                       DCA
                                               TEMP
                                                       /SAVE NUMBER
                               PNUM,
           222
281.
                 6110 1334
                                       TAD
                                               M 4
                                                       /INITIALIZE COUNT OF DIGITS
           223
                                               TOTE
282.
           224
                 6111
                       30 2 3
                                       DCA
                                                      / PRINTED
                                       TAD
                                               TEMP
                                                       /GET BACK NUMBER
283.
           225
                 6112 1020
                                               /FIRST SHIFT INTO LINK
284.
           226
                 6113 7004
                                       PAL
                                             -, PRINT A DIGIT
285.
                               /LOOP 4 TIMES
           227
                       7004
                                               /SHIFT AC.L THREE LEFT
286.
           228
                 6114
                               PNU M2,
                                       RAL
287.
                 6115 7006
           229
                                       RTL
                                               TEMP
                                                       /SAVE NUMBER
288.
           230
                 6116
                       30 20
                                       DCA
                                               TEMP
289.
                 6117
                       1020
                                       TAD
                                                       /GET IT BACK
           231
                                       AND
                                               P7
                                                       /ISQLATE DIGIT
                 6120 0335
290.
           232
                                               P260
                                                       /CCNVERT TG ASCII
291.
           233
                 6121
                       1340
                                       TAD
                       4056
                                       CALL: TYPE
                                                       /TYPE IT OUT
292.
           234
                 6122
293.
                 6123
                       6102
294.
           235
                       1020
                                       TAD
                                               TEAP
                                                       /GIT BACK AC (NOTE L STILL SAME)
                 5124
                                       ISZ
                                               TOTE
                                                       /FOURTH ITERATION?
295.
           236
                 6125 2023
           237
                 6 126 5314
                                       JMP
                                               PNUM 2
                                                       /LOOP IF NGT.
296.
                               /PRINT A SPACE
297.
           238
```

```
6127 7200
                                       CLA
298.
           239
                                                       /GET ASCII CODE FOR SPACE
                                               P240
                 6130 1337
                                       TAD
299.
           240
                 6131 4056
                                       CALL: TYPE
                                                       TYPE IT OUT
300.
           241
                       6102
301.
                 6132
                                       FETURN /RETURN
302.
           242
                 6133 5461
                               / *** CONSTANTS
303.
           243
           244
                 6134 7774
                               M4 .
304.
                                       7
305.
           245
                 6135
                      0007
                               P7.
                 6136
                       0007
                               7
306.
           246
                 6137 0240
                               P240,
                                       240
307.
           247
                 6140 0260
                               P260.
                                       260
           248
308.
           249
                               PAUSE
309.
                               /ODT-F VERSION 5 TAPE 3
310.
           250
                               / **** SECOND ROM PAGE
           251
311.
                       6 2 0 0
                               *START+200
           252
312.
                               / **** COMMAND SCANNER *****
           253
313-
                               THE COMMAND SCANNER INPUTS A COMMAND OF THE FORM
           254
314.
                               /(<NUMBER>)<)>) <CHAR> (WHERE THE NUMBER IS OPTIONAL).
315.
           255
                               /IT STORES THE NUMBER IN "WORD" AND JUMPS TO THE
           256
316.
                               /ROUTINE ASSOCIATED WITH THE CHARACHTER.
           257
317.
                               /INITIALIZE NUMBER SCANNER
318.
           258
                 6200 7200
                               REAL. CLA
           259
319.
                                                       SET WORD TO ZERO
                                       DCA WORD
           260
                 6201 3024
320.
                                       TAD SM5
                 6202 1333
           261
321.
                                       DCA TOTE
                                                       /SET TOTE TC -5
                       30.23
           262
                 6203
322.
                               /INPUT A CHAR
           263
323.
                                                         ACHAR IN INPUT BUFFER?
                               READI, SKPDR
           264
                 6204
                       6162
324.
                                                       /LCOP IF NOT
                                       JMP .-1
                       5204
325.
           265
                 6205
                                                              /PUT CHAR INTO AC
                                  CLA;
                       7200
                                           RUART
326.
           266
                 6206
327.
                 6207
                       6160
                                                 DCA SCHAR
                                                                  ISAVE CHAR
                                AND K0377;
           267
                 6210
                       0336
328.
329.
                 6211
                       3025
                               JECHC CHAS ON TTY
           268
330.
           269
                 6212
                       1025
                                       TAD SCHAR
                                                       /RETRIEVE CHAR
331.
           270
                 6213
                       4056
                                       CALL
332.
                                                       /TYPE IT OUT
           271
                 6214 6102
                                       TYPE
333.
334.
           272
                               /NUMBER SCANNER
                               /SEE IF SCHAR IS OCTAL DIGIT
           273
335.
                                                       /GET CHAR ("0"=260,"7"=267)
           274
                 6215 1025
                                       TAD SCHAR
336.
                                                       /SUB 270 ("C"=-10,"7"=-1)
           275
                 6216 1332
                                       TAD
                                           SM 270
337.
                                                        /IF AC NOT NEG. THEN CHAR HAS
                 6217
                       7500
                                       SMA
           276
338.
                                                       /CODE GTR THAN THAT OF DIGIT
339.
           277
                                       JMP
                                           READ2
                                                        /SO GO TO CHAR HANDLER.
           278
                 6220
                       5235
340.
                                                       /AEB 10 ("C"=0,"7"=7)
                 6221 1334
                                       TAD
                                           SP10
           279
341.
                                                        /IG AC NEG, THEN CHAS HAS
                 6222 7510
                                       SFA
           280
342.
                                                        CODE LESS THAN THAT OF DIGIT
343.
           281
                                       JMF READ2
                                                        /SO GO TO CHAR HANDLER
                 6223 5235
           282
344.
                               /ADD DIGIT TO PARTIAL NUMBER IN WORD
           283
345.
                                       DCA TEMP
                                                        /SAVE DIGIT
           284
                 6224
                        30 20
345.
                                       TAD WORD
                                                        JGET NUMBER SO FAR
                 6225
                        1024
347.
           285
                                                        /SHIFT AC LEFT THREE BITS
                       7104
                                       CLL RAL
                 6226
348.
           286
                 6227
                        7006
                                       RTI.
           287
349.
                                       TAD TEMP
                                                        /AED IN NEW DIGIT
                 6230
                        1020
350.
           288
                                       DCA WORD
                                                        /SAVE RESULT IN WORD
                        3024
           289
                 6231
351.
                               /CHECK PCF TOO MANY DIGITS, RETURN TO CHAR RDR
           290
352.
                                                        /5 DIGITS TYPED?
                                       ISZ TOTE
            291
                 6232
                        2023
353.
                                       JMP READ1
                                                        /NO - GET NEXT CHAR
                        5204
354.
           292
                 6233
                                       JMP ERROR
                                                        /YES - GO TO ERROR
           293
                 6234
                       5337
355.
           294
                               /CHAR SCANNER
356.
                               /FIND INPUT CHAR IN TABLE 1 AND JUMP TO THE
357.
            295
                               /ASSOCIATED ROUTINE IN TABLE2
358.
           296
```

```
359.
            297
                                /INITIALHZE SEARCH LOOP
 360.
            298
                  6235 7200
                                READ2. CLA
 361.
            299
                  6236 1256
                                        TAD
                                              BLIST
                                                          /GET PTR TO BEGIN OF TABLE 1
 362.
            300
                  6237
                        3026
                                        DCA SPNTER
                                                          /INIT PTR INTO TABLE 1
363.
            301
                                /SEARCH LOOP
 3€4.
            302
                  6240
                         1426
                                READ3, TAD I SPNTER
                                                         JGIT CHAR FROM TABLE !
 365.
            303
                  6241
                        2026
                                              SPNTER
                                         ISZ
                                                         /PCINT SPNTER AT NEXT CHAR
366.
            304
                  6242
                        7510
                                        SFA
                                                          /SKIP IF NOT END OR TABLE1
367.
            305
                                                          / (TABLE1 FOILOWED BY NEG #)
368.
            306
                  6243 5337
                                        JMP ERROR
                                                         /CHAR NOT IN TABLE 1 - ERROR
369.
                  6244
            307
                        7041
                                        CIA
                                                          INEGATE TABLE CHAR
370.
            308
                  6245
                         1025
                                                         /AED INPUT CHAR
                                        TAD SCHAR
371.
            309
                  6246
                        7640
                                        SZA CLA
                                                         /SUM ZERO IF CHARS SAME, SKIP
 372.
            310
                                                         /IF SO
373.
            311
                  6247
                        5240
                                        JMP READ3
                                                         JOTHERWISE, CONTINUE LOOP
374.
            312
                                /JUMP TO ASSOCIATED ROUTINE IN TABLE 2
375.
            313
                  6250 1026
                                                         JGET PTR INTO TABLE 1
                                        TAD SPNTER
376.
            314
                                                         /(SPNTR NOW POINTS ONE PAST
377.
            315
                                                         / MATCHING CHAR).
378.
            316
                  6251
                        1257
                                        TAD LTABL
                                                         /CONVERT INTO PTR INTO TABLE2
379.
            317
                  6252
                        3020
                                        DCA
                                             TEMP
                                                         /PUT TABLE2 ENTRY
380.
            318
                  6253
                        1420
                                        TAD
                                             I TEMP
                                                         1 INTO AC
381.
            319
                        3020
                  6254
                                        DCA
                                             TEMP
                                                         /JUMP TO LCC POINTED TO
382.
            320
                  6255
                        5420
                                        JMP I TEMP
                                                         # EY TABLE ENTRY
383.
            321
                  6256
                        6260
                                BLIST. TABLE1
                                                         /PCINTER TO BEGINNIG OF TABLE 1
384.
            322
                  6257
                        0022
                                LTABL, TABLE2-TABLE1-1 /CONSTANT TO GET CORRESPONDING
385.
            323
                                                         / LOC IN TABLE2
386.
            324
                                / *** COMMAND SCANNER TABLE ***
387.
            325
                                /EACH ENTRY IN TABLE 1 CONTAINS A CHAR.
388.
            326
                                /THE CCRRESPONDING ENTRY IN TABLE 2 CONTAINS A
389.
            327
                                /PROCEDURE ASSOCIATED WITH THAT CHAR.
390.
            329
                  6260 0215
                                TABLE1, 215
                                                / CR
391.
            329
                  6261 0212
                                        212
                                                 / LF
392.
            330
                                        257
                  6262
                        0257
                                                 11
393.
            331
                  6263
                        0256
                                        256
394.
            332
                  6264
                        0 30 1
                                        301
                                                 / A
395.
            333
                  6265
                        0315
                                        315
                                                 / M
396.
            334
                  6266
                        0337
                                        337
397.
            335
                  6267
                        0336
                                        336
398.
            336
                  6270
                        0302
                                        302
                                                 / B
399.
            337
                  6271
                        0307
                                        307
                                                / G
400.
            338
                  6272
                        0303
                                        303
                                                 / C
           339
401.
                  6273
                        0327
                                        327
402.
            340
                  6274
                        0320
                                        320
                                                 / P
403.
            341
                  6275
                                        305
                        0305
                                                 / E
4Cu.
            342
                  6276
                        0324
                                        324
                                                / T
405.
            343
                  6277
                        0321
                                        321
                                                10
406.
                                        273
            344
                  6300
                        0273
407-
            345
                  5301
                        0314
                                        3 14
408.
                        7777
                                        - 1
            346
                  6302
                                                 /TABLE FOLLOWED BY NEG NUMBER
409.
            347
                  6303
                        6616
                                TABLE2, CRDO
41C.
            348
                  €304
                        6625
                                        LFDC
411.
            349
                  6305
                        6601
                                        SLDO
412.
            350
                  6306
                        6654
                                        DCT DO
413.
            351
                  6307
                        6727
                                        A DO
414.
            352
                  6310
                        6730
                                        M DO
415.
            353
                  6311
                        6715
                                        BADO
416.
            354
                  6312
                        6670
                                        UADO
417.
            355
                  6313
                        7215
                                        B DO
418.
            356
                  6314
                        7200
                                        G DO
419.
           357
                  6315
                       7000
                                        CDO
```

```
358
                6316 7303
420.
                                       ₽ DO
421.
           359
                 6317
                       7502
                                       PDO
422.
           360
                 6320
                       7464
                                       EDO
                       7471
423.
           361
                 6321
                                       TDO
424.
           362
                 6322
                       7454
                                       ÇDO
425.
           363
                 6323
                        7451
                                       SEMIDO
426.
           364
                 6324
                       7576
                                       BIN-2
           365
427.
428.
                        6332
                               *START+332
           366
429.
           367
43C.
           368
           369
                               / *** CONSTANTS
431.
432.
           37 C
                 6332
                       7510
                               SM270. -270
433.
           371
                 6333
                       7773
                               SM5.
                                       -5
                                      10
434.
           372
                 6334
                       0010
                               SP10,
435.
           373
                 6335
                       0277
                               SP277. 277
436.
           374
                 6336
                      0377
                               K0377. 0377: PAUSE
437.
           375
                              *START+337
438.
           376
                        6337
439.
           377
44 C.
           378
                               / **** EFROR HANDLER *****
441.
           379
                               /TYPE "?" AND RETURN TO COMMAND SCANNER
                 6337
                       7200
           380
                               ERRCR, CLA
442.
443.
           381
                 6340
                       1335
                                       TAD SP277
                                                       JGET OUESTION MARK
444.
            382
                 6341
                       4056
                                       CALL
                 6342
                       6102
445.
           393
                                       TYPE
                                                       TYPE IT OUT
           384
                 6343
                       4056
446.
                                       CALL
447.
           385
                 6344
                       6400
                                       CRLF
                                                       /TYPE CR.LF
446.
           386
                 6345
                       5200
                                       JMP READ
449.
           387
45C.
           388
451.
           389
452.
           390
453.
           391
                               /ODT-F VERSION 5 TAPE 4
454.
           392
                               / **** THIRD ROM PAGE
                       6400
455.
                              *START+400
           393
456.
           394
                               / **** EXAMINE DEPOSIT ROUTINES *****
457.
           395
                               /SUBROUTINE TO TYPE CR. LF AND SHUT REGISTER
458.
           396
                 6400
                       1257
                               CRIF. TAD TP215
                                                       /GFT CR
                 6401
                       4056
                                       CALL
459.
           397
           398
                 6402
                       6102
                                       TYPE
                                                       /TYPE IT
460.
461.
           399
                 6403
                        1256
                                       TAD TP212
                                                       /GET LP
                 6404
462.
           400
                       4056
                                       CALL
463.
                 6405
                       6102
                                       TYPE
                                                       /TYPE IT
           401
           402
                 6406
                       7040
                                       CMA
                                                       /SFT AC TO -1
464.
465.
           403
                 6407
                       3032
                                       DCA SHUT
                                                       /STORE IN SHUT
                                                       /R FTURN
                 6410
                                       RETURN
466.
           404
                       5461
467.
           405
                               /SUBROUTINE TO CLOSE REG
468.
           406
                               /SEE IF REG ALREADY SHUT
                               CLOSE, ISZ SHUT
469.
           407
                 6411 2032
                                                       /SKIP IF SHUT =- 1
                 6412 7410
           408
47C.
                                       SKP
                 6413 5461
471.
           409
                                       RETURN
                                                       /RETURN IF REG ALREADY SHUT
                               /SEE IF VALUE TYPED IN
472.
           410
                 6414
                       4056
           411
                                       CALL
473.
           412
                 6415
                       6423
                                       NTY PED
                                                       ISTE IF NUMBER TYPED
474.
475.
           413
                 6416
                       5461
                                       RETURN
                                                       /RETURN IF NOT
                               /STCRE TYPED VALUE IN REG
476.
           414
477.
                 6417
                      1024
                                       TAD WORD
                                                       /GET NEW VALUE
           415
478.
           416
                 6420
                        4056
                                       CALL
479.
           417
                 6421
                        6442
                                       SETCAD
                                                       /STORE IT IN CAD
480.
           418
                 6422 5461
                                       RETURN
                                                       /R ETURN
```

```
481.
           419
                               /SUBROUTINE TO SEE IF NUMBER HAS BEEN TYPED
482.
           420
                               /SKIP ON RETURN IF ANY NUMBER HAS BEEN TYPED SINCE
                               /LAST COMMAND
483.
           421
484.
           422
                  6423
                        1023
                               NTYPED. TAD TOTE
                                                        STOTE IS - 5 INITIALLY, AND
                        7041
                                                        / INCREMENTED ONLY IF A NUMBER
485.
           423
                  6424
                                       CIA
                                       TAD TM5
486.
                  6425
                        1255
           424
                                                        / IS TYPED
487.
                        7640
                                        SZA CLA
                                                        /SKIP IF TOTE=-5
            425
                  6426
488.
           426
                  6427
                        2462
                                        ISZ I STACK
                                                        /INCREMENT RETURN ADDR
489
           427
                  6430 5461
                                       RETURN
                               SUBROUTINE TO GET CONTENTS OF CURRENT LOCATION
490.
           428
491.
           429
                               /NEW CONTENTS RETURNED IN AC
492.
           430
                  6431 1030
                               GETCAD, TAD CADF
                                                        /GIT FIELD OF CURRENT LOC
                                                        /AED IN "CEF" INSTRUCTION
493.
           431
                  6432
                        1260
                                       TAD TP6 201
494.
           432
                  6433
                        3073
                                        DCA
                                            DFSET
                                                        STORE IT IN RAM PROGRAM
495.
           433
                  6434 1261
                                       TAD
                                            PGTCD1
                                                        /SET RAM PROG TO RETURN TO GETCD1
                  6435 3042
496.
           434
                                       A 3.0
                                            JADR
497.
           435
                  6436
                       5073
                                       JMP
                                            DFSET
                                                        JEXECUTE RAM PROGRAM - CHANGE FIELD
498.
           436
                                                        ATO THAT OF CURRENT LOCATION
499.
           437
                  6437 1427
                               GETCD1, TAD I CAD
                                                        /GET CONTENTS OF CURRENT LOC
50C.
           439
                  6440 6201
                                       CDF F1A
                                                        RESTORE DATA FIELD
501.
           439
                  6441 5461
                                        RETURN
                                                        /RETURN
                               /SUBROUTINE TO SET CONTENTS OF CURRENT LOCATION
502.
           440
503.
           441
                               /NEW CONTENTS PASSED IN AC
504.
           442
                 6442
                        30 20
                               SETCAD, DCA TEMP
                                                        /SAVE AC
                 6443 1030
                                                        /GET FIELD OF CURRENT LOC
505.
           443
                                       TAD CADE
                  6444
                      1260
                                       TAD TP6 201
                                                        JAID IN "CDF" INSTRUCTION
506.
           444
507.
                 6445
                       3073
                                            DFSET
           445
                                       ECA
                                                        /RTORE IT IN RAM
508.
           446
                 6446
                      1262
                                       TAD
                                            PSTCD1
                                                        ISTT RAM PROG TO RETURN TO SETCD!
509.
           447
                 6447 3042
                                       DCA
                                           JADR
                                           DFSET
                                                        /EXECUTE RAM PROGRAM - CHANGE FIELD
510.
           448
                 6450 5073
                                       JMP
511.
           449
                                                        /TO THAT OF CURRENT LOCATION
512.
           450
                 6451 1020
                               SETCD1, TAD TEMP
                                                        /RESTORE AC
                 6452 3427
                                       DCA I CAD
                                                        /SET CURRENT LOC TO NEW VALUE
513.
           451
                                       CDF F1A
                                                        IRESTORE DATA FIELD
514.
           452
                 6453 6201
515.
           453
                 6454 5461
                                       RETURN
                                                        /RETURN
           454
                               / *** CONSTANTS
516.
517.
           455
                  6455
                       7773
                               TM5.
                                       - 5
518.
           456
                 6456
                       0212
                               TP212, 212
                               TP215, 215
519.
           457
                 6457 0215
           458
                 6460 6201
                               TP6201. 6201
520.
521.
           459
                 6461
                       6437
                               PGTCD1, GFTCD1
                               PSTCD1, SETCD1
522.
           460
                 6462
                       6451
                 6463
                       6172
                                       SKIP3
                                                        / THE TTY LISH ROUTINE FOR THE BIN
           461
                               LISN.
523.
524.
           462
                 6464
                       7000
                                       NCP
                                                        / LOADER
525.
           463
                 6465
                       6166
                                       SFLAG1
                                                        / SET READER RUN
                       6172
52€.
           464
                 6466
                                       SKIP3
527.
           465
                 6467
                       5266
                                       JMP .-1
52 €.
           466
                 6470 6167
                                       CFL AG1
529.
           467
                 6471 6162
                                       SKPDR
           468
                 6472
                       5 2 7 1
530.
                                       JMP .-1
531.
           469
                 6473
                       7200
                                       CLA
532.
           470
                 6474
                       6160
                                       RUART
           471
                 6475
                       0277
                                       AND TTYM
533.
534.
           472
                 6476
                       5461
                                       SETURN
535.
           473
                 6477
                       0377
                              TTYM,
                                       0 37 7
           474
536.
                               /ODT-F VERSION 5 TAPE 5
537.
           475
538.
           476
                               / **** EXAMINE/DEPOSIT ROUTINES - CONTINUED *****
539.
           477
                               / **** FCURTH ROM PAGE
                              *START+600
           478
                       6600
540.
           479
                               /TRANSFER ADDRESS TO COMMANAMAND SCANNER
541.
```

```
542.
           480
                 6600 6200
                               COME, READ
                               /SLASH HANDLER
543.
           481
                               /OPEN LOCATION "CADF"."CAE"
544.
           482
                               /IP NUMBER TYPED, SET CAL
545.
           483
                        1031
                                      TAD OCADP
546.
           484
                 6601
                               SLDC,
                 6602
                       3030
                                       DCA CADE
547.
           485
548.
           486
                 6603
                       4056
                                       CALL
                                                        /SEE IF NUMBER TYPED
549.
           487
                 6604
                       6423
                                       NTYPED
                       5210
                                       JMP SLD01
                                                        INO NUM TYPED, LEAVE CAD ALONE
550.
           488
                 6605
                                                        JEASE GET NUM TYPED
551.
           489
                 6606
                        1024
                                       TAD WORD
                                                        AND SET CAD TO IT
552.
           490
                 6607
                        3027
                                       DCA CAD
                               /TYPE CONTENTS OF "CADF". "CAD"
553.
           491
                                                        /SET REGISTER STATUS TO "OPEN"
554.
           492
                 6610 3032
                               SLDO1, DCA SHUT
555.
           493
                 6611
                       4056
                                       CALL
                                                        JOST CONTENTS OF CURRENT LCC
                 6612 6431
                                       GETCAD
556.
           494
                 6613 4056
                                       CALL
557.
           495
           496
                 6614
                       6107
                                        FNUM
                                                        TYPE IT OUT
558.
                                                        FRETURN TO COMMAND SCANNER
                                       JMP I COMM
559.
           497
                 6613
                       5600
                               /CR HANDLEP
560.
           498
           499
                               /CLOSE LOCATION
561.
           500
                 6616 4056
                               CRDC.
                                       CALL
562.
                                       CLOSE
                                                        JCHOSE LOCATION
                       6411
563.
           501
                 6617
                                       TAD OCADE
           502
                 6620
                       10 3 1
564.
565.
           503
                 6621
                        3030
                                       DCA CADF
                        4056
                                       CALL
566.
           504
                 6622
                                                        /TYPE CR. IF
                       6400
                                       CRLF
           505
                 6623
567.
                                       JMF I COMM
                                                        /GET NEXT CCMMAND
                 6624
                       5600
           506
568.
                               /LF HANDLER
           507
569.
                               /CLOSE LOCATION AND OPEN NEXT LOCATION
570.
           508
                       4056
                               LFDO,
                                       CALL
           509
                 6625
571.
                                                        /CLOSE LOCATION
                        6411
                                       CLOSE
572.
           510
                 6526
                                                        /GFT CR
                                       TAD SP215
573.
           511
                 6627
                        1344
                                       CALL
                 6630
                        4056
574.
           512
                                                        /TYPE IT
           513
                 6631
                        6102
                                       TYPE
575.
                        4056
                                       CALL
576.
           514
                 6632
                                                        /TYPE A NULL (GIVES TIMB FOR CR)
                        6102
                                       TYPE
577.
           515
                 6633
                                                        POINT CAD AT NEXT LOC
                        2027
                                       TSZ CAD
578.
           516
                 6634
                                                        /IN CASE ISZ SKIPS
                        7000
                                       NOP
579.
           c 17
                 6635
                                                        /CCMPARE CURRENT AND SAVED FIELDS
                                       TAD CADE
580.
           518
                 6636
                        10.30
581.
           519
                 6637
                        7041
                                       CIA
                                       TAD OCADE
582.
           520
                 6640
                        1031
                                                        /CIFFERENT?
583.
           521
                 6641
                        7650
                                        SNA CLA
584.
           522
                 6642
                       5245
                                       JMP LFD01
                                                        /NO , GO ON
                                                        /YES - PRINT FIELD
           523
                 6643 4056
                                       CALL
585.
586.
           524
                 6644
                        7347
                                        PFIELD
                               THE FOLLOWING IS AN ENTRY POINT FOR ANY ROUTINE
587.
           525
                               /THAT TYPES OUT WHAT LOCATION IT IS OPENING.
588.
           526
           527
                 6645 1027
                               LFDC1. TAD CAD
                                                        JGET CAD
589.
           528
                 6646
                        4056
                                       CALL
590.
                                                        /TYPE IT OUT
                 6647
                        6107
                                       PNUM
591.
           529
                                       TAD SP257
                                                        ZGET ASCII FOR "/"
           530
                 6650
                        1345
592.
                 6651
                        4056
                                        CALL
593.
           531
                                                        TYPE IT OUT
                                       TYPE
594.
           532
                 6652
                        6102
                                                        /REST IS LIKE OPEN REG ROUTINE
                                        JMP SLD01
                        5210
595.
           533
                 6653
                               /. HANDLES
596.
           534
                               /SET FIELD OF CURRENT LOCATION
597.
           535
                               DOTDO, TAD WORD
                                                        AGET FIELD SPEC FROM WORD
598.
           536
                 6654
                        1024
                                                        /FIELD SPEC INTO BITS 6-8
                                        CLL RAL
           537
                 6655
                        7104
599.
                        7006
                                        RTL
           538
                  6656
600.
                                                         /STORE IT AS CURRENT FIELD
                                        DCA CADF
           539
                  6657
                        3030
601.
                                        TAD CADE
           540
                  6660
                        10.30
602.
```

```
603.
            541
                  6661
                        3031
                                        DCA OCADE
604.
            542
                  6662
                        1052
                                        TAD DESAVE
                                                         /CISAVE INITIALIZED?
605.
            543
                  6663
                        7700
                                        SMA CLA
606.
            544
                  6664
                        5600
                                        JMP I COMM
                                                         /YES - RETURN
607.
            545
                  6665
                        1030
                                        TAI CADE
                                                         /NC - INIT DESAVE TO CADE
608.
            546
                 6666
                        3052
                                        DCA DFSAVE
609.
            547
                  6667
                        5600
                                        JMP 1 COMM
                                                         /GFT NEXT COMMAND
                               / HANDLER
610.
            548
611.
            549
                               /PRETEND CAD IS A MEMORY REFERENCE INS AND OPEN
612.
            550
                               /LCCATION REFERENCED. IGNORE I BIT.
613.
            551
                 6670 4056
                               UADO, CALL
614.
           552
                 6671 6411
                                       CLOSE
                                                         /CLOSE LOCATION
615.
           553
                 6672
                       4056
                                        CALL
616.
            554
                        6400
                 6673
                                       CFLF
                                                         TYPE CR.LF
617.
            555
                 6674
                        4056
                                       CALL
           556
618.
                 6675
                       6431
                                       GELUAD
                                                         /GFT CONTENTS
619.
           557
                                       DCA TEMP
                                                        /SAVE THEM IN TEMP
                 6676
                       3020
62C.
           558
                 6677
                        1031
                                       TAD OCADE
           559
                 6700
621.
                       3030
                                       DCA CADE
           560
622.
                 6701
                        1020
                                       TAD TEMP
                                                         /GET BACK CONTENTS
                                                         /ISCLATE PAGE ADDR BITS
623.
           561
                 6702
                        0342
                                       AND SP177
                                                         /AND SAVE THEL IN TEMP2
624.
           562
                 6703
                        3021
                                            TEMP2
                                       DCA
625.
           563
                 6704
                        1020
                                       TAD
                                            TEMP
                                                        /GFT CONTENTS AGAIN
626.
           554
                 6705
                       0343
                                       AND SP200
                                                        /ISOLATE PAGE ZERO BIT
627.
           565
                 6706
                       7650
                                       SNA CLA
                                                        /REFERENCE TO PAGE ZERC?
628.
           566
                 6707
                       5312
                                       JMP UADO1
                                                        1YES - SKIP NEXT CODE
629.
           567
                 6710
                       1027
                                       TAD
                                            CAD
                                                        INC - GET CURRENT ADR
                 6711
630.
           56.8
                       0351
                                       AND
                                            SP7600
                                                        /ISOLATE PAGE NUMBER
631.
           569
                 6712
                        1021
                               UADO1.
                                       TAD
                                            TEMP2
                                                        JACO IN PAGE ADDR
632.
           570
                 6713
                       30 27
                                       DCA
                                            CAD
                                                        /PUT INTO CAD
           571
633.
                 6714
                       5245
                                       JMP
                                            LFDO 1
                                                        /REST LIKE LF
634.
           572
                               / HANDLEF
635.
           573
                               JOPEN LOC POINTED AT BY CURRENT LOC
636.
           574
                 6715
                       4056
                               BADC.
                                       CALL
637.
           575
                 6716
                       6411
                                       CLOSE
                                                        /CLOSE CURRENT LOC
638.
           576
                 6717
                       4056
                                       CALL
639.
           577
                 6720
                       6400
                                                        /TYPE CR.LF
                                       CRLF
640.
           57 B
                 6721
                       4056
                                       CALL
641.
           579
                 6722
                       6431
                                       GETCAD
                                                        /GIT CONTENTS OF CURRENT LOC
642.
           530
                 6723
                       30 27
                                       DCA CAD
                                                        /MAKE IT INTO NEW LOC
643.
           581
                 6724
                       1031
                                       TAD OCADE
644.
           582
                 6725
                       3030
                                       DCA CADE
645.
           583
                 6726
                       5245
                                       JMP LFD01
                                                        /REST LIKE LF
           584
546.
                               / A.M. I HANDLER
647.
           585
                               /OPEN LOC CONTAINING AC, MASK, OR INSTRUCTION FIELD
648.
           586
                 6727
                       1337
                               ADO.
                                       TAD ADDP1
                                                        /GFT REGISTER ADDRESS - ACSAVE
           587
649.
                 6730
                       1340
                               MDO.
                                       TAL ADDR2
                                                        JOF MASK
650.
           588
                 6731
                       30 27
                                       DCA CAD
                                                        /PUT INTO CAD
651.
           589
                 6732
                       1030
                                       TAE CADE
652.
           590
                 6733
                        30 31
                                       DCA OCADE
653.
           591
                 6734
                       1341
                                       TAD ADDR4
           592
654.
                 6735
                       3030
                                       DCA CADE
655.
           593
                 6736
                       5210
                                       JMP SLDO1
                                                        /REST LIKE SLASH
           594
                 6737
655.
                       7774
                               ADDR1, ACSAVE-MASK
           595
                 6740 0053
                               ADDR2, MASK
657.
458.
           596
                 6741
                       0000
                               ADDR4, F1A
659.
           597
                               / *** CONSTANTS
           598
                 6742
                      0177
                               SP177, 177
66C.
           599
                 6743 0200
661.
                               SP200, 200
662.
           600
                 6744 0215
                               SP215, 215
663.
           601
                 6745 0257
                               SP257, 257
```

```
6746
                        0 2 6 0
                                SP260, 260
664.
           602
                  6747
                        0400
                                SP400.
                                       400
665.
           603
                                SP6201, 6201
           604
                  6750
                        6 20 1
666.
                        7600
                                SP7600, 7600
           605
                  6751
667.
                                PAUSE
           606
668.
                                /ODT-F VERSION 5 TAPE 6
669.
           607
                                / **** BFEAKPOINT/CONTINUE ROUTINES *****
670.
           608
                                / **** FIFTH ROM PACE
           609
671.
                        7000
                                *START+1000
           610
672.
                                / C HANDLER
673.
           611
                                /CONTINUE EXECUTION OF PROGRAM
674.
           612
                  7000
                       1031
                                        TAD OCADF
675.
           613
                                        DCA CADE
676.
           614
                  7001
                        30 30
                  7002
                        4056
                                        CALL
677.
           615
678.
           616
                  7003
                        6400
                                        CELP
                                                         /SET CONTINUE COUNT TO
679.
           617
                  7004
                        1024
                                        TAD WORD
                                                         / ETERATE PAST BREAKFOINT
           618
                  7005
                        7040
                                        CHA
680.
                                                         / SPECIFIED NUMBER OF TIMES
                  7006
                        3044
                                        DCA NCONT
681.
           619
                                /SIMULATE EXECUTION OF THE INSTRUCTION IN
682.
           620
                                /LOCATION CONTF.CONT
683.
           621
                                /HANDLE ICT OR OPERATE INSTRUCTION
684.
           622
                                CONTO, TAD CONT
                                                         /SET CADP. CAD TO CONTF. CONT
                  7007
                        1035
685.
           623
                  7010
                                        DCA CAD
           624
                        30 27
686.
                                                         /IFSAVE IS CONTINUE PHELD
           625
                  7011
                        1036
                                        TAD IFSAVE
687.
                                        DCA CADE
                        30 30
688.
           626
                  7012
                                                         /GET CONTINUE INSTRUCTION
                  7013
                        4056
                                        CALL
           627
689.
                  7014
                        6431
                                        GETCAD
69C.
           628
                                        DCA INS
                                                         ISTORE IT IN INS
691.
           629
                  7015
                        3037
                                                         POINT CONT AT NEXT INS TO EXECUTE
                                        ISZ CONT
                  7016
                        20 35
692.
           630
                                        TAD CONT
                                                         /SFT ADDR TO CONT PROG EXEC FROM
           631
                  7017
                        1035
693.
           632
                  7020
                        3025
                                        DCA JADR1
694.
                                        TAD INS
695.
           633
                  7021
                        1037
                        7100
                                        CLL
                  7022
696.
           634
                                        TAD FP2000
                                                         /OVERFLOW SETS L FCR ICT OR OPER
                  7023
                        1346
697.
           635
                  7024
                        7620
                                        SNL CLA
698.
           636
                                                         /JMP IF NOT IOT OR OPER
                                        JMP CONT1
699.
           637
                  7025
                        5233
                  7026
                        1037
                                        TAD INS /NEWINS
                                                         INS
700.
           638
           639
                  7027
                        3067
                                        DCA NEWINS
701.
                                                         IST RAM PROGRAM EXECUTION TO
                                        TAD PHWINS
702.
           640
                  7030
                        1334
                                                         /EEGIN FROM "NEWINS"
                        3043
                                        DCA GOADR
703.
           641
                  7031
                                                            2GO TO EXECUTE RAM
704.
           642
                  7032
                        5740
                                        JMF I PCNT5
                                /PUT EFFECTIVE ADDRESS OF MEMORY REFERENCE INSTRUCTION
705.
            643
                                /INTO ADDE
706.
           644
707.
           645
                  7033
                        1037
                                CONT1, TAD INS
                                        AND FF177
                                                         /GFT ADDRESS ON PAGE
708.
           646
                  7034
                        0343
                                        DCA ADDR
709.
           647
                  7035
                        3040
710.
           648
                  7036
                        10 37
                                        TAD INS
                                                         JIEST FOR ZERO PAGE
711.
            649
                  7037
                        0344
                                        AND FP200
                                        SNA CLA
712.
            650
                  7040
                        7650
713.
            651
                  7041
                        5247
                                        JMP CONT2
                                                         /ZFRO PAGE - GO ON
                                                         JOURNENT PAGE - GET INS LOCATION
714.
           652
                  7042
                        7040
                                        CMA
                                        TAD CONT
                                                         /CENT POINTS ONE PAST INS LOC
715.
           653
                  7043
                        1035
                  7044
                        0351
                                        AND PP7600
                                                         /ISOLATE PAPE NUMBER
716.
           654
                  7045
                        1040
                                        TAD ADDR
                                                         /ALD TO GET
            655
717.
                                        DCA ADDR
                                                         IN THE EFFECTIVE ADDRESS
718.
           656
                  7046
                        3040
                                /HANDLF INDIRECT REFERENCE
719.
            657
                  7047
                         1036
                                CONT2, TAD IFSAVE
                                                         /ASSUME EA IS IN INSTRUCTION PIELD
           658
720.
                                                         / SO SET DE1 IFSAVE
721.
           659
                  7050
                        3041
                                        DCA DF1
                                                         /TIST INS FOR INDIRECT
                        10 37
                                        TAD INS
722.
           660
                  7051
                                        AND FP400
                        0345
            661
                  7052
723.
                  7053
                        7650
                                        SNA CLA
724.
           552
```

```
725.
           663
                 7054 5276
                                       JMP CONT3
                                                        /DIRECT - GO ON
                                                        /INDIRECT - SO EA IS IN DATA FIELD
726.
           664
                 7055
                       1052
                                       TAD DESAVE
                                                        / SO SDT DF1 DPSAVE
           665
                       3041
                                       DCA DF1
727-
                 7056
                                                        SET CAD ADDR
           666
                 7057
                       1040
                                       TAD ADDR
728.
729.
           667
                 7060
                       3027
                                       DCA CAD
                               /HANDLE AUTO-INCREMENT
73C.
           668
731.
           669
                 7061
                       1040
                                       TAD ADDR
                                                        /SEE IF ADDR IS AUTO-INC REGISTER
732.
           670
                 7062 0352
                                       AND FP7770
           671
                 7063 1342
                                       TAD FM10
733.
           672
                 7064
                       7640
                                       SZA CLA
734.
735.
           673
                 7065
                       5273
                                       JMP CONT2A
                                                        /NCT AUTO-INCR - GO ON
                                                        /AUTO-INCR - GET REGISTER VALUE
                 7066
                       4056
736.
           674
                                       CALL
           675
                 7067
                       6431
                                       GETCAD
737.
738-
           676
                 7070
                      7001
                                       IAC
                                                        /INCREMENT IT
739.
           677
                 7071 4056
                                       CALL
                                                        /AND RESTORE
                                       SETCAD
                 7072 6442
74 C.
           678
                               /FINISH HANDLING INDIRECT
741.
           679
                                                        /GET CONTENTS OF ADDF
742.
           680
                 7073
                       4056
                               CONT2A, CALL
                 7074 6431
                                       GETCAD
743.
           681
                 7075
                                       DCA ADDR
                                                        /AND MAKE THAT NEW ADDR
744.
           682
                       3040
                               /HANDLE JMS. JMP INSTRUCTIONS
745.
           683
746.
           584
                 7076
                       1037
                               CONT3. TAD INS
                                                        /SHE IF INS IS JMP OF JMS
           685
                 7077 7100
                                       CIL
747.
748.
           686
                 7100
                       0.350
                                       AND FP7000
749.
           687
                 7101
                       1347
                                       TAD PP4000
                 7102
                                                        JL=1 IF INS IS JMS OF JMP
75C.
           688
                       7420
                                       SNL
           689
                 7103
                       5321
                                       JMP CONT4
                                                        INCT JMS OR JMP - GO ON
751.
                 7104
                       7640
                                       SZA CLA
                                                        /JMS OR JMP - AC=O IP INS IS JMS
752.
           690
                                       JEP CONT 3A
                                                        /NCT JMS - GO ON
753.
           691
                 7 105
                       5314
           692
                 7106
                        10 40
                                       TAD ADDR
                                                        /JMS - ENUIATE JMS
754.
                                       DCA CAD
755.
           693
                 7107
                       3027
756.
           694
                 7110
                        1035
                                       TAD CONT
                 7111
757.
           695
                       4056
                                       CALL
                 7112
                                       SETCAD
                                                        /SET RETURNBURN ADDRESS
758.
           696
                       6442
                                                        /POINT ADDR AT SUBROUTINE BODY
759.
           697
                 7113
                       2040
                                       ISZ ADDR
                                                        /GET JUMP DESTINATION
           698
                 7114
                       1040
                               CONTSA. TAD ADDR
760.
                                                        /AND SET IT
           699
                 7115
                       3025
                                       DCA JADR1
761.
                                                        ISTART RAM PROG EXECUTION
           700
                 7116
                       1335
                                       TAD PIFSET
762.
                                                        /FROM IFSET
763.
           701
                 7117
                       3043
                                       DCA GOADE
           702
                 7120 5740
                                       JMF I PCNT5
                                                        /GD TO EXECUTE RAM PROG
764.
           703
                               /HANDLE AND, TAD, DCA, ISZ INSTRUCTIONS
765.
           704
                 7121 7200
                               CONT4, CLA
766.
                                                        /GET INS
           705
                 7122 1037
                                       TAD INS
767.
                                       AND PP7000
                                                        /ISOLATE OFCODE
           706
                 7123
                       0350
768.
           707
                                       TAD IADDR
                 7124
                       1337
769.
                                       DCA NEWINS
                                                        /SET NEWINS OPCODE I ADDR
770.
           708
                 7125
                       3067
771.
           709
                 7126
                       1041
                                       TAD DF1
                                       TAD CDFO
772.
           710
                 7127
                       1341
                                       DCA DFSET1
                                                        /SET DESET1 CDF DF1
773.
           711
                 7130
                      3066
                                                        /SET RAM PRGG EXECUTION
           712
                                       TAD PDFST1
774.
                 7131 1336
                                       DCA GOADR
                                                        / TO BEGIN FROM DESET1
775.
           713
                 7132
                       3043
776.
           714
                 7133 5740
                                       JMF I PCNT5
                                                        JGO TO EXECUTE RAM PROG
                               / *** CONSTANTS
777.
           715
                               PNWINS. NEWINS
                 7134 0067
778.
           716
           717
                 7135
                       0072
                               PIFSET, IFSET
779-
                               PDFST1, DFSET1
78C.
           718
                 7136
                       0066
                               IADER, 400 ADDR
PCNT5, CCNT5
781.
           719
                 7137
                       0440
           720
                 7140
                       7400
782.
783.
           721
                 7141
                       6201
                               CDF0,
                                       CDF
784.
           722
                 7142
                       7770
                               FM10.
                                       -10
                 7143
                       0177
                               FP177, 177
785.
           723
```

```
7144
                                FP200, 200
           724
                        0200
786.
           725
                  7145
                        0400
                                FP400, 400
787.
                                FP2000200C. 2000
           726
                  7146
                        2000
788.
789.
           727
                  7147
                        4000
                                FP4000, 4000
                               FP7000, 7000
790.
           728
                  7150
                        7000
           729
                        7600
                                FP7600, 7600
791.
                  7151
                                FP7770, 7770
792.
           730
                  7152 7770
793.
           731
                                PAUSE
                                /ODT-F VERSION 5 TAPE 7
794.
           732
                                / **** BREAKPOINT/CONTINUE ROUTINES - CONTINUED *****
           733
795.
796.
           734
                                / **** SIXTH ROM PAGE
           735
                        7200
                               *START+1200
797.
                                / G HANDLER
798.
           736
799.
            737
                                /GO TO A SPECIFIED LOCATION
                  7200
                        1031
                                        TAD OCADE
80C.
           738
                  7201
                        3030
                                        DCA CADE
801.
           739
            740
                                        CALL
802.
                  7202
                        4056
           741
                  7203
                        6400
                                        CRLF
803.
                                                         JSET CONTINUE COUNT TO ZERO
                  7204
                        7040
804.
           742
                                        CNA
                                        DCA NCONT
           743
                  7205
                        3044
805.
           744
                  7206
                        10 24
                                        TAD WORD
                                                         ASET ADDR TO CONTINUE FROGRAM
806.
                                        DCA JADR1
                                                         / EXECUTION FROM
           745
                  7207
                        3025
807.
                                                         /SET PIELD TO CONTINUE PROGRAM
                        10 30
                                        TAD CADE
           746
                  7210
808.
                                        DCA IFSAVE
                                                         / EXECUTION FROM
            747
                  7211
                        3036
809.
                                                         /SET RAM PROGRAM EXECUTION TO
            748
                  7212
                        1365
                                        TAD PIFSTA
810.
                                                         / EFGIN AT HESET
                  7213
                        3043
                                        DCA GOADR
811.
           749
                                                         JGO TO EXECUTE RAM PROGRAM
                  7214
                        5767
                                        JMF I PCONT5
           750
812.
           751
                                / B HANDLER
813.
                                /SET BREAKPOINT AT A SPECIFIED LOCATION
           75.2
814.
                        1031
           753
                  7215
                                BDO.
                                        TAU OCADE
815.
                  7216
           754
                        30 30
                                        DCA CADE
816.
            755
                  7217
                        4056
                                        CALL
                                                         TIPE CR.LF
817.
918.
           756
                  7220
                        6400
                                        CRLF
                                                         /SFE IF VALUE SPECIFIED
           757
                                        CALL
819.
                  7221
                        4056
            758
                                        NTY PED
92C.
                  7222
                        6423
           759
                  7223
                        5231
                                        JMP BDO1
                                                         /VALTE SPECIFIED - GO GN
821.
                                        TAD WORD
                                                         JSET BREAKPOINT ADDRESS
822.
           760
                  7224
                        1024
823.
            761
                  7225
                        3033
                                        DCA TRAD
824.
            762
                  7226
                        10 30
                                        TAD CADF
                                                         /AND PIELD
825.
            763
                  7227
                        3034
                                        CCA TRADE
                        5770
                  7230
                                        JMF I PREAD
                                                         JGET NEXT COMMAND
826.
           764
            765
                  7231
                        1371
                                BDO1.
                                        TAD ODTLOC
                                                         /NO VALUE SPECIFIED -
827.
            766
                  7232
                        3033
                                        DCA TRAD
                                                         / CLEAR BREAKPOINT BY SETTING
828.
                                                         / IT WITHIN ODT-F
829.
            767
                  7233
                        1000
                                        TAD F1A
                  7234
                                        DCA TRADE
           768
                        3034
83C.
            769
                  7235 5770
                                        JMP I PREAD
                                                         JGIT NEW COMMAND
831.
832.
           770
                                /BREAKFOINT RETURN
                                PENTRY TO OUT UPON ENCOUNTERING BREAKPOINT
           771
833.
                                /SAVE STUFF THEN GO TO COMMAND SCANNER
            772
834.
835.
            773
                  7236 3047
                                BKPT,
                                        DCA ACSAVE
                                                         /SAVE AC
                                                         /SAVE LINK
           774
                  7237
                        7004
                                         FAL
836.
            775
                  7240
                        3050
                                        DCA LSAVE
837.
            776
                        7701
                                                         SAVE MQ
838.
                  7241
                                         ACL
                                        DCA MQSAVE
839.
            777
                  7242
                        3051
                                                         /SAVE PROGRAM DATA MIELD
                        6214
                                         RDF
840.
            778
                  7243
            779
                  7244
                        3052
                                         DCA DPSAVE
841.
                        6201
                                         CDF F1A
                                                         /SIT ODT-F F-P DATA RIELD
            780
                  7245
842.
                                                         /SAVE PROGRAM INSTRUCTION FIELD
                                         TAD TRADE
343.
            781
                  7246
                         1034
            782
                  7247
                        3036
                                         DCA IFSAVE
844.
                                                          /AND BREAKPOINT LOCATION
            783
                  7250
                        1033
                                        TAD TRAD
845.
                  7251 3035
                                         DCA CONT
                                                          FOR CONTINUE
845.
```

```
847.
           785
                  7252 1033
                                        TAD TRAD
                                                          /RESTORE BREAKPOINT LOCATION
848.
           786
                  7253
                        30 27
                                         DCA CAD
                                                          / CONTENTS
849.
           787
                  7254
                        1034
                                         TAD TRADE
850.
           788
                  7255
                        3030
                                             DCA CADE
851.
           789
                  7256
                        1045
                                         TAD KEEP
852.
           790
                  7257
                        4056
                                         CALL
853.
           791
                  7260
                        6442
                                         SETCAD
854.
           792
                  726 1
                        10 30
                                        TAD CADE
                                                          /INITIALIZE OCADF
855.
           793
                  7262
                        3031
                                         DCA OCADE
           794
856.
                  7263
                        20 44
                                         ISZ NCONT
                                                          /CONTINUE COUNT OVER?
857.
           795
                  7264
                        5766
                                        JMP I PCONTO
                                                          /NC - CONTINUE
858.
           796
                  7265
                        4056
                                        CALL
                                                          TYPE OUT BKPT FIELD
859.
           797
                  7266
                        7347
                                        PFIELD
860.
           798
                                        TAD TRAD
                  7267
                        1033
                                                          /AND LOCATION
861.
           799
                  7270
                        4056
                                        CALL
862.
           800
                  7271
                        6107
                                         PNUM
                                        TAD AP250
863.
           801
                  7272
                        1361
                                                         /TYPE " ("
                  7273
                        4056
864.
           802
                                        CALL
865.
           803
                  7274
                        6102
                                        TYPE
866.
           804
                  7275
                        1047
                                        TAD ACSAVE
                                                         TYPE OUT AC
867.
           805
                  7276
                        4056
                                        CALL
868.
           806
                  7277
                        6107
                                        PNUM
869.
           807
                  7300
                        4056
                                        CALL
                                                         /TYPE CR, 1F
870.
           808
                  7301
                        6400
                                        CFLF
871.
           809
                  7302
                        5770
                                        JMP I PREAD
                                                         /GET NEXT COMMAND
872.
           910
                                / **** WCRD SEARCH ROUTINE ENE *****
                               / W HANDLER
873.
           811
874.
           812
                                /SEARCH BETWEEN LIMLO AND LIMHI FOR WORDS THAT
875.
           813
                                /MATCH SPECIFIED NUMBER IN MASKED BITS
876.
           814
                  7303
                        1031
                                        TAD OCADE
877.
                                        DCA CADE
           815
                  7304
                        3030
87â.
           816
                  7305
                        4056
                                        CALL
                                                         ATYPE CR.LF
979.
           817
                  7306
                        6400
                                        CPLF
890.
           318
                  7307
                        1024
                                        TAD WORD
                                                         /MASK SPECIFIED NUMBER
381.
           819
                  7310
                        0053
                                        AND MASK
982.
           820
                  7311
                        30 24
                                        DCA WORD
883.
           821
                  7312
                        1054
                                        TAD LIMLO
                                                         /INITIALIZE CAD AS MEMORY
834.
           822
                  7313
                        30 27
                                        DCA CAD
                                                         / POINTER FOR SEARCH
885.
           823
                  7314
                        4056
                                WDO1.
                                        CALL
                                                         /GET MEMORY WORD
886.
           824
                  7315
                        6431
                                        GETCAD
887.
           325
                  7316
                        0053
                                        AND MASK
                                                         /MASK IT
388.
           826
                  7317
                        7041
                                        CIA
                                                         /CCMPARE TO WORD
889.
           327
                  7320
                        1024
                                        TAD WORD
890.
           828
                  7321
                        7640
                                        SZA CLA
                                                         /EQUAL?
                                                         /NC ONO - GET NEXT
891.
           829
                  7322
                        5337
                                        JMP WD02
892.
           830
                  7323
                                                         /YES - PRINT LOC
                        1027
                                        TAD CAD
893.
           331
                  7324
                        4056
                                        CALL
BOU.
           832
                  7325
                        6107
                                        FNUM
                                        TAD AP257
395.
           333
                  7326
                                                         /PRINT "/"
                        1363
896.
           834
                  7327
                        4056
                                        CALL
897.
           835
                  7330
                        6102
                                        TYPE
898.
           836
                 7331
                        4056
                                        CALL
                                                         PRINT CONTENTS
399.
           837
                  7332
                        6431
                                        GETCAD
900.
           838
                 7333
                        4056
                                        CALL
901.
           839
                  7334
                        6107
                                        PNUM
902.
           840
                 7335
                        4056
                                        CALL
                                                         TYPE CR. IF
903.
           841
                  7336
                        6400
                                        CRLF
                               WDO2.
                                        TAD CAD
904.
           842
                  7337
                        1027
                                                         /GET LOC
905.
           343
                 7340
                        2027
                                        ISZ CAD
                                                         /POINT AT NEXT LOC
                        7000
90E.
           944
                 7341
                                        NCP
                                                         /IN CASE ISZ SKIPS
907.
           845
                 7342 7041
                                        CIA
                                                         /CCMPARE LOC WITH LIMHI
```

```
7343 1055
                                        TAD LIMHI
908.
           846
                 7344
                       7640
                                        SZA CLA
                                                        /LIMHI REACHED?
909.
           847
910.
                 7345 5314
                                        JMP WD01
                                                        /NO - REPEAT LOOF
           848
                                                        /YES - GET NEXT COMMAND
911.
                  7346 5770
                                        JMP I PREAD
           849
                               / **** PRINT FIELD SUBROUTINE *****
912.
           850
                               /SUEROUTINE TO PRINT FIELD
913.
           851
                               PRINT FIELD SPECIFIED BY CADP FOLDOWED BY "."
914.
           852
                                                        /GIT FIELD
915.
           853
                 7347 1030
                               PFIELD, TAL CADF
                                                        /PUT IT IN BITS 9-11
                                       CLL RAR
           854
                 7350
                       7110
916.
                       7012
                                        RTR
917.
           855
                 7351
                                                        FAID IN ASCII FOR NUMBER
                                        TAD AP260
918.
           85.6
                 7352
                       1364
                                                        TYPE IT OUT
                 7353 4056
919.
           857
                                        CALL
                       6102
                                       TYPE
920.
           858
                 7354
                 7355
                        1362
                                        TAD AP256
                                                        /TYPE "."
921.
           859
922.
           860
                 7356
                       4056
                                       CALL
                                        TYPE
923.
           861
                 7357
                       6102
                                        RETURN
                                                        /RETURN
924.
           862
                 7360
                       5461
925.
           863
                               / *** CONSTANTS
                               AP250, 250
926.
           864
                 7361
                       0 2 5 0
           865
                 7362 0256
                               AP256.
                                       256
927.
928.
           865
                  7363
                       0257
                               AP257.
                                       257
929.
           367
                  7364
                       0260
                               AP260, 260
                 7365
                       0072
                               PIFSTA, IPSET
930.
           868
931.
                  7366
                        7007
                               PCONTO, CONTO
           869
                  7367
                       7400
                               PCONTS, CCNTS
932.
           870
                       6200
                               PREAD, READ ODTIOC, 20
933.
           871
                 7370
                 7371 0620
                                                /ANY UNEXECUTED LOC IN ODT-F
           872
934.
935.
           873
                               PAUSE
                               /ODT-F VERSION 5 TAPE 8
           974
936.
                               / **** SEVENTH ROM PAGE
937.
           875
                        7400
                               *START+1400
           876
938.
                               / **** BREAKPOINT/CONTINUS ROUTINES - CONTINUED *****
939.
           877
                               PRESTORE CONDITIONS OF PROGRAM TO BE DEBUGGED AND
940.
           878
                               ZEXECUTE RAM PROGRAM
           879
941.
                               /RAM PROGRAM RETURNS TO PROGRAM BEING DEBUGGED.
942.
           880
           881
                  7400
                       7200
                               CONTS, CLA
943.
                                       TAD TFAD
                                                         /SIT CADF.CAD TRADF.TRAD
                        1033
944.
           892
                  7401
                        3027
                                        DCA CAD
945.
           893
                  7402
946.
                  7403
                        1034
                                        TAD TRADF
947.
           885
                  7404
                        3030
                                        DCA CADE
                  7405
                        4056
                                        CALL
                                                         JGET BREAKFOINT CONTENTS
           886
948.
949.
           887
                  7406
                        6431
                                        GETCAD
                                                         /AND SAVE THEM IN KEEP
950.
           888
                  7407
                        3045
                                        DCA KEEP
                                                         /PUT TRAP INSTRUCTION
                                        TAD TRAP
951.
           889
                  7410
                        1247
           890
                  7411
                        4056
                                        CALL
952.
                                                         /INTO BREAKPOINT LCCATION
                                        SETCAD
953.
           891
                  7412
                        6442
                                                         /POINT CAD AT BKPT LINKAGEEGE
                                        TAD PZPAT
254.
           892
                  7413
                        1250
           893
                  7414
                        3027
                                        DCA CAD
                                                         / LOCATIONS
955.
                                                         /SET BREAKPOINT LINKAGE LOCATIONS
956.
           894
                  7415
                        1243
                                        TAD TRAP1
957.
           995
                  7416
                        4056
                                        CALL
                  7417
                                        SETCAD
958.
           896
                        6442
959.
           897
                  7420
                        2027
                                        ISZ CAD
                                        TAD TRAP2
960.
           898
                  7421
                        1244
                  7422
                       4056
                                        CALL
961.
           899
962.
           900
                  7423
                        6442
                                        SETCAD
963.
           901
                  7424
                        1036
                                        TAD IFSAVE
                                                         /SET IFSET CIF IFSAVE
                                        TAD PECIF
964.
           902
                  7425
                        1245
                                        DCA IFSET
           903
                  7426
                        3072
965.
966.
            904
                  7427
                        1052
                                        TAD DESAVE
                                                         /SET DESET CDF DESAVE
967.
            905
                  7430
                        1246
                                        TAD PBCDF
                                        DCA DFSET
                  7431 3073
968.
           906
```

```
TAD JADR1
 969.
            907
                  7432
                        1025
 970.
            908
                   7433
                         3042
                                         DCA JADR
                   7434
 971.
            909
                         1051
                                         TAD MOSAVE
                                                          /RESTORE MC
 972.
            910
                   7435
                         7421
                                         MCL
 973.
            911
                   7436
                         1050
                                         TAD LSAVE
                                                          /RESTORE LINK
 974.
            912
                   7437
                         7010
                                         RAR
 975.
            913
                   7440
                         7200
                                         CIA
                                                          /RESTORE AC
 976.
            914
                   7441
                         1047
                                         TAD ACSAVE
 977.
            915
                   7442
                         5443
                                         JMP I GOADR
                                                          /GC TO EXECUTE RAM PROGRAM
 978.
            916
                                 / *** CONSTANTS
 979.
            917
                   7443
                         6202
                                TRAP1, CIF F1A
                   7444
                         5064
                                TRAF2. JMP ZPAT1
 980.
            918
                                PBCIF, CIF
 981.
            919
                   7445
                         6202
            920
                   7446
                         6 20 1
                                PBCDP, CDP
 982.
                                TRAP, JMP 2
PZPAT, ZFAT
 983.
            921
                   7447
                         5005
                                         JMP ZPAT
                         0005
 984.
            922
                   7450
                                / **** PUNCH ROUTINES *****
            923
 985.
 986.
            924
                                / ; HANDLER
                                /SET LOWER LIMIT OF PUNCH COMMAND
 987.
            925
                  7451
                                SEMIDO, TAD WORD
 988.
            926
                         1024
 989.
            927
                   7452
                         3027
                                         DCA CAD
                                                          /SAVE LOWER LIMIT IN CAD
                                                          /GET NEXT COMMAND
 990.
            928
                   7453
                         5760
                                         JMF I PEREAD
 991.
                                / Q HANDNANDLER
            929
 992.
            930
                                 /PU NCH FIELD
 993.
            931
                   7454
                         1031
                                ODO.
                                         TAD OCADE
 994.
            932
                   7455
                         3030
                                         DCA CADE
                                                          /WAIT FOR USER TO TURN ON PUNCH
                         7602
                   7456
                                         CLA HLT
 995.
            933
 996.
            934
                   7457
                         1030
                                         TAD CADE
                                                          /CIT FHELD
                                         TAD BP300
                                                          /FEAG AS FIELD SPEC
 997.
            935
                   7460
                         1357
                   7461
                                                          /PUNCH IT
 998.
            936
                         4056
                                         CALL
 999.
            937
                   7462
                         6102
                                         TYPE
100C.
            938
                   7463
                        5760
                                         JMF I PBREAD
                                                          /CET NEXT COMMAND
                                 / E. T HANDLERS
1001.
            939
                                 /PUNCH CHECKSUM AND TRAILER
1002.
            940
                                                          /WAIT FOR USER TO TURN ON PUNCH
1003.
            941
                   7464
                         7602
                                EDO.
                                         CLA HLT
                                         TAD CHKSUM
                                                          FFT CHECKSUM
1004.
            942
                   7465
                         1046
1005.
            943
                   7466
                         7100
                                         CLL
                   7467
                                                          /PUNCH IT
1006.
            944
                         4056
                                         CALL
1007.
            945
                   7470
                         7526
                                         PUNCH
                                         TAD BM100
                                TDO,
                                                          /INIT COUNT
1008.
            946
                   7471
                         1353
                   7472
                                         ECA TEMP
1009.
            947
                         3020
                                                          /PUNCH A 1 IN CHANNEL 8
1010.
            948
                   7473
                         1356
                                TDO1,
                                         TAD BP200
                   7474
                                         CALL
1011.
            949
                         4056
1012.
            950
                   7475
                         6102
                                         TYPE
1013.
            951
                   7476
                         2020
                                         ISZ TEMP
                                                          /CCUNT OVER
1014.
            952
                   7477
                         5273
                                         JMP TDO1
                                                          /NO - REPEAT
1015.
            953
                   7500
                         3046
                                         DCA CHKSUM
                                                          /YES - REINITIALIZE CHECKSUM
101€.
            954
                   7501
                         5760
                                         JMF I PBREAD
                                                          JOHT NEXT COMMAND
1017.
            955
                                / P HANDLER
                                /PUNCH OUT MEMORY IN EIN FORMAT
1018.
            956
                                /LOWER LIMIT IN CAD, UPPER LIMIT IN WORD
            95.7
1019.
            958
                  7502
                         1031
                                         TAD OCADE
1020.
            959
                  7503
                         3030
                                         DCA CADF
1021.
                  7504
                        7602
                                         CLA HLT
                                                          /WAIT FOR USER TO TUEN ON PUNCH
1022.
            960
                         1027
                                         TAD CAD
                                                          /GET STARTING ADDRESS
1023.
            961
                   7505
            962
                   7506
                         7120
                                         STL
                                                          /PUNCH IT - FLAG AS ADDRESS
1024.
                  7507
            963
                         4056
                                         CALL
1025.
                                         PUNCH
            964
                  7510
                         7526
1026.
                                PDO1,
                                                          /GET CONTENTS OF LOC
1027.
            955
                  7511
                         4056
                                         CALL
                                         GETCAD
1028.
            966
                  7512
                         6431
                                                          /PUNCH IT
            967
                  7513 7100
                                         CLL
1029.
```

1090.

1028

```
1030.
             968
                   7514
                         4056
                                          CALL
1031.
             959
                   7515
                         7526
                                          PUNCH
1032.
             970
                   75 16
                          10 27
                                          TAL CAD
                                                           /CCMPARE CURRENT LOC
             971
1033.
                   7517
                         7041
                                          CIA
1034.
             972
                   7520
                          1024
                                          TAD WORD
                                                           /AND HIGH LIMIT
1035.
             973
                   7521
                         7650
                                          SNA CLA
                                                           /EQUAL?
                                                           /YES - GET NEXT COMMAND
1036.
             974
                   7522
                          5760
                                          JMF I PBREAD
1037.
             975
                   7523
                         2027
                                                           /NC - POINT A T AT NEXT LOCATION
                                          ISZ CAD
1038.
             976
                   7524
                         5311
                                          JMF PDO1
                                                           /CONTINUE LCOP
1039.
             977
                   7525
                         5303
                                          JMP PDO+1
                                                           /GC AROUND TOP OF MEMORY -
1040.
             978
                                                           / PUNCH NEW NROGIN
1041.
             979
                                 /SUBROUTINE TO PUNCH A NUMEER
1042.
             980
                                 JPUNCH NUMBER IN AC IN BIN FORMAT
1043.
             981
                                 /SET CHANNEL 7 (TO FLAG AN ADDRESS) IF LINK IS SET
1044.
             982
                   7526
                         30 20
                                 PUNCH, DCA TEMP
                                                           /SAVE NUMBER
1045.
             983
                   7527
                         1020
                                          TAD TEMP
                                                           /GET HIGH EALF OF NUMBER
1046.
             984
                   7530
                         7012
                                          RTR
1047.
             985
                   7531
                         7012
                                          RIR
1048.
             986
                   7532
                         7012
                                          RTR
                                          AND BP177
1049.
             987
                   7533
                         0355
                                                           /I'SOLATE NUMBER AND LINK
1050.
             938
                   7534
                         4056
                                          CALL
                                                           OUTPUT IT
1051.
             989
                   7535
                         7543
                                          PUNCH 1
1052.
             990
                   7536
                         10 20
                                         TAD TEMP
                                                           /GET LOW HALF OF NUMBER
1053.
             991
                   7537
                         0354
                                          AND BP77
1054.
             992
                   7540
                         4056
                                          CALL
                                                               /OUTPUT IT
1055.
             993
                   7541
                         7543
                                          PUNCH1
1056.
             994
                   7542
                         5461
                                          RETURN
                                                           #RETURN
1057.
             995
                                 /SUBROUTINE TO PUNCH AC AND ACCUMULATE CHECKSUM
1058.
             996
                   7543
                         30 21
                                 PUNCHI, DCA TEMP2
                                                           /SAVD NUMBER
1059.
             997
                   7544
                         1046
                                         TAD CHKSUM
                                                          /AED IT TO CHECKSUM
1060.
             998
                   7545
                         1021
                                         TAD TEMP2
1061.
             999
                   7546
                         3046
                                          DCA CHKSUM
1062.
            1000
                   7547
                         1021
                                         TAD TEMP2
                                                           TTYPE IT OUT
            1001
                   7550
1063.
                         4056
                                         CALL
10€4.
           1002
                   7551
                         6102
                                         TYPE
10€5.
            1003
                   7552
                         5461
                                          RETURN
                                                           /RETURN
1066.
           1004
                                 / *** CONSTANTS
           1005
                   7553
                         7700
                                 BM100, -100
1067.
1068.
           1006
                   7554
                         0077
                                 BP77.
                                         77
1069.
            1007
                   7555
                         0177
                                 BP177, 177
1070.
                                 BP200,
           1008
                   7556
                         0200
                                         200
1071.
            1009
                   7557
                         0300
                                 BP300, 300
1072.
           1010
                   7560
                         6200
                                 PBREAD. READ
            1011
1073.
                                 PAUSE
1074.
           1012
                         0020
                                 LAST=20
1075.
           1013
                         0066
                                LT=66
                                 FIRST=67
1076.
           1014
                         0067
1077.
           1015
                         0070
                                SEC=70
1078.
           1016
                         0071
                                THIRD=71
           1017
1079.
                         0072
                                 DATA2=72
           1018
                         0073
1080.
                                PC2 = 73
           1019
                                 HOLD=53
1081.
                         0053
1082.
           1020
                         0054
                                 SAVFC=54
1083.
           1021
1984.
           1022
                         7576
                                 *START+1576
1085.
           1023
                   7576
                         4056
                                           CALL
108€.
           1024
                   7577
                         6400
                                          CRLP
                                                                / PUNCH OUT A CARRAGE RETURN
1087.
           1025
                                                                / AND LINEFEED AT THE START
1088.
           1026
                                                                / OF BIN
1089.
           1027
```

1091.	1029		7600	*START+1600			
1092.	1030		,000	431 WK1 4 1000			
1093.	1031	7600	7340	DTM	CIA	CII CHI	. CDE 18 EO 3333
1094.				BIN,		CLL CMA	/ SET LT TO 7777
	1032	7601	3066			LT	
1095.	1033	7602	3046			CHKSUM	
1096.	1034	7603	3067			FIRST	
1097.	1035	7604	3070			S EC	
1098.	1036	7605	7340			CLL CMA	
1099.	1037	7606	3054			SAVPC	
1100.	1038	7607	1354		TAD	K 200	
1101.	1039	7610	3020		DCA	LAST	
1102.	1040	7611	1357		TAD	K 10 2	
1103.	1041	7612	3067			FIRST	
1104.	1042						
1105.	1043	7613	7340	PEGG,	CLA	CLL CMA	
1106.	1044	76 14	3072	,		DATA 2	
1107.	1045				20	5.1.1. 2	
1109.	1046	7615	3073	BEG,	DCV	PC2	
1109.	1047	, , , ,	30 / 3	DEG.	DCA	1 02	
1110.	1048	76 16	40 56		CAL	т	
1111.	1049	7617					
			6463		LIS		
1112.	1050	7620	3053		DCA	HOLU	
1113.	1051	7604					
1114.	1052	7621	1053			HOL C	
1115.	1053	7622	1356			KRUB	
1116.	1054	7 623	7700		SMA	CLA	
1117.	1055	7624	5257		JMP	RUM	
1118.	1056	7625	1053		TAD	HOLE	
1119.	1057	7626	1352		TAD	KCH8	
1120.	1058	7627	7650		SNA	CLA	
1121.	1059	7 630	5325			LTC	
1122.	1060						
1123.	1061	7631	1053		TAD	HOLD	
1124.	1062	76 32	30 20			LAST	
1125.	1063	, , , ,	30 20		2011	a a o i	
1126.	1064	7 633	1066		TAD	7 17	
1127.	1065	7634	7640			CLA	
1126.	1066	7635					
1129.	1067	1033	5215		JMP	BEG	
1130.	1068	7()(*053				
		7636	1053			HOLD	
1131.	1069	7637	1355		TAD		
1132.	107C	7640	7700			CLA	
1133.	1071	7641	5215		JMP	BEG	
1134.	1072						
1135.	1073	7642	1053			HOLD	
1136.	1074	7643	1046		TAD	CHKSUM	
1137.	1075	7644	3046		DCA	CHKSUM	
1138.	1076						
1139.	1077	7645	1067		TAD	FIRST	
1140.	1078	7646	0353			KLONG	
1141.	1079	7647	7640	KLING,	SZA		
1142.	1930	7650	5314	•	JMP		
1143.	1081						
1144.	1082	7651	2073		ISZ	PC2	
1145.	1083	7652	5272			MORE	
1146.	1084				5112	L	
1147.	1085	7653	1054	PCL2,	TAD	SAVPC	
1148.	1085	7654	1070		TAD		
1149.	1087	7655	3054				
1150.						SAVPC	
1151.	1088 1089	7656	5 30 6		JUL	BACK	
1121.	1003						

1152.	1090	7657	4056	RU M,	CALI	
1153.	1091	7660	6463	,	LIS	
1154.	1092	7661	3053			HOLE
1155.	1093	7662	1053			HOL D
1156.	1094	7 663	4056		CALI	
1157.	1095	76 64	6102		TYPI	Ξ
1158.	1096	7665	1053			HOLE
1159.		7665	1356			KRUB
	1097					
1160.	1098	7667	7700			CLA
1161.	1099	7 670	52 16		JMP	B EG + 1
1162.	1100	7671	5257		JMP	RUM
1163.	1101					
1164.	1102	7672	2072	MORE,	ISZ	DATA 2
				HORL,		
1165.	1103	7673	5277		JMP	DLZ
1166.	1104					
1167.	1105	7674	1053		TAD	HOLD
1168.	1106	7 67 5	3071		DCA	THIRD
1169.	1107	7676	5215		JMP	BEG
	1108	,,,,	32.3			
1170.		2022	4067	n. 0		3.T.D.C.M
1171.	1109	7677	1067	DL2,		FIRST
1172.	1110	7700	7002		BSW	
1173.	1111	7701	1070		TAD	SEC
1174.	1112	7702	3454		DCA	I SAVPC
1175.	1113	7703	7000		NOP	
	1114	7704	2054			SAVPC
1176.						
1177.	1115	7705	7300		CLA	CLL
1178.	1116					
1179.	1117	7706	7300	BACK,	CLA	CLL
1180.	1118	7707	1071		TAD	THIRD
1181.	1119	7710	3067			FIRST
	1120	7711	1053			HOLE
1182.						
1183.	1121	7712	3070		DCA	
1184.	1122	7713	5213		JMP	BEGG
1185.	1123					
1186.	1124	7714	1067	PC L.	TAD	FERST
1187.	1125	7715	0351			PMSK
1188.	1126	7716	7002		BS W	•
						CAREC
1189.	1127	7717	3054			SAVEC
1190.	1128	77 20	3067			FIRST
1191.	1129	7721	1053		TAD	HOLD
1192.	1130	7722	3071		DCA	THIRD
1193.	1131	7723	7040		CMA	
1194.	1132	7724	5215		JMP	REG
	1133	1124	3213		01:2	DEG
1195.						
1196.	1134	77 25	3066	ITC,	DCA	
1197.	1135	7726	1020		TAD	LAST
1198.	1136	7 727	1352		TAD	K CH8
1199.	1137	7730	7650		SNA	CLA
1200.	1138	7731	5213		JMP	BEGG
	1139	7732	1067			FIRST
1201.						
1202.	1140	7733	0351			PMSK
1203.	1141	7734	7002		BSW	
1204.	1142	773 5	1070		TAD	SEC
1205.	1143	7736	7041		CIA	
1206.	1144	7737	1046		TAD	CHKSUM
1207.	1145	7740	7041		CIA	
						CHKSUM
1208.	1146	7741	30 46			
1209.	1147	7742	1067			FIRST
1210.	1148	7743	0 351			PMSK
1211.	1149	7744	1046		TAD	CHKSUM
1212.	1150	7745	1070		TAD	SEC

```
7746
1213.
            1151
                         3047
                                                DCA ACSAVE
1214.
            1152
                   7747
                         5750
                                                JMP I .+1
1215.
            1153
                   7750 6727
                                                A DO
            1154
1216.
1217.
            1155
1218.
            1156
                   7751
                         0077
                                 PMSK.
                                                0077
1219.
            1157
                   7752
                         7600
                                                7600
                                 KCH8,
1220.
                   7753
            1158
                         0100
                                 KLONG,
                                                0100
1221.
            1159
                   7754
                         0200
                                 K200.
                                                0200
1222.
            1160
                   7755
                         7500
                                 KFD,
                                                7500
1223.
            1161
                   7756
                         7401
                                 KRUB,
                                                7401
1224.
            1162
                   7757
                         0 10 2
                                 K102.
                                                0102
1225.
            1163
1226.
            1164
1227.
            1165
                         7772
                                 *STAPT+1772
1228.
            1166
1229.
                   7772 7301
            1167
                                                CLA CLL IAC
                                                                     / SET THE AC TO 0001
1230.
            1168
                   7773
                         6400
                                                                     / CLEAR THE INTERCEPT JR.
                                                6400
1231.
            1169
                                                                     / DISPLAY
1232.
            1170
                   7774
                         6402
                                                6402
                                                                     / TURN OF THE CP TIMER
                   7775
1233.
            1171
                         5776
                                                JMP I .+1
                                                                     / GO TO THE START OF THE
1234.
            1172
                   7776
                         6000
                                                INIT
                                                                     / PROGRAM
1235.
            1173
                   7777
                        5372
1236.
           1174
                                                JMP .-5
                                                                     / ENTRY POINT FOR CP REQUEST
1237.
           1175
1238.
           1176
1239.
            1177
124C.
           1178
1241.
1242.
1243.
          END OF PASS 2
1244.
             O ERRORS DETECTED
1245.
          SYMECL TABLE
1246.
1247.
          ACSAVE 0047
                          ACTEMP 0063
                                          ADDR1 6737
                                                                 674 C
                                                                           ADDR4 6741
                                                                                                                           AP250 7361
                                                           ADDR2
                                                                                           ECCA
                                                                                                  0040
                                                                                                           A DO
                                                                                                                   6727
1248.
          AP256 7362
                          AP257 7363
                                          AP260
                                                  7364
                                                           PACK
                                                                  7706
                                                                           BADO
                                                                                  6715
                                                                                           BD01
                                                                                                  7231
                                                                                                                  7 2 1 5
                                                                                                                           BEGG
                                                                                                                                   7613
                                                                                                           BDO
1249.
                 7615
                                  7600
                                                  7236
                                                                  6256
                                                                                                 7555
          BEG
                          BIN
                                           BKPT
                                                           FLIST
                                                                           BM 100
                                                                                  7553
                                                                                           BP177
                                                                                                           EP200 7556
                                                                                                                           BP 300 7557
1250.
          BP77 7554
                          CADP
                                 0030
                                          CAD
                                                  0027
                                                           CALL 1
                                                                 0056
                                                                           CALL
                                                                                  4056
                                                                                           CDFO
                                                                                                  7141
                                                                                                           CDO
                                                                                                                  7000
                                                                                                                           CFLAG1 6167
                          CHKSUM 0046
1251.
          CFLAG3 6177
                                          CLOSE
                                                 6411
                                                           COMM
                                                                  €600
                                                                           CONTO
                                                                                  7007
                                                                                           CONT 1
                                                                                                 7033
                                                                                                           CONT2A 7073
                                                                                                                           CONT2 7047
                          CONT3 7076
1252.
          CONT3A 7114
                                          CONT4
                                                  7121
                                                           CONT5
                                                                  740 C
                                                                           CONT
                                                                                  CQ 35
                                                                                           CRDO
                                                                                                  6616
                                                                                                           CRLF
                                                                                                                  6400
                                                                                                                           DATA2 0072
1253.
          DESAVE 0052
                          DFSET1 0066
                                           DESET
                                                  0073
                                                           BF 1
                                                                  0041
                                                                           DL2
                                                                                  7677
                                                                                                 6654
                                                                                                                  7464
                                                                                                                                  6337
                                                                                           DOTDO
                                                                                                           E DO
                                                                                                                           ERROR
          FIRST 0067
1254.
                                 7142
                                          FP177
                                                  7143
                                                           FP 2000 7146
                                                                           FP2C0
                                                                                  7144
                                                                                           FP4000 7147
                                                                                                                  7145
                          FM 10
                                                                                                           PP400
                                                                                                                           FP7000 7150
1255.
          FP7600 7151
                          FP7770 7152
                                                  0000
                                                                  000C
                                                                                                           GET CD1 6437
                                          F1A
                                                           F 1
                                                                           GDO
                                                                                  7200
                                                                                           GETCAE 6431
                                                                                                                           GOADR CC43
1256.
          HOLD 0053
                          IADDR 7137
                                          IFSAVE 0036
                                                                 0072
                                                                                  6040
                                                           IFSET
                                                                           INIT1
                                                                                           INIT
                                                                                                 6000
                                                                                                           INS
                                                                                                                  0037
                                                                                                                           JADR1
                                                                                                                                  0025
1257.
                                 7752
                                                  6056
                                                                  6057
          JADR
                 0042
                          KCH8
                                          KCRA
                                                           KCPB
                                                                           KEEP
                                                                                  0045
                                                                                           KFD
                                                                                                  7755
                                                                                                           KLING 7647
                                                                                                                           KLONG* 7753
1258.
          KRUS
                 7756
                                  6060
                                          K0377
                                                  6336
                                                           K102
                                                                  7757
                                                                           K20C
                                                                                  7754
                                                                                           LAST
                                                                                                  0020
                                                                                                           LFD01 6645
                                                                                                                           LFCO
                                                                                                                                  6625
                          KTTY
1259.
          LIMHT 0055
                          LIMLO 0054
                                                           ESAVE
                                                                 0050
                                          LISN
                                                  6463
                                                                           LTABL
                                                                                  6257
                                                                                           LTC
                                                                                                  7725
                                                                                                                  0066
                                                                                                                                   0053
                                                                                                           LT
                                                                                                                           MASK
1260.
          MDO
                 6730
                                 7672
                                          MOSAVE 0051
                                                                  6134
                                                                           NCONT
                                                                                           NEWINS 0067
                          MORE
                                                           M 4
                                                                                  0044
                                                                                                           NTYPED 6423
                                                                                                                           OCADE
                                                                                                                                  0031
1261.
          ODTLOC 7371
                          PBCDF 7446
                                          PBCIF
                                                 7445
                                                          PEREAD 756C
                                                                                  7653
                                                                           PC L 2
                                                                                           PC L
                                                                                                  7714
                                                                                                           PCNT5 7140
                                                                                                                           PCONTO 7366
          ECONTS 7367
                          PCREAD 6044
                                                  0073
                                                          PEEST1 7136
1252.
                                          PC 2
                                                                           PDO 1
                                                                                  7511
                                                                                           PDQ
                                                                                                  7502
                                                                                                           PFIELD 7347
                                                                                                                           2GTCD1 6461
1263.
          PIESET 7135
                          PIESTA 7365
                                                  7751
                                                           PNUM2 6114
                                          PMSK
                                                                           PNUM
                                                                                  6107
                                                                                           PNWINS 7134
                                                                                                           POPJ
                                                                                                                  6072
                                                                                                                           PREAD
                                                                                                                                  737C
1264.
          PSTCD1 6462
                          PUNCH1 7543
                                                 7526
                                                                 6061
                                                                                  7450
                                           FUNCH
                                                           PUSEJ
                                                                           PZPAT
                                                                                           P240
                                                                                                  6137
                                                                                                           F260
                                                                                                                  6140
                                                                                                                           P7
                                                                                                                                   6135
                                                                  6053
               7454
                                                  6052
1265.
          ÇDO
                          RAM1
                                 6051
                                          RAM2
                                                           RAMS
                                                                           READI
                                                                                  6204
                                                                                           READ2 6235
                                                                                                           BEAD3 6 240
                                                                                                                           READ
                                                                                                                                  620C
1256.
          RETRN1 0061
                          RETURN 5461
                                           BUART
                                                  6160
                                                           RUM
                                                                  7657
                                                                           SAVPC
                                                                                  C054
                                                                                           SCHAR 0025
                                                                                                           SEC
                                                                                                                  0070
                                                                                                                           SENIDO 7451
1267.
          SETCAD 5442
                          SETCD1 6451
                                          SFLAG1
                                                 6166
                                                           SPLAG3 6176
                                                                           SHUT
                                                                                  00 32
                                                                                           SKIP3 6172
                                                                                                           SKIP4
                                                                                                                  6 17 3
                                                                                                                           SK-PDR 6162
1268.
          SKPTBR 6163
                          SLD01 6610
                                          SLDO
                                                  6601
                                                           SM 270
                                                                 6332
                                                                           SM5
                                                                                  6333
                                                                                           SPNTER 0026
                                                                                                           S P 10
                                                                                                                  6334
                                                                                                                           SP 177
                                                                                                                                  6742
          SP200 6743
                          SP215 6744
                                          SP257
                                                  6745
                                                           SP260
                                                                  6746
                                                                           SP277
                                                                                  6335
                                                                                           SP400 6747
                                                                                                                           SP7600 6751
1269.
                                                                                                           SP6 201 6750
1270.
          STACKI 6050
                          STACK1 0074
                                          STACK
                                                  0062
                                                           START
                                                                  6000
                                                                           SUB 1
                                                                                  €045
                                                                                                  6046
                                                                                                                  6047
                                                                                                                           TAFLE1 6260
                                                                                           SUB2
                                                                                                           SUB3
1271.
          TABLE2 6303
                          TDO1
                                 7473
                                          IDO
                                                  7471
                                                          TEMP2
                                                                  0021
                                                                           TEMP
                                                                                  0020
                                                                                                 0071
                                                                                                                  6455
                                                                                           THIRD
                                                                                                           TM5
                                                                                                                           TOTE
                                                                                                                                   0023
1272.
          TP212 6456
                          TP215 6457
                                          TP6201 6460
                                                          TRADF
                                                                 0034
                                                                                  0033
                                                                                           TRAP1 7443
                                                                                                           TRAP2 7444
                                                                           TRAD
                                                                                                                           TRAP3 6054
                                 7447
                                                  6477
                                                                  6102
1273.
          TRAP4 6055
                          TRAP
                                          TTYM
                                                          TYFE
                                                                           UNDQ1 6712
                                                                                           UADO
                                                                                                  6670
                                                                                                           WCRA
                                                                                                                  6 165
                                                                                                                           WCRB
                                                                                                                                  6175
                                 7337
                                                  7303
                                                                  0024
                                                                           WTTY
                                                                                  61.71
                                                                                                           WVR
                                                                                                                  6174
                                                                                                                           ZPAT1 0064
1274.
          WD01
                 7314
                          WDO2
                                          MDO
                                                           WORD
                                                                                           WUART 6161
1275.
                 0005
          ZFAT
```