R

|
I

(\omsrv\,« w&\s :m\m«u\w«r\w \,,;o,w.z;m i '4"\(»/,,\:f(i&’f&m%ﬂ’?7?\)2»&*:,\»»70\0}(»‘2"‘\\‘#Mh’m\w\t“\n’\\m,mm‘ G

AR

mlcrocoraputer
esign

by Donald P.[Martin
Vice President, Product Development
MARTIN RESEARCH

edited and published by

Kerry S. Berland
Vice President, Marketing
MARTIN RESEARCH

SECOND EDITION
(Revised)
October, 1976

martin research
3336 Commercial Avenue

Northbrook, IL. 60062
(312) 498-5060

_ _ LI A Y
.. ")
i1 Copyright Page PREFACE : o | 7888
3
This book covers both basic and advanced information on designing l
with microprocessors. It assumes that the reader is familiar with digital | MB§31
electronic circuit design, TTL (transistor-transistor logic) in particular.) 1976
Martin Research has taken pains to ensure We have avotided unmecessary duplication of the manufacturers' literature [:“(31
the accuracy of the information in this on the 8080 and 8008 microprocessors within the text of this book, preferring
book. Nevertheless, Martin Research can to reserve as much space as possible for original hardware design information.
not assume any responsibility for the The 8080 and 8008 data sheets are reprinted at the end of the book for the
circuits shown, nor do we represent that peader's convenience. The reader should become familiar with them as he
their use is free from patent infringement. reads this book.

The novice might begin by reading through the 8008 and 8080 data sheets
and the following chapters:

2. The 8008 CPU
3. The 8080 CPU
5. Main Timing Logic
23. Software Tricks
25. Minimal Microcomputers
26. Nineteen-Chip Microcomputer
471. Central Processing Unit, Model 471 (an 8080 CPU board)

The reader already familiar with the 8080/8008 might start with these

chapters:
Cgpyright © 1976, Martin Research Ltd. All | 5. Maln Timing Logic i
rights rgserved. The contents of this bock 11' iﬁg?ﬁgoggggtIigiiizzzégzs
may not be reproduced by any method without) J 2
writton permission from Marin Rescarch Lid. 13. Random Access Memory (especially the RAM-PAGE option, Sec. 13.4)

16. Interrupts
25. Minimal Microcomputers
26. Nineteen-Chip Microcomputer
471. Central Processing Unit, Model 471 (an 8080 CPU board)

No book can substitute for practical hands-on experience with micro-
. computers. The modular micros from Martin Research provide an excellent
Library of Congress Card Catalog Number: 76-1530. series of hardvare for educational and prototyping purposes. As this book
goes to press, both 8080 and 8008 versions are available, and microcomputers
based on other CPUs are due for awnouncement shortly. For more information
on the modular micros, contact Martin Research.

. Martin Research will appreciate receiving your comments on this book,
including eriticisms both negative and positive. Ideas and corrections

)) will, with your permission, be used in future editioms.
Printed in the United States of America ’ ? | ’

Martin Research, 3336 Commercial Ave., Northbrook, IL 60062 (312) 498-5060

microcomputer microcomputer
MR, rggmgn MR gsngn

CONTENTS v

1. INTRODUCTION

2. THE 8008

3. THE 8080

4., MICROPROCESSOR

COMPARISONS

5. MAIN TIMING

6. BUS STRUCTURES

7. INPUT/OUTPUT
INSTRUCTIONS

8. INPUT DESIGN
APPROACHES

R T
Oy A DN N3Oy W Do

H G Do

« e e o e e = e »
OwW DU N WD

« e e a « o e e
ARG N Do

I NGV NC TN

N

o v s s e
[SERVA G I

5N

MICROCOMPUTER DESIGN

Designing with Microprocessors
Microcomputers

Notes on the 8008, 8080, and MOS Memories

Brief Introduction to Mierocomputers
8008 Architecture

8008 Timing Signals

PCI Instruction Cycle

PCR Read Cycle

PCC Command Cyecle

PCW Write Cycle

Instruction Cycle

A Simple Program

The 8080

8080 Hardware

8080 Software

Selected 8080 Technical Notes

Introduction

Systems Design
Processor Comparisons
The MIKE 5 Microcomputer

8008 Clock Cireuits

Fnable and Strobe Generation

Master Reset

Additional Cireuitry Required for
Basic Microcomputer

8080 Clock Generation

Introduction to Bus Structures
Latehing Logic

Three-State Devices

Advanced Strobe Techniques

Types of Bus Structure

Bus Transceivers and Bi-Bus Drivers
The 8008 Data Bus

I/0 Address Modes

8008 Input/Output Instructions

Input and Output Symbols

Generating Input Enables and Output Strobes
Peripheral Strobe Decoding Techniques

8080 I/0 Instructions

Input Design

8008/8080 Data Bus Input Voltages

Input Multiplexers

Input Enable and Select Stgnals

Expanding 8008 Imput Ports with Conditional
Inputs

Additional Input Ports Defined as Memory

MR

mlcrocorgputer
esign

(. .,
VT ’ CONTENTS [CONTENTS vt
- 9. OUTRUT .1 8008 Outputs 16. INTERRUPTS - 11 Interrupts Being Serviced Register
TECHNIQUES .2 Pulse Outputs cont'd .12 Priority Comparator
.3 Latehing Outputs .13 Interrupt Jam Logic
.4 8080 Outputs . 14 Numbered Return Instructions
.5 16-Bit Output Ports for the 8080 15 An Addressable Latch as an Interrupt Register
.16 Three-Level Priority Interrupt System
10. COMBINED .1 Combined Input/Output Techniques .17 Full Eight-Level Priority Interrupt System
INPUT/OUTPUTS .2 Table Lookups -18 Daisy-Chain Interrupt System
.3 Byte-Swapping
.4 Adding a UART 17. SAVING STATUS 1 Saving Status
DURING 2 The Program Counter Stack
11. ADDING 8008 .1 Adding Instructions to the 8008 INTERRUPTS 3 Index Registers
INSTRUCTIONS .2 Output Any Register -4 Flags (Condition Flip-Flops)
.3 One-Byte PUSH-POP Instructions .5 Status-Saving Techniques
.4 Numbered Instructions 6 Software Techniques
-5 WAIT Instruction 7 Saving Registers with Hardware
8 Saving Flags with Hardvare
12. EXPANDING 8008 .1 Expanding the Capabilities of the 8008 .9 Latching Up the Flags
CAPABTLITIES .2 One-Byte Push-Pop (LIFO) Register .10 Saving All Four Flags with Hardvare
.3 Sixteen-Byte LIFO Register .11 Saving Four Flags, Bus Structured Hardvare
.4 A 32-Byte FIFO Register .12 Status-Saving System, Example I
.5 Other 8008 Improvements .18 Status-Saving System, Example IT
.14 Status-Saving System, Example III
13. RANDOM ACCESS .1 Need for Memory in Microcomputers .16 Status-Saving System, Example IV
MEMORY .2 Memory Referencing
.3 Memory Address Conventions % 18. INTERVAL 1 Interval Timers
.4 RAM-PAGE Option : . ' TIMERS .2 Interrupt Interval Timer
) Random Access Memories .3 Timers for Input Ports
.6 The 256 x 4 RAM 4 Clocks for Interval Timers
.7 The 1024 x 1 Static RAM 5 Precounters
.8 The 4096 x 1 Dynamic RAM
.9 Transparent Dynamic RAM Refresh 19. DIGITAL .1 Digital Displays
DISPLAYS .2 Segment Decoders
14, READ-ONLY .1 ROMs and Other Memories .3 Multiplexing
MEMORY .2 Diode Programmable ROMs (DiROM)
.3 Field-Programmable ROMs (F/ROMs) 20. PERIPHERAL .1 Systems
.4 Reprogrammable PROMs INTERFACE -2 Cost-Effective Modularity
.5 Comparison of ROM Types DESIGN .8 An Efficient Microcomputer Bus Structure
.6 The ROMIN Optionm
21. KEYBOARDS .1 Keyboards and Microcomputers
15. DIRECT MEMORY .1 Direct Memory Access .2 The Keyboard Encoder
ACCESS .2 DMA with the 8080 .3 The FIFO
-4 Input to Microprocessor
16. INTERRUPTS .1 Need for Interrupts .5 The Repeat Function
.2 Initial Interrupt .6 Doing It with Interrupts
.3 How the Interrupt is Used
.4 Synchronizing Interrupt Requests (8008) 22. ANALOG «1 An Analog Interface System for
05 Simple Interrupts INPUTS AND Mierocomputers
.6 Introduction to Priority Interrupt Systems OUTPUTS .2 Analog Input Amplifiers
.7 Interrupt Request Register .3 One-Channel Tracking A/D Converter
.8 Interrupt Request Synchronization Register 4 Sample/Hold and Track/Hold
.9 Priority Encoders .5 Analog Multiplezer
.10 Priority Registers J J
N

microcomputer rocomputer
MR rggmgn MR ricroc 'Hgmgn

viid

CONTENTS

INTRODUCTION 1-1

22.

23.

24,

25.

26.

471.

8008

8080

ANALCG
INPUTS AND
QUTPUTS
eont'd

SOFTWARE

TESTING

MINTMAL
MICROCOMPUTERS

NINETEEN-CHIP
MICROCOMPUTER

8080 CENTRAL
PROCESSING
UNIT

DATA SHEET

DATA SHEET

©wN™

.
[N

O N O T D

N o

D W R

NIV RLCIE

00N DO o

L S R O T Y
Dy O A W Do

Successive Approximation A/D Converter
D/A Converter

Multiple Analog Outputs

Analog Range Switching

Software Tricks

Clear the A Register Instruction
Complement Instruction

Multiple Precision Add and Subtract
Incrementing H and L Registers
Clear RAM Memory

Indexed Jump Table

Indexed Loops

Hard HALT Instruction

Push All Registers

8080 PUSH/POP Instructions

Testing Microprocessors

Designing for Easy Testing

Sixteen-Channel Oseilloscope Display

Octal Data Display

Keeping the Ready Line Open

Using the Self-Transfer Instructions for
Testing

A Nine-Chip Mierocomputer .
Using the CC-DH Register as a Buffe
A Twenty-Dollar Microcomputer

A Seven-Chip Microcomputer

A Nineteen-Chip 8008-1 Microcomputer
The Microprocessor

Main Timing

State Decoding

DH and DL Registers

RAM and ROM Memory

I/0 Strobe/Enable Decoding

Input Port

Keyboard Encoder

Interrupt Function

Introduction
8080 CPU

1.7 Reset Circuitry
1.8 Interrupt Logic
Bus Drivers 1.9 Hold Cireuitry
Main Timing 1.10 Wait Circuitry
System Control Logic 1.11 Indicators

I/0 Instruction Modes 1.12 Power Required

SEC. 1.1 MICROCOMPUTER DESIGN

This book is about how to design a microcomputer. It focuses on
microcomputers based on the first single~chip eight-bit microprocessor to
reach high-volume production--the 8008--and on the improved second-generation
device, the 8080.

The microprocessor itself is the miniaturized central processing unit
(CPU) of a small computer. The significance of the microprocessor in elec-
tronic design is that the flexibility, adaptability, and logical processing
power of the digital computer are now realizable in relatively small and
inexpensive electronic products.

This bock fills a gap in the literature presently available on micro-
processors, since it concentrates on the hardware necessary to make the
microprocessor a part of a practical and cost-effective electronic system.

SEC. 1.2 DESIGNING WITH MICROPROCESSORS

1.2.1 Simple Microcomputers The first 8008 circuits published and
produced by the 8008 originator, Intel

Corporation, were designed to exhibit the full potential of these CPUs.

They used complex circuits to generate asymmetrical clocks, which optimized

8008 speed, but which--together with other such needless complicated designs--

made using microprocessors look difficult. This was at a time when the

technology was new, and the need was for design concepts to help engineers

get started.

The first edition of this book presented the simplest possible micro-
computer designs, using the fewest possible standard ICs to achieve the
desired features. Tt is easier to add ICs to a simple design, to increase
its potential, than it is to rework a needlessly complex design. Thus, for
example, Chapter 5 greatly simplifies 8008 main timing circuitry, and
Chapter 7 simplifies the creation of I/0 interface signals.

The second generation 8080 is a step forward for the designer. Largely
because it is housed in a LO-pin package (while the 8008 comes with 18), the
8080 makes more of its essential signals directly available to external
control circuitry. Still, upon reading the manufacturers' 8080 literature,
many designers are needlessly confused. The timing diagrams are complex
and essential information is scattered among many data sheets.

. In this second edition, our goal remains the same: to show how to use
meroprocessors--8080 and 8008--in practical microcomputers. The section
on the 8080, Chapter 3, is expanded, and a data sheet for the Model U471 8080
computer is reprinted near the end of the book.

MR

mlcrocorgpgtgeg
esl

MR mmrocorgputer

esign

NN
S

1-2 ’ INTRODUCTION

INTRODUCTION 1-3

SEC. 1.2 DESIGNING WITH MICROPROCESSORS (cont'd)

1.2.2 LSI Chip Design and Cireuit Board Design The integrated cir-

cuits now available
which make use of LSI (large-scale integration) are impressively com-
plex. One package may contain the equivalent of dozens of ordinary ICs
and over a thousand transistors. The 8008 and 8080 microprocessors are
good examples of this trend.

There is a distinct difference between an effective circuit design
meant to be implemented within an LSI integrated circuit, and a good
logic design using conventional ICs on a printed circuit board. The
circuit designer needs to be aware of these differences, or his design
may not be very efficient.

Take for example the 8008 microprocessor. Eight of the pins on
its eighteen-pin package are used for its eight-bit bidirecticnal data
bus. Nearly all communications between the 8008 and the outside world
take place via this bus. Information on this bus may travel to and
from the 8008's arithmetic logic unit; its seven eight-bit data registers;
its eight fourteen-bit memory address registers; its memory control
logic; and its instruction decoding logic. The data on the bus may
represent input information, output data, an instruction code, or a
memory address. All of these processes take place at distinct times
in the CPU's internal processor operations. (For details, see Chapter 2.)

Within the microprocessor, the eight-bit bus is piped around to all
the major sections of the CPU. One of the most important elements in
the chip's architecture is the control circuitry that selects which of
the various sections within the CPU drive the bus, and which receive
from the bus, at each stage in internal processor operations. (See
Chapter 6 on bus structures generally.)

Consider for a moment the implementation of a bus control circuit
using ordinary TIL ICs on a printed circuit board. These timing signals
must be decoded into their eight possible state combinations, and used
to activate a variety of devices connected to the bus at different
locations on the PC board. The board would need a 3-to-8-line decoder,
and a likely choice would be a single TTL IC. This chip would contain
eight 3-input”NAND gates plus six inverters. The disadvantage of
using a single-chip decoder is that, since eight decoder output lines
are needed in many different places on the PC board, eight rather than
three copper wires must be run all over the board. Still, no board
designer we know is likely to choose separate gates over the one decoder.

SEC. 1.2 DESIGNING WITH MICROPROCESSORS (cont'd)

The more complex IC and extra PC wires are generally much cheaper than
buying, stocking, testing, stuffing, and soldering extra ICs. After
all, adding just two IC pins means two extra bonding pads on the chip,
two bonds to the IC lead frame, two pins, two holes in the PC board, a
copper foil pattern, and two solder joints.

Contrast the design decisions which face the chip designer when
laying out the mask used in etching the silicon wafer from which a CPU
is made. An on-chip 3-to-8 decoder may well be implemented with eight
discrete 3-input NAND gates and up to twelve inverters, each gate and
any needed inverters located right where the decoded signal is needed.
Only the three lines to be decoded are bussed to the far corners of the
chip, rather than the eight decoded outputs. Otherwise, the five extra
bus lines would probably take up more chip area than any duplication
in gates.

These considerations affect the way the microprocessor is organized.
First, a relatively large number of special~purpose timing and control
signals are developed on the chip, at multiple locations; they are de-
rived from a minimal number of general~purpose timing signals. Second,
only these few undifferentiated timing signals are brought out of the
IC package to the outside world. This means that the hardware external
to the 8008 must redevelop many special-purpose control signals in
order to interface memory, input ports, and output ports with the CPU.

If one looks at the photomicrograph of the 8008, one sees that it
was laid out by an excellent chip designer, who uses extra gates sooner
than extra bus lines. But it is not effective for the hardware designer
to mimic the chip designer in developing his microcomputer control and
timing logic. He needs to develop circuitry which does its job with
a minimum number of parts. Thus his timing and control logic may not
look exactly the same as that used inside the CPU.

First, the designer must thoroughly grasp the internal processor
operations of the CPU. Next, he must understand how the microprocessor's
basic timing signals relate to the internal operations. (In the case
of the 8008, there are six basic timing signals: &1, 62, S2, S1, S0,
and SYNC). Only then should the design of his hardware begin. This
approach is much more likely to be productive than copying, or trying
to simplify, the 8008 designs published by the chip's manufacturers.

And, using this method, the chip count for the basic 8008 microcamputer
can be cut from 20 to 50%, depending on the application. (See Chapter
5 on main timing logie; Chapters 25 and 26 for design examples.)

The designer who thoroughly understands the operation of the micro-
Processor is also in a position to do things with the CPU that do not
appear in the manufacturers' manuals. (For a simple example, note how
extra input instructions can be added to the 8008, in Chapter 8.)

microcomputer
esign

MR

mlcrocorgputer

esign

oy R en oy

1-4 ’ INTRODUCTION

INTRODUCTTON 1-5

SEC. 1.8 MICROCOMPUTERS

1.3.1 Applications Ultimately the speed and versatility of caming

generations of microprocessors will allow de-
signers to build microcamputers which will rival today's best minicom-~
puters. Much of the current excitement in the engineering community
about microprocessors seems to be focused on this prospect.

However, many applications exist already for the microcomputers
that can be built with today's microprocessors. The products in which
microcamputers are used are not necessarily computers themselves; the
word computer would not even occur to the average person using many of
them. They include a wide variety of digital electronic devices, from
automatic scales, to computer peripherals, to industrial controls, to
communications devices~-OEM equipment marketing for as little as
$500.00 or less.

Some examples: fancy programmable calculators, electronic games,
autotuning digital-display radios. Automotive carburetion and emission
control; anti-skid braking. Building security and temperature moni-
toring; elevator controls. Machine tool programmers, traffic light
systems. Medical patient-monitoring consoles, biochemical analyzers.
Low-frequency digital filters and Fourier analyzers. Complex elec-
tronic measurement instrumentation; circuit testers. Telephone ex-
changes, computer peripherals, typesetters, point-of-sale cash regis-
ter/computer terminals. '

Sometimes a microcomputer is employed because this technology has
made the use of digital electronics comercially feasible for the first
time. In many products, the microcomputer displaces a random logic de-
sign because it is more cost-effective--either in simple cost per unit,
or because of the design flexibility afforded the manufacturer by the
programmable microcamputer.

1.3.2 What a Microcomputer Does A microcomputer is a programmable
logic unit based on a microprocessor.
As the name implies, the basic principles of computer technology are
used in the microcomputer. The electronic circuitry is configured to
perform logical operations on discrete blocks of binary-encoded data
(eight-bit bytes, in the 8008/8080). Each operation takes place
sequentially at a set speed, and is under control of binary-encoded
instructions. The versatility of the microcomputer depends in part
on the microprocessor's instruction set, which generally provides basic
logic operations (AND, EXCLUSIVE OR, etc.) and arithmetic operations
(ADD, SUBTRACT, etc.). Also provided are instructions which receive
(INPUT) data and transmit (OUTPUT) data to and from associated equipment.

SEC. 1.3 MICROCOMPUTERS (cont'd)

The programs needed by the microcomputer in carrying out its func-
tions are usually stored in a permanent semiconductor memory (read-only
memory, or ROM). The microprocessor reads each instruction from mem-
ory, executes it and then proceeds to the next instruction. The
conditional instructions cause the microprocessor to jump nonsequentlally
to a designated step in the program only if the results of the previous
operation meet a specified condition. These instructions are basic to
computer programming, and are really what makes a mlcrocomputer a
computer, rather than just a moderately complex programmable logic unit.

Most microcomputers require more temporary data storage capacity
than is available within the microprocessor itself, and therefore in-
clude an array of RAM (random access memory). The microprocessor can
write data into RAM, read data from RAM, or read instructions from RAM.
The CPU includes facilities for addressing any given location in mem-
ory, as specified by the programming.

1.8.8 Advantages of Microcomputers A certain degree of design flexi-
bility is possible with conven-

tional digital logic designs. For example, an accessory can plug into

a main circuit board in order to add a desired feature. However, mi-

croprocessor technology implies a whole new level in design flexibility.

First of all, with conventional logic, a design change usually
necessitates a redrafted printed circuit board. When microcomputers
are used, frequently the only change necessary is a change in software
(programrmng) --which involves reprogramming (ie remasking) a ROM, or
reprogramming a PROM--more economical and rapid procedures in large—
scale production.

Second, the microcamputer can serve as the basic digital logic
element in a whole family of related equipment. For illustration, let
us assume that the designer is working with a series of computer periph-
eral devices: a CRT display, a line printer, a send/receive terminal
with keyboard, etc. The microcomputer itself fits on cne printed cir-
cuit board, and is used in each of these devices. It consists of the
microprocessor, main timing circuitry, ROM to store the programs, RAM,
and some general-purpose input and output interface chips.

On separate boards go the components needed for the specialized
functions of the machine: power drivers, keyboard encoders, deflection
amplifiers, modems, etc. The ROM needed to store the appropriate in-
structions for these different machines plugs into a socket on each
separate board. An efficient bus-structure design optimizes flexibility
and modularity.

mmrocorgggltge;

1. mlcrocorgggltgerr‘

1-6 ' INTRODUCTION

, THE 8008 2-1

SEC. 1.4 NOTES ON THE 8008, 8080, AND MOS MEMORIES

The technology used in the manufacture of the 8008 microprocessor is
a fourteen-volt P-channel process. That is, the device requires +5 and -9
volt power supplies, for a total potential of 14 volts. This process is
also used to produce the 1101 (256 x 1 RAM) and the 1103 (1024 x 1 Dynamic
RAM). A similar process is used in the production of the 1702A (256 x 8 PROM).

Microprocessors are produced in relatively low volumes, at least in
comparison to the semiconductor memories which make up the bread-and-butter
sales for these manufacturers. The 1103 1024 x 1 dynamic RAM was the first
semiconductor memory to begin successful large-scale competition with core
memories, for application in computer mainframes. But since the same 14-volt
P-channel process is used to manufacture both these memory devices and the
8008, the extensive efforts to improve the process have resulted in improve-
ments in the 8008. Many standard 8008s test to 8008~1 speed specifications
(60% faster). Though you must buy an 8008-1 to be sure you get one, it is
not surprising for an ordinary 8008 to beat the 8008-1's 2.5-microsecond
cycle time.

Similar comments apply to the 8080 and its 17-volt N-chamnel process.
For example: the Intel 2104 high-speed UK RAM uses the same process as the
8080, requiring power supplies of +12, +5, and -5 volts. With competition
to capture the YK RAM market very tight, it 1s to be expected that the 8080
microprocessor will benefit from further improvements to the 17-volt N-chanmel
process.

For every microprocessor made and sold, a nurber of memory chips change
hands. Even in a small microcomputer, it is typical for there to be a
greater dollar investment in memory than in the CPU chip. From the manufac-
turer's standpoint, moreover, the microprocessor is a relatively expensive
device to develop. A large amount of his cost is tied up in initial R € D
(especially if he originated the device), in documentation, and in software
support (if it is offered). Often, for competitive reasons, there is a
great deal of price pressure on the CPU. The result: microcomputer
component 'packaging." Production-volume quotations from microprocessor
manufacturers often include not only the CPU, but various peripheral logic
devices (clock generators, bus drivers, etc.), plus an array of solid state
memory (PROM and RAM). The current price of a given microprocessor, in
large quantities, is often a well-kept secret, varying from transaction to
transaction, depending partly on the amount of adjunct circuitry purchased
at the same time.

SEC. 2.1 BRIEF INTRODUCTION TO MICROCOMPUTERS

In the past, only the simplest logic design techniques could be
used in small and inexpensive electronic systems. The technology whereby
many transistors can be included in a single package has made it feasible
to employ very sophisticated designs in low-cost products. The micro-
processor provides the most advanced example of this trend. The para-
graphs that follow trace the evolution in logic design that led to the
microcomputer.

2.1.1 Binary Logic Engineers discovered long ago that complex mach-

ines may readily be designed through the use of
binary logic. Perhaps the best early example is the telephone switching
system, making use of electro-mechanical switches (relays). Each con-
tact may be in one of two states, open or closed. These states are
generally represented as logic one (1), or true, and as logie aero (0),
or false.

Switches have long since been replaced with transistors, and volt-
age levels represent the logical states. Since only positive logic is
used in this book, a logic one always represents a higher (more positive)
voltage, and a logic zero represents a loawer (more negative) voltage.

The reader is presumably familiar with these matters in general,
and with transistor-transistor logic (TTL) in particular. For the novice,
a good place to start is with The TTL Applications Handbook (August, 1973,
Fairchild Semiconductor, 464 Ellis St., Mountain View, CA 94042.)

8.1.2 Combinational Cirveuits A circuit which cantains only gates,

and no latching elements, belongs to
that class called combinational cireuits. TFigure 2.1.1 shows a block
containing only combinational logic, with m inputs and » outputs. For
any given set of inputs, there is a unique set of outputs, which does
not depend on the previous history of the inputs. (This overlodks the
propagation delay of the gates, which is usually a negligibly short por-
tion of the history being considered.)

Logic equations, Boolean algebra, truth tables, and Karnaugh maps
are useful tools in analyzing combinational logic.

mlcrocoraputer
esign

MR mlcrocmaputer

esign

.

2=2 ’ THE 8008

THE 8008 2-3

SEC. 2.1 BRIEF INTRODUCTION TO MICROCOMPUTERS (cont'd)

GATES
or

— > PLAS LV
INPUTS or OUTPUTS
ROMs

Fig. 2.1.1--Combinational Logic

2.1.83 Sequential Circuits Combinational circuits are often combined

with latching elements such as flip-flops,
registers, latches, one-shots (moncstable multivibrators), etc. A cir-
cult designed with latching elements does not necessarily have a unique
set of outputs for a given set of inputs. In general, the outputs depend
not only on the current set of inputs, but also on the sequence of inputs
r*eoZJ:ved in the past. For this reason such designs are called sequential
machines.

Simple sequential circuits often consist of a number of gates and
flip-flops arranged in a manner which is specifically related to the
structure of the inputs and outputs required. Such circuits are often
referred to as random logic. Figure 2.1.2 shows the block diagram of
a random logic sequential circuit with m inputs and = outputs.

GATES

—f and >

INPUTS | FLIP-FLOPs | OUTPUTS

Fig. 2.1.2--Random Logic Sequential Cireuit

As mentioned above, the advent of large scale integration (LSI) has
made more compact logic circuits feasible. For very high-volume appli-
cations, a random logic design of moderate complexity may be put onto a
single integrated circuit. For small-volume applications, this approach
is not cost effective. The advantages of LSI may still be cbtained,

SEC. 2.1 BRIEF INTRODUCTION TO MICROCOMPUTERS (cont'd)

however, using structured sequential cireuits. TFigure 2.1.3 shows a
structured circuit where the memory elements are separated from the
conbinational logic elements. This allows the integrated circuit manu-
facturers to design general purpose logic arrays on some chips (inte-
grated circuits) and general purpose memory elements on other chips.
This means that the same chips may be used by many different customers
for totally different logic designs. In this way the low cost advantage
of volume production may be realized.

In addition, structured sequential circuits are often more easily
understood and modifications or corrections are more easily implemented.
Figure 2.1.3 shows a structured sequential circuit where the carbina-
tional logic is implemented with a read-only memory (ROM) or programm-
able logic array (PLA), and the latching memory elements are implemented
with chips containing multiple flip-flops with a cammon clock. Another
set of flip-flops for the purpose of synchronizing the inputs, and a two-
phase clock, complete the necessary elements of a simple structured
sequential circuit.

Whereas this circuit is excellent for a medium-complexity appli-
caticn, there are more complex problems where the size of the combina-~
tional logic required becomes unwieldy. In addition the nunber of
memory elements may not be adequate to perform larger tasks.

t/
7
COMBINATIONAL MEMORY
LOGIC s/ ELEMENT |/ |/ outpuTs
INPUTS SYNCHRONIZATION 7 / 7
",'/ "}/ ROM or PLA FLIP—FLOPS
FLIP ~FLOPS
TWO QI]
PHASE D2
cLOCK

Fig. 2.1.3--8imple Structured Sequential Circuit

2.1.4 Computers More complex sequential circuits are often called
computers. The structure shown in Figure 2.1.4 is

a simplified representation of a camputer. Note that, near the center

of the diagram, the computer contains an array of carbinational logic.

More importantly, the overall structure is that of a sequential machine--

since memory elements are inserted in a digital feedback path between

the output and input of the cambinational logic.

MR mmrocornggtge;
I

LI mncrocoraggltgg

2-4 THE 8008

THE 8008 2-5

SEC, 2.1 BRIEF INTRODUCTION TO MICROCOMPUTERS (cont'd)

[,
o
a
A 5
>
o
['4 o [
w w w - o
[o - + S
s @ J a0 o 14 .o
e < [0} o " Eo
w w w
@ a o Ox
= AEEA A
HE:
ol S
J
e
o @
Sul" gm
o 9|2 o0
aq Q| Q @ O
z 91° S
w (7]
)
- o —
T"
< 4
N/ I
J
<
z
26 w
v = - = <
g5 s 8 & < 8]
3 b 1S
b3
o " 1
o
N S
wyx k=
Suno «
2q0 X
\—Wr—\ '_Iz’jg
o w
- o
i u
3 &
o [5

3/s

D2

Ty
y

SYNC
and
MUX

il

Fig. 2.1.4--Simplified Block Diagram of a Computer

SEC. 2.1 BRIEF INTRODUCTION TO MICROCOMPUTERS (cont'd)

In Figure 2.1.4, input data is brought into the system at the left.
A multiplexer (MUX) switches between several sources of input data, in-
cluding the memory array (ROM and RAM) which is part of the system. After
being synchronized with the system's time frame, the input data passes
to an index (I) register, and thence to an array of combinational logic
which is used to decode the information and produce varicus strobe, enable,
and other control signals. These signals, in turn, are used to route
input data to other registers and to the arithmetic logic unit (ALU).

The ALU can perform arithmetic operations like addition and sub-
traction; logical operations like AND, OR, and ROTATE; and, in complex
units, other operations like MULTIPLY and DIVIDE.

The control signals may also be used to pass data to the outside
world through an output register.

The key to the computer is its use of memory. The computer carries
out one operation at a time, under control of a program which is stored
in memory. After carrying out each operation, the computer fetches
another instruction from memory, and then carries out the new operaticn
which is designated by the new instruction. Thus, referring to Figure
2.1.4, the sequence might occur as follows:

01d operation is finished.

Get ready to fetch a new instruction.

Enable the PC Register, which addresses the location in memory
where the next instruction is stored.

Get ready for the next instruction by incrementing the PC register.
Enable memory.

Read the new instruction by switching the input multiplexer to the
memory bus.

Decode the instruction to see what it wants.
Execute the instruction, i.e., carry out the designated operation.
Example: an Input 7 instruction. Switch the input multiplexer
to input port number 7; create the required strobe signals, and
pass this information along for temporary storage in the A register.
Fetch the next instruction from memory.

Ete.

‘MR mICI'OCOI'H

puter
esign

MR mmrocorggtsjltgerr|

ot ' THE 8008 THE 8008 2-7

SEC. 2.1 BRIEF INTRODUCTION TO MICROCOMPUTERS (eont'd) SEC. 2.2 8008 ARCHITECTURE (econt'd)

As implied by the above example, the computer is a highly structured
sequential machine which moves through its operations in a very regular

manner. The PC register, or program counter, keeps track of the machine's M zs[3| =| 8 =] g] &
operations. < ; g
oo
The real power of the computer depends on instructions which do g 3

not necessarily follow the strict numerical sequence of instructions ITTETSETCE
stored in memory. For example, a JUMP instruction might tell the com-
puter to leave the current instruction number and fetch its next instruc-
tion from an entirely different address in memory. Even more powerful are
eonditional branch instructions, which send the computer to a new memory
address only 1f the contents of an index register meet a specified con-
dition. For example, a JUMP TRUE ZERO 010 300 instruction would cause

the computer to test an index register to see if the current contents

are zero. If so, the program counter is loaded with memory address

010 300, and this is where the next instruction cames from. If the
register contents were not zero, the computer simply proceeds with the
next instruction, in ascending numerical order.

(14)
(a}
(14)
1)
(14)
(14}
(18}
04

{88!m)
INTERNAL DATA BUS

STACK

MULTIPLEX

e

LEVEL NO.1
LEVEL NO. 2
LEVEL NO. 3
LEVEL NO. 4
LEVEL NO.5
LEVEL NO. 6
LEVEL NO.7
ADDRESS
STACK

PROGRAM COUNTER

HILNIOd XJVLS

Bi-DIRECTIONAL
DATA BUS

vaf——]

Though Figure 2.1.4 shows the use of memory for storing instructions, 28 = g3
for simplicity's sake it does not show the other important function of PR g8 EE fuf e.3 o @
memory--particularly random-access memory (RAM). That is, memory is & §§ = §§:> §§3§§§ — £2c ¢
used for temporary data storage by the computer in the course of com- a g= ge =78 e " “
plicated operations. . > >
SEC. 2.8 8008 ARCHITECTURE o L)

g zf—=
i . < £

The 8008 was the first eight-bit microprocessor on a single chip. ek g2 gf— o
Essentially the miniature central processing unit of a small computer, iz =<] e
the microprocessor performs the essential logical and control functions £ — 8
of a miarocomputer. Figure 2.2.1 shows the block diagram for the 8008. 2 2]

Though more complex than the sequential machines shown earlier in th1§ PN |
chapter, the basic principles are the same. And even while the 8008 is o P
being superseded by the second-generation 8080 CPU (discussed in the Dg :_l
next chapter), 8008 architecture provides a useful transition between 52 .
these sequential machines, and more complex microprocessors. g; o ”
2 =

2.2.1 Bus Structure The 8008 handles data in eight-bit bytes. Thus, @ g L;_J

most of the elements within the CPU are inter- J r i
cormected via an eight-bit data bus. The data bus buffer, a bidirec- — 2%
tional bus driver, is used to drive external devices from the CPU, or
(when the driving direction is reversed), to input data from external
devices onto the CPU's internal data bus. (See Chapter 6 on bus
structures.)

Fig. 2.2.1--8008 Block Diagram
J e J

microcomputer microcomputer
MBA. Qesign [(MEH: esion

2-8 THE 8008

THE 8008 2-9

SEC, 2.2 8008 ARCHITECTURE (cont'd)

2.2.2 Instruction Decoding The instruction register is an eight-bit
temporary storage register which receives

instructions from external memory devices. The instruction decoder

deciphers what operations should be performed by the MiCroprocessor.

2.2.3 Program Counter The program counter stores the address in

memory from which the CPU is currently fetch-
ing instructions. 'The counter is made up of a stack of eight registers,
in eight levels. This enables the program counter to keep track of
subroutines in the program. For example, a CALL instruction makes the
CPU leave off processing the microcamputer's main line program (on level
no. 0), and jump to a subroutine whose instructions are stored at a new
location in memory. The former memory address remains on level no. 0, and
the new memory address is now at level no. 1 in the stack. Thus, the
8008 permits nesting of seven subroutines in the PC stack. At the end
of the subroutine, a RETURN instruction causes the CPU to returmn to
level no. 0 in the stack. The stack pointer keeps track of which level
in the stadk is cuwrrently being processed.

Often it is said that a CALL instruction pushes down one level
in the stack, and that the RETURN instruction pops the stack. Actually
the stack itself does not change; i.e., the contents of the various
levels do not get transferred among each other; only the stack pointer
is moved.

Note that each level in the EC stack has a fourteen-bit capacity.
This allows the 8008 to address 2]‘l, or 16 K bytes of memory (see Chap-
ter 13). 'The memory address is divided into eight low-order bits (PCL)
and six high-order bits (PCH).

2.2.4 Index Registers During the processing of data, it is useful

to have a seratch-pad: a small array of
easily-accessible memory. The 8008 has seven general-purpose index
registers, labeled 4, B, C, D, E, H, and L. Transfers of data between
these registers are easily accomplished in a direct manner through the
8008's instructions: i.e., LAB (load the A register from the B register).

The A register, also called the acouwmulator, is specially desig-
nated as the register used for cammunications between various elements
in the microcomputer. Thus, 4nput data to the 8008 fram an input de-
vice outside the 8008 ends up in the A register at the end of an input
instruction. Output data, intended for an external output port, must
first be loaded into the A register before an output instruction is
executed. And, the arithmetic logic unit both operates on data in the
A register, and stores its results in the A register.

SEC. 2.2 8008 ARCHITECTURE (cont'd)

The H and L registers are specially designated for referencing
memory external to the CPU, for the purpose of reading data from memory
(random-access memory, or RAM, or read-only memory, ROM) and for writing
data into memory (RAM only). (This function should be distinguished
from the PCH and PCL registers, which reference memory for the purpose
of fetehing instructions.)

2.2.5 Arithmetic Logic Unit The 8008's arithmetic logie unit (ALU)
is capable of addition, subtraction,

and several logical operations: AND, OR, EXCLUSIVE OR, comparison, and

rotation. (For details, see discussion of the instruction set below.)

2.2.6 Flag Flip-Flops Tour flag flip-flops may be set by the opera-
tion of the ALU: the carry (C), parity (P),
sign (S), and zero (Z) flags. (They are discussed further in the 8008
Manual and in Chapter 17.) In turn, each flag may be tested through the
use of conditional branch instructions, with subsequent program flow
dependent on the state of the tested flag. For example, a Jump True Zero--
JTZ--instruction will cause the CPU to jump to another location only if
the zero flag is true, i.e., logic ane.

2.2.7 Temporary Registers Two temporary registers provide storage

of intermediate data. They are used by
the CPU for internal data transfers, and are not directly accessible
through program instructions (as are the index registers). Labeled the
a and b registers, these temporary registers should not be confused with
the index registers, 4 and B.

2.2.8 Timing and Control The 8008 requires a two-phase clock, gen-

erated by external circuitry (Chapter §5).
The 41 and @2 signals are used to synchronize the various stages in the
8008's internmal processor operations, as described below.

SEC, 2.3 8008 TIMING SIGNALS

For complete details on 8008 processor operations, the reader is referred

to the 8008 data sheet which ig reprinted near the end of this book.

mlcrocorgputer

MR esign

MR mmrocorgputer

esign

2-11

$nQ 016P a1 18 HQEEAT 31 30041 UOIPUOA

“pRIEdIpuL 5t B 0244OLS Wb
“Apeusaix3 ‘pezuBOIR 31 LIAHEILN UE [N 2 L1 1 ul
Sormwss AL (14D BUl 1IN0 PURLWOS LTVH ¥ URM 8L
“a0A2 AJOWNM 1X2U 341 D) STUEAPE 181UNGD
asis Byl ez PUE PaRA 31 N £ HPY SY “PRISKALOD 0 OF
wouwIad0 N0 i 07 PaGAN 8 N PuBwIEd AQYIY ¥ LY
Ogies

€qwstgieq 't

sauncd

"HOg Olu PIPEO; IR 10,32 0432 01 13 Bur
1110 19i0 1€ Pur 134 C1 papRO) 34k SQ WO £ TG BL
51 Pus ¥ Burtdins 3PAD AJOUIRY 1X3U OF BIUSKDN “HINIZIO
Iwo#i3 byl O 00T ‘AN 31 LOPLO) NYNLIB 24l WIUM E1L
Boxd au) O1ur PIOEOI 38 131AQ
2uB1y PuE s3m0)) PUE "y 12 PIIND

S3L13 'S4 UOLIPUGA Wk PUE FUONIPUCT 31 TIVD 2 VUM ZL

WA Asowumu 1xau ey

eApE 12UNGD 2101 3l PUE Poddins 2¢ G1 P EL
8} UOAIPUCD Y PUE IELOIIPUTD 5 JWNT WL YR 1L
(HIAD a1tim Asouwsew) IOAI MOd DL

NS #O! e $I0URD X,

1aPAD pemy Asowen) #IA2 Wdd

PRGNS M Sa1ens aeeu L

('q smsibayy Ut € sesiey) 3iaULL TIED Pur
SUOLEINI0 IRUUIIE 10} AllTuIRU PR 910 LIRER OS]

@ Nms

vonanntur ue

Ha0U3aP 1 PUE SEBES UOLINILL B O

aur 1 ey

(o> 2uso w1 ‘51 UbnO
o3 (oonanatunt 1

Fig. 2.3.3--8008 Internal Processor Operation

(o042 243 304 'S
COESLCE
9034 FHIOL
WASNIHOL3Y | 1nOH3d | 1n0Tde 2] IS0 [[(33
- @) LIVH ¥
G°D3Y W HI 0L
MISNIMD133 | ANOHDe | 1n07Y3¢ L] LM x 00 000 00
SNOLLONYLSNI INIHOVIN
uy »nouw“ ﬁ:&,n.uuwu -~ — nxwumu_axw.»w“ 100M34 | 1002 9 1nQ twe wuyy 10
voImoL [einng | a0 100GL | (o 1IN0 OL 4938 ¥ b1 0L
a'03y__ j#aNOY O4vivd 97934 LAREL] - WISNIHD133 | ANOHO¢ | 1noTod 181 4Nt LAWN w0 oD [
SNO1LINYLSNI O/
ey
134049934 | Hod04 ¥ 03y nummz_u.wuﬂwu 1n0OH2¢ | 1n072¢ 1s) isy L0V wvwy o0
Q036 PHIOL
x €L} HOVAS dOd Ihmz. HO134 1noHag 1n07od (6 10C) 21y Ly 0 291 00
x (£1) NIV LS ¢Od nlﬁbww”_lv‘“_.—.nwu“ 100HDd 1no0712d 15106 24y Ly o 220 oo
-~ - . X NOYLS 404, a..uo»umﬂ_ﬂw.»w“ 100H3d | 100124) 13y (S X X % 00
Ha nu,‘uwn .owwnlun._.(xwmw_x 1nOHO4 winolad | .oadwuwﬂww_ ingHod | ®1n0Tad - nxc.wwu_cxwww“ 1noM2d | 1natae 1108 212 5 1o 20Dt)
5. x Lk £
EAY nu.wwn -o,;wmn mn__,(xuuuw.x 1NOKD$ 81110704 ,aoﬂwwuﬂwn inoHad | @unotay - axwwmn.qxw_pw“ 1NQM3¢ | 1n0T0de Qo6 243 o1 6 3320 0
R [TTeor | Hosol 938 QD3I OL D34 ¥ HIOL
) Q934 cogy |aav uanom| 1noHse | wunotae |~ laavueamor| 4noMos | WiinoTod ST 7 | wasiwdsads | unoMoy | ungTod sl v o1 L xxx 10
0 [54 OL H54 0L Q938 0L 9 939 ¥ HIOL
m -~ a3y o3Iy inotod | wunotos |, |aovuamon| inoWds | @1:n0iaa | ‘uisniwdi3a| inoHoa | 1n0Tde w8 ur no0 231 1o
D4 OL Hogor [t *'O3 Q'936 0L N 4703y ¥ HI0OL
o0 q°93y . aav 43HOM| LNOHId @100y - Q0Y HINOY AnoHod | 18110014 - HISNIHDL33 | 1nOMDg | 100To¢ (] aar boo0 330 10
) auME. ot .aa«.x.wo.ww_x inoMad | wanotoy | T c%duﬂm“ 1noHad jn_»:cd. - nxo»mmuaxw_»w“ 110H3¢ | 1n0724 wo s 0o 1 xxx °
‘938 03y ‘0av ¥3. ' x '
nnm._ M SNOILINYLSNI TONINGD XJVLS GNV HILNNOD WYHIOUd
jan Wd Q3153337 AUBYD 535 ¥ uI oL .
- x
I QwNUWWuK(w”““n(vM X DKOPWM”.IX“_»NH LNOMDg N0 124 15 AL oL o () 00
0 ¥ 934 31VI08 x WASNIHI134 | £noMad | 1noTog 1] e 010 o040 0"
0310334V Auuvd Q534 P HI0L
™ Suuww“.w»nnwu X nxwun“.cxxu_»wu 1n0H3d | 100734 1$) JuH 010 100 00
N ¥ D34 3ivi0H x WISNIMO133 | 1NOMDe | 1nolog i8) 27y o+ 0 000 00
I 0312344V 2793y Q°0IH W W OL
M SDYI4-dO HLWY| X 01 viva 100M24 | 81100704 - MLSNIMDL3d | 1nOMOg | 1n0T2q] 140 OV 001 ¢ 44 00
9 893 CR
ﬂ muﬂauw.r%uwn“« X o»:(.au 400 H '93” rac‘....v-w_x -~ xo»wwﬂ_-xw.»w“ 4n0H3d | tnOTd ® W40 NIV [4 4 4 [
Q3103 49V Q
© 3«.:&0:1% 9934 01 558 xapmnu_axu.»w“ 1noHad | 1noTod 1s) 40N S S S 444 0L
SNOLLONYLINI JNOUD HOLYINWNIDY
S T319314% T 0IHTHIOL
S $9V14- 40 NS x ‘WASNI MDLAY | 1noMoe | 1noToe 15 29 100 0ag 00
[e<Y Q3L5343v TOIMTWIOL |
$9¥14 - 40 aav x BASNI HO34 | 1n0MDd | 100729 is) Ny 900 Q0oQa 060
N0 Ol ano 1041110 97934 97534 #8101
Q93 PREL) 703y -~ E— Q1 viva 400HDd | (8) 400109 e | ‘uisNi40133 | 1noMad [100734]) o 1 L1100
8°D; R
nwmvwn X oL :w“ ANoMId | B LnOTod -~ ...xu»wuﬂ.-xu.»w“ inoHdg | 1naloe [t " 041y _0aa o0
Ao O
N nmz“ ANO H 93y Sca.m.wf - | aoauosisss a,xw»mon.cxu.»w“ 4noMae | 10029 w1 foal s$S (S [}
. GG 61| 8 530 [1] §534 #8101
o Q038 x OiLvyiva | 4NOH'D3Y | 4NO1°93M - a1a>uun.-xw.»wm AnOMo¢ | 1notod (1] wn L}t aaa (Y
Q00 04 9934 a.umu.o:ﬂ ksruasni HOL34 | 1noHad .Nro..ﬁ s} Zatn sss caao [}
Fu- o " Y L M [Ty " €0 [¥y [[T € & @ NOLLONUWLSNI %‘ta% fa%afa %ale
1LNDIXI 0L | NOILVEISO
% 23WHL 31042 OML 31043 (1) IM0 2704 SIUVIS S04 ONI00D
SNOILONHASNY HILSIDIW XION!
NOILYY3dO HOSSIOOHd TVYNUILNI
Y
[} u
m Q) w AHV
33 2 gz B, 23 % &
SQ oo 4 ga 5.4 H 8 sayw_‘,mi Lo ald
5F 8 ! Pedgm s 2o o AN
<A) w3°°E§ 4 S R 3 S ""“
S~ b — ~HETYe O s B39d & = 688
I o1 e N 0o m By e 9 g m . (¢] [}
$Ehay 3 dek8.F Z REE S gee | Qu
o g W m 2 O 20 b +H g 0
® O mo N w 0 [0} = . ® [SIRN WJ
gehBs o PE88. ph BgLd § B3
S 000 S) IS 3 5 36
S, m m ,mf i =t b 5% & o '3 = 2Roe
T Q0O Q ‘m 0n R ~
W 5 g0 - 0 o 3] - (%]
- mw e} w m ..m_ —~ O «w jom} V o Q
S 0 tnm sm n o] B o w ~ & a S m
“PEPmops gkl SLf BRosT 3 L 88| Q
cmu aomm.l m m;bd] 5 p.lm. — ngw g - @ e
25,J00E gdmaye ggy UGEY g8 3 ss8 | ©
o Q- - 808 b0 Y ~ g & 0 &G s 0 -d
SE pg 9 BRTEIRL VLS THLTY ¥y = b & & ° 8 L
Eoq2839F BEs8sds $vd FiTes Sgugs.,ddl 3 8o
H [J] S o Aled o [T c
AR I R H o x E< O 9 g+ 0
8 8 cggflled GEliois mmm 58%w, |Elp.BEbR0EE o §7 & —
) My ..m Hnn%o ymwogpe_l.m V.ﬂ ewm | a8 O ,MJ.. ..er
S £ @mﬂe%%,w,@ 3 .me.w,@e vH0 BIY WA 3 m SRR B 8505
2§ o98SYTT8 TaBBoy £Y5 L0dd |B|SHUETEEE|IE 3 840
Bl Y TSfawd 0 um 535S ®3 B “bg .Y N 38
Q o Qe -
gl giusn 8 BReROC. of% BENS |G| d8REpfERE|l 5 pdf
< OLwdew 0} L0 0He 9 jo) O .o | = F w
= © m 60 0] .m < QO ~ Le} = W o] o [oo
S 9o » T oo em@ oS M4 = Legerg LUl g S g
S gm0 4 ~PB 35 Rl m w d Aad B2 P 0 e 3
LD . Ha] 0 &N T O QS]
2 E8xwgpon 4A98EEs Y82 08T AESESEAS e 2 g ¥
= smmmmw R TR mm Tm,mt.mof S8 N
M “ .Rm SSO YWmm br ﬂm asmwo.. S o000 —~ <5} m Y (]
5% 9BsnlY TratARY 847 o spfiE » 5§ L 8
© Mu + nvmﬁm/_wm WMIAM\MWW@_ ,M w mmmvm n_w. —A~OoO0Oo —A O M qu m mm
S N Y + o' 3 oo o ' s
S W [Do g 0Oq .m.a — % Py + ® m ! 3 b
o Mwmﬂlw¢1+d M.MMWM %.qe mum £ ©w pogmllm|oddoo odd M = m m
N} U o m..l o] n Q¥)] @ .
3 mo.s,w,@,m eSWgnimW ogC S Sgno & & - B B
W S 8w S 4 cmm.m%m em_m 8 © mm = e & R, Sy s 9
. am 3] Qo = s 5. &g 2oa Sl a9 Baw|¥ 23 &
N &~ b5 2L,y sPg = .moms n|EBBED obb | &%
ol Lo o8B, o Sgog,e 58 o Hodo "3 0w 9
Sl & w o= o SRR S a3 g Ay S
P> 'm ~
| m . — .W >y m .m 0P QN . o QPP S 8
4 B ™ [SEER% a Bl hes ® o N JUT©wn <, « &
N\

esign

2-12 THE 8008

SEC. 2.3 8008 TIMING SIGNALS (cont'd)

CYCLE
ccZ2 ccl SYMBOL NAME & DESCRIPTION

0 0 PCI Instruction Cyele. The first byte of the in-
struction is read from memory.

1 0 PCR Read Cycle. Data, or additional instruction
byte(s), read from memory.

4] 1 PCC Command Cyele. Data to be inputted or outputted.
1 1 PCW Write Cyele. Data to be written into RAM.

Fig. 2.3.2--The Four 8008 Machine Cycles

The two control bits, ee2 and cel, are present on the data bus at
T2 time. They appear as the two high-order bits, D7 and D6, on the bus
during the T2 state. In most 8008 microcamputers, these bits are latched
up in the CC-DH register, external to the 8008, at T2 time, and are used
to control external circuitry (see Chapter 5).

The 8008 does not pass through every state, or every machine cycle,
during the executicn of every instruction. Flow-charts in the 8008
Manual show the state transitions which occur. The sections below de-
scribe the functions of the four machine cycles.

Figure 2.3.3 is a chart of 8008 internal processor operations. Per-
haps the most important single page in the manufacturers' manuals, this
chart is a basic prerequisite for the 8008 designer.

SEC. 2.4 PCI INSTRUCTION CYCLE

PCI is used to fetch the first byte of an instruction from memory .
The PCI cycle is always the first cycle in any instruction, and there
is only one PCI cycle per instruction. (If there is more than ane byte
in the instruction code, PCR cycles are used to fetch the remaining bytes.)
During PCI, the CPU decodes the instruction internally and (for most
instructions) prepares to complete the instruction in subsequent PCC, PCR,
or PCW cycles.

2.4.1 PCI-T1 The Tl state is the normal first state of a PCI cycle.

During PCI-T1 time, the CPU outputs the low-order eight
bits of the memory address where the first byte of the next instruction
is located. That is, the 8008 outputs the internal PCL register. At the
end of PCI-T1, the PCL register is incremented, in preparation for the
following instruction. If as a result an overflow cccurs in the PCL
register, the overflow is saved and used at PCI-T? time.

THE 8008 2-13

MR mmrocorgggtge':
I

SEC. 2.4 PCI INSTRUCTION CYCLE (cont'd)

2.4.2 PCI-TII The T1I state replaces Tl during PCI cycles only if the

8008's INTERRUPT terminal has been brought to logic one.
During PCI-T1I, the internal program counter (PCL) is not incremented, as
it would be during a PCI-TI cycle; in every other respect, the PCI-T1I is
identical to PCI-T1. The TII state is decoded externally and used to jam
in a special interrupt instruction (see Chapter 16); PCL is not increment-
ed so that after the interrupt subroutine is over, the CPU will resume
operaticns just where it left off.

2.4.3 PCI-T2 PCI-T2 is the second state of every PCI cycle. During

PCI-T2 the CPU outputs the six high-order memory ad-
dress bits (ie, the PCH register) on the CPU bus, bits D5 through D0. If
the low-order address overflowed during PCI~T1 time, then the high-order
address (PCH) is incremented. The two high-order bits on the data bus,
D7 and D6, are the two cycle control bits, CC2 and CCl--and will be 00,
indicating that this is an instruction cycle (PCI).

2.4.4 WAIT STATE The CPU enters the WAIT state when the READY input

is brought low before the beginning of T2 time.
During a PCI-WAIT state, the CPU is inputting data just as though it
were in the PCI-T3 state (below). Thus, the WAIT state is a form of ex-
tended anticipation of the T3 state. It lasts until the READY line is
brought high again. The sequence not ready (or busy); WAIT; T3 is used
in systems employing slow memories and for other purposes. The WAIT
state is skipped altogether when the READY line remains high.

2.4.5 PCI-T3 'The third state of a PCI cycle is always PCI-T3. During

this state, the CPU's intermal bidirectional bus driver
drives inwards onto the chip, and the 8008 receives the first byte of
the instruction code from memory.

2.4.6 STOPPED STATE The CPU enters the STOPPED state following T3

only if a HALT instruction is being executed.
This ends the instruction. The CPU remains STOPPED until interrupted;
thus the next state entered must always be PCI-T1I. During the STOPPED
state, the CPU data bus is driving imwards onto the chip, and the CPU
stays in the PCI-T3 state internally. Externally the state signals indi-
cate a STOPPED state.

2.4.7 PCI-T4 The T4 state is skipped during the execution of many

instructions. When it does occur, it is used to trans-
fer information between internal CPU registers via the CPU's intermal
data bus.

MR mlcrocorgggtgerl;
|

2-1u THE 8008

THE 8008 2-15

SEC, 2.4 PCI INSTRUCTION CYCLE (cont'd)

2.4.8 PCI-T5 Like T, the T5 state is also skipped in many instruc-
tions, and, when it appears, it is used for internal
data transfers. When TS5 occurs, it always terminates the instruction.

SEC. 2.6 PCR READ CYCLE

When a PCR (READ) cycle occurs, it is the second or third cycle
of an instruction. PCR cycles are used to read memory. They occur
during instructions which carry out the following functions: reading
data from memory into an index register; loading an index register with
a value contained in the second byte of an instruction code (Zoad imme-
diate instructions); jumping to or ealling an address in memory; and
performing an arithmetic operation on a value stored in memory, or a
value contained in the instruction code.

2.5.1 PCR-T1 The PCR cycle always begins with PCR-T1l. TIf the PCR

cycle is being used to read additional bytes of in-
structicn, then the PCL register is outputted at PCR-T1 time. In that
case the PCL register is then incremented, as with the PCI-T1 state. If
the PCR cycle is being used to read data from memory (for loading into
an index register or for an arithmetic operation), then the L register
is outputted at PCR-T1 time. (Recall that the PCL register addresses
memory for the purpose of fetching instructions, and the L register
addresses memory for the purpose of storing data.)

2.56.2 PCR-T2 PCR-T2 always follows PCR-T1 as the second state in a
memory read cycle. If the PCR cycle is reading addi-
tional bytes of an instruction, then PCH appears on the data bus at
PCR-T2 time; if the PCL register overflowed after incrementing, at PCR-
T1 time, the PCH register is incremented at the end of PCR-T2. When
the PCR cycle is reading data from memory, the six low-order bits of the
H register go out on the data bus at PCR-T2 time. The high-order bits
are the control bits, ccl and cc?, and are 10, designating a PCR cycle.

2.5.3 WAIT The READY line may be used to make the CPU enter the WAIT
state during a PCR cycle, when reading from slow memory.

2.5.4 PCR-T3 PCR-T3 is always the third state of a PCR cycle (unless

a WAIT state intercedes). If the PCR cycle is the
second cycle in the instruction, then data is read into the internal b
register. If the PCR is the third cycle, then data is read into the
internal a register.

SEC. 2.6 PCR READ CYCLE (eont'd)

8.56.5 PCR-T4 Tu4 takes place only in some PCR cycles. When there is
) a T4 state, and the PCR is the third cycle of an in-

struction, it is used to transfer the a register to the PCH register

on the 8008 chip. If the instruction is a eqll, the PC stack pointer

is pushed at the beginning of T4 time. During an arithmetic operation,

PCR-T4 provides a pause to the ALU which allows it to perform its opera-

tlon.

2.6.6 PCR-T5 PCR-T5 always follows PCR~T4. During arithmetic opera-

tions, the flag flip-flops are set according to the
results in the ALU, at the same time that the results are transferred
to the A register (accumulator). Other internal data transfers take
place during other PCR-T5 states.

SEC. 2.6 PCC COMMAND CYCLE

PCC cycles are used during input and output instructions. When it
occurs, the PCC cycle is the second cycle of a two-cycle instruction.
See Chapter 7 for an extended discussion of PCC cyeles.

2.6.1 PCC-T1 The contents of the accumulator (A register) appear on
. the data bus at PCC-T1 time. Note that the PCL register
1s not referenced and is not incremented.

2.6.2 PCC-T2 The contents of the internal b register appear on the

)) bus. This contains the binary code for the input/output
instruction being executed. The two high-order bits, D7 and D6, are the
two cycle control bits, ce2 and ccl, which read 01, indicating a PCC
cycle is being executed. Note that all the binary codes for all the I/0
instructions begin with this 01 ccmbination.

2.6.3 WAIT If the READY line has been brought low, the CPU will enter
the WAIT state; the bus floats until the WAIT state ends.

2.6.4 PCC-T3 During imput instructions, the CPU data bus receives

information from an input port external to the CPU at
PCC-T3 time. During output instructions, PCC-T3 is present as an idle
state only; the CPU will check the READY line before completing the in-
struction. PCC-T3 time is used by circuitry external to the CPU to com-
plete external data transfers into an output port.

MR mmrocoraggtge;
1

X mwrocorgggtger
Ign

2-16 THE 8008
SEC. 2.6 PCC COMMAND CYCLE (cont'd)
2.6.5 PCC-T¢ There is no PCC-T4 or T5 during an output instruction.

During an Zwmput instruction, the four flags appear on
the data bus at PCC-T4 time. (See Chapter 17.)

2.6.6 PCC-T5 During PCC-TS time of an input instruction, the input
data is transferred within the CPU from the b to the

A register.

SEC. 8.7 PCW WRITE CYCLE

PCW cycles are used for writing data into random-access memory (RAM).
The PCW is the second cyecle of an IMr instruction and the third cycle of
an IMI instruction.

2.7.1 PCW-T1 'The internal L register is outputted at PCW-T1 time;
this represents the low-order address of memory to be

written into.

2.7.2 PCW-T2 The six low-order bits of the internmal H register come
out at PCW-T2 time; this is the high-order memory write
address. The two high-order bits on the bus are ce?2 and ccl, the cycle

control bits, which read 11, denoting a PCW cycle.

2.7.3 WAIT 1In anticipation of PCC-T3, the WAIT state may be used to
begin outputting data onto the CPU bus. This provision,
for writing into slow memory, is accomplished by bringing the READY line

low before PCW~T2 time.

2.7.4 PCW-T3 'The PCW-T3 state is the only case where the CPU bus is
pointing outwards (driving external devices) during T3
time. The memory write data is outputted from the internal b register,
where it was stored temporarily during a previous internal data transfer.

The PCW-T3 state ends the memory write instruction.

SEC. 2.8 INSTRUCTION SET

The 8008 instruction set is explained in the manufacturers' manuals.
For the convenience of the reader, the 256 eight-bit instruction codes
are set forth in nurerical order in Figure 2.8.1.

mlcrocorgputer
esign

SEC.

OCTAL

000
001
002
003
004
005
006
007
010
01l
012
013
014
015

2-8

BINARY

000
000
000
000
000
000
000
000
001
o0l
001
001
001
001
001
001
010
010
010
010
010
010
010
010
011
011
011
011
011
01l
011
011
100
100
100
100
100
100
100
100
101
101
101
101
101
101
101
101
110
110
110
110
10
110
110
110
111
111
111
11
111
111
111
i1l

000
ool
010

000
001
010
011
100
101
110
111
000
001
010
o
100
101
110
111
000
001
010

100
10
110
111

THE 8008

INSTRUCTION SET (cont'd)

MNEMONIC

HLT
RFC

ADL
RST 000
»

RST 010
LBI*

INC

SuL»
RST 020
LCI*
RET

IND

SBI*
RST 030

TESCRIPTION

Halt until interrupted
Halt until intertupted
Rotate A register left
Return false carry
Add immediate to the A register
Restart at locatrion 000000
Load A immediate
Return one level down in stack
Increment the B register
Decrement the B register
Rotate A register right
Return false zero
Add immediate with carry to A reg.
Restart at Jocation 000010
Load B immediate
(Same as 007)
Increment the C register
Decrement the C register
Rotate A reg. left thru carry
Return false sign
Subtract immediate from A register
Restart at location 000020
Load C immediate
(Same as 007)
Increment the D register
Decrement the D register
Rotate A reg. right thru carry
Return false parity
Subtract immediate with borrow from A
Restart at location 000030
Load D immediate
(Same as 007)
Increment the E register
Decrement the E register
(Unde fined}
Return true carry
AND immediate with A register
Restart at location 000040
Load E immediate
(Same as 007)
Increment the H register
Decrement the H register
(Unde fined)
Return true zero
EXCLUSIVE OR immediate with A reg.
Restart at location 000050
Load H immediate
(Same as 007)
Increment the L register
Decrement the L register
(Unde fined)
Return true sign
OR immediate with A reg.
Restart at location 000060
Load L immediate
(Same as 007)
(Undefined)
(Undefined)
(Unde fined)
Return true parity

immediate with A reg.
Restart at location 000070
Load memory immediate
(Same as 007)

OCTAL BINARY

100

000
000
000
000
000
000
000
coo
001

001

101
110

110
110
110
110
110
111
111
111
111
111
i1
111
11

* Firgt byte of a multi-byte inatruction.

000

2-17

TESCRIPTION

Jump talse carry

Input #0 to A; out 4 reg.

Call false carry

Input #1 to A; out A reg.

Jump to indicated memory address
Input #2 to A; out A reg.

Call the indicated subroutine
Input #3 to A; out 4 reg.

Junp false zero

Input #4 to A; out 4 reg.

Input #6 to A; out 4 reg.
(Same as 106)

Input #7 to A; out 4 reg.
Jump false sign

Output A reg. to output #10
Call false sign

Output A reg. to output #11
(Same as 104)

Output A reg. to output ¥12
(Same as 106)

Output A reg. to output #13
Jump false parity

Output A reg. to output #14
Call false parity

Output A reg. to output #15
(Same as 104)

Output A reg. to output #16
(Same as 106)

Output A reg. to output #17
Junp true carry

Output A reg. to output #20
Call true carry

Output A reg. to output #21
(Same as 104)

Output A reg. to output #22
(Same as 106}

Output A reg. to output #23
Jump true zero

Output A reg. to output #24
Call true zero

Output A reg. to output #25
(Same as 104)

Output A reg. to output #26
(Same as 106)

Output A reg. to output #27
Jump true sign

Output A reg. to output #30
Call true sign

Output A reg. to output #31
(Same as 104)

Output A reg. to output #32
(Same as 106}

Output A reg. to output #33
Jump true parity -

Qutput A reg. to output #34
Call true parity

Qutput A reg. to cutput #35
{Same as 104)

Output A reg. to output #36
(Same as 106))

Output A reg. to output #37

Fig. 2.8.1--The 8008 Instructions in Numerical Order (Page 1)

2-18

SEC,

200 10
201 10
202 10
203 10
204 10
205 10
206 10
207 10
210 10
211 10
212 10
213 10
214 10
215 10
216 10
217 10
220 10

221 10
222 10
223 10
224 10
225 10
226 10
227 10
230 10
231 10
232 10
233 10
234 10
235 10
236 10
237 10
240 10
241 10
242 10
243 10
2u4 10
245 10
246 10
247 10
2%0 10
261 10
252 10
253 10
254 10
255 10
256 10
257 10
260 10
261 10
262 10

264 10
265 10
266 10
267 10
270 10
271 10
272 10
273 10
274 10
275 10
276 10
277 10

2.8

BINARY

000
000
000
000
000
[shiy
000
000
601
001
001
001
001
001
001
001
010

010
010
010
010
010
010
010
011
011
011
011
011
011
011
011
100
100
100
100
100
100
100
100
101
101
101
101
101
101
101
101
110
110
110
110
110
110
110
110
111
111
111
111
111
111
111
111

000
001
010
011
100
101
110
111
000
001
010
011
100
101
110
111
[slsls]

001
010

100
101
110
111
000
001
010
011
100
101
110
1
000
001
010
011
100
101
10
111
000
001
010
011
100
101
110
111
0oc
001
010
011
100
101
110
111
0G0
00l
010
011
100
101
110
111

Fig.

MNEMONIC DESCRIPTION

ADA
ADB

THE 8008

INSTRUCTION SET (cont'd)

Add A register to A register
Add B register to A register
Add C register to A register
Add D register to A register
Add E register to A register
Add H register to A register
Add L register to A register

Add memory to A register
Add A reg. to A reg. with
Add B reg. to A reg. with
Add C reg. to A reg. with
‘Add D reg. to A reg. with
Add C reg. to A reg. with
Add H reg. to A reg. with
Add L reg. to A reg. with
Add memory to A reg. with
Subtract A reg.
Subtract B reg.
Subtract C reg.
Subtract D reg.
Subtract E reg. fram A reg
Subtract H reg. fram A reg
Subtract L reg. from A reg

carry
carry
carry
carry
carry
carry
carry
carry

from A reg.
from A reg.
from A reg.
from A reg.

Subtract memory from A reg.

Subtract A reg.
Subtract B reg.
Subtract C reg.
Subtract D reg
Subtract E reg
Subtract H reg
Subtract L reg

. fram A with borrow
. fram A with borrow
. from A with borrow
. from A with borrow

Subtract memory from A with borrow

AND the A reg.
AND the B reg.
AND the C reg.
AND the D reg.
AND the E reg.
AND the H reg.
AND the L reg.
AND memory with the A reg.
EXCL. OR the A reg. with A
EXCL. OR the B reg. with A
EXCL. OR the C reg. with A
EXCL. OR the D reg. with A
EXCL. OR the E reg. with A
EXCL. OR the H reg. with A
EXCL. OR the L reg. with A
EXCL. OR memory with A

OR the A reg.
OR the B reg.
COR the C reg.
OR the D reg.
CR the E reg.
OR the H reg.
OR the L reg.
OR memory with the A reg.
Compare A reg. with A reg.
Campare B reg. with A reg.
Campare C reg. with A reg.
Compare D reg. with A reg.
Campare E reg. with A reg.
Compare H reg. with A reg.
Campare L reg. with A reg.
Compare memory with A reg.

with the A reg.
with the A reg.
with the A reg.
with the A reg.
with the A reg.
with the A reg.
with the A reg.

with the A reg.
with the A reg.
with the A reg.
with the A reg.
with the A reg.
with the A reg.
with the A reg.

OCTAL

300
301
302
303
304
305
306
307

310
311

313
314
315
316
317
320
321
322
323
324
325
326
327
330
331
332
333
334
335

337
340
341
3u2
343
344
345
3u6
347
350
351
352
353
354
355
356
357
360
361
362
363
364
365
366
3687
370
an
372

374
375
376
377

BINARY

000
000
000
000
000
000
000
000

001
001
001
001
001
001
001
001
010
010
010
010
010
010
010
010
011
011
011
011
011
011

ol
100
100
100
100
100
100
100
100
101
101
101
101
101
101
101
101
110
110
110
110
110
110
110
110
111
111
111
111
111
11
111
111

000
001
010
011
100
101
110
111

000
001
010
011
100
10
110
111
000
001
010
011
100
101
110
111
000
001
010
011
100
101
110
11
000
001
010
011
100
101
110
11
000
001
010
011
100
101
110
111
000
001
010
011
100
101
110
111
000
a0l
010
011
100
101
110
111

MNEMONIC DESCRIPTION

LAA
1AB
LAC

EXEEEREEEEEEERS

e

BEESE

Load A
Load A
Load A
Load A
Load A
Load A
Load A
Load A

load B
Load

w®

load B
Load B
load B
Load B
Load B
load B
Load C
Load C
load C
load C
Load C
load C
Load C
Load C
load D
Load D

load H
Load H
load H
load H
Load L
load L
Load L
load L
load L
Load L
load L
Load L

register from A register
register from B register
register from C register
register from D register
register from E register
register from H register
register from L register
register from memory

register from A register
register from B register
register from C register
register fram D register
register from E register
register from H register
register from L register
register from memory

register from A register
register fram B register
register from C register
register from D register
register from E register
register from H register
register from L register
register fram memory

register from A register
register from B register
register from C register
register from D register
register from E register
register from H register
register from L register
register from memory

register from A register
register from B register
register from C register
register fram D register
register from E register
register from H register
register from L register
register from memory

register fram A register
register from B register
register from C register
register from D register
register from E register
register from H register
register from L register
register from memory

register from A register
register fram B register
register from C register
register from D register
register from E register
register from H register
register from L register
register from memory

Load memory from A register
Load memory from B register
Load memory from C register
Load memory from D register
Load memory from E register
Load memory from H register
Load memory fram L register
Halt until interrupted

2.8.1--The 8008 Instructions in Numerieal Order (Page 2)

THE 8008 2-19

SEC. 2.8 INSTRUCTION SET (cont'd)

Note that in Figure 2.8.1, six instructions are labeled undefined,
since the 8008 manufacturers do not specify what these instruction codes
do. However, the 8008 user may consider these NOP (pronounced "no-op™)
or no-operation instructions. They can be used as time-fillers during
a program. The instructions 042, 052, 062, 070, 071, and 072 operate
as follows. Since the 8008 does not decode the instruction, it cannot
perform any data manipulations or skip over any states. The CPU goes
through all five states, Tl through T5, of a single PCI cycle. T5 ter-
minates the instruction, as it always does. During T4 and T5 times,
the CPU drives its data bus with the octal number 377. This implies
that no internal register is either listening or talking at this time.

Note also that several instructions have multiple binary codes.
Chapter 11 shows how these may be used to add extra instructions to the
8008 vocabulary. Chapter 16 puts some of these to practical use.

SEC, 2.9 A SIMPLE PROGRAM

In order to provide a feeling of how a microprocessor works, this
section reviews how a short program gets executed.

PROGRAM TO SWAP B AND C REGISTERS

LAB LOAD A REGISTER FROM B REGISTER
LBC LOAD B REGISTER FROM C REGISTER
LCA LOAD C REGISTER FROM A REGISTER

Fig. 2.9.1 Swap B and C Using A Register

In this example, before execution of the program, the A register
contained the number 123, the B register contained 234, and the C reg-
ister contained 345. The execution of the program is illustrated in the

chart in Figure 2.9.2.

REGISTER

INSTRUCTION [A B C DESCRIPTION
123 234 345 | ORIGINAL STATE
LAB 234" " 345 | LOAD A FROM B
LBC 234 345/ " | LOAD B FROM C
LCA " \2% LOAD C FROM A

234 345 234 | FINAL STATE

Fig. 2.9.2--Chart Showing Transfers of Registers

puter
esign

MICroco

2-20 THE 8008

THE 8080 3-1

SEC. 2.9 A SIMPLE PROGRAM

After the execution of these three instructions, the contents of
the B and C registers are reversed from what they were originally. In
the process of swapping, the contents of the A register were destroyed.
Of course, it was not the object of the program to change (or save) the A
register. The fact that a program destroys the contents of a particular
register must be remenbered by the programmer. Many programers insert
comments at the beginning of each program segment or subroutine telling
which registers are needed as information by the program, which registers
contain the results of the program's execution, and which registers are
used or destroyed during the execution of the program.

Chapter 23 containg some Software Tricks which further illustrate
how 8008 programs work.

SEC. 3.1 THE 8080

The 8080 was developed by Intel Corporation as an update of their
first-generation microprocessor, the 8008. The 8080 has a great many
advantages over the 8008; there are also a few minor disadvantages.
This chapter discusses the main features of the 8080, with comparisons
to the 8008.

SEC. 8.2 8080 HARDWARE

The 8080 is a much faster CPU than the 8008. The extra speed is
attained partially be using the 17-volt N-channel MOS process. The
8080 requires three power supply voltages: +12, +5, and -5 volts. (The
8008 requires +5 and -9 volts). The +12 volt requirement is also
for the external two-phase clock generator. Though the large voltage
swing required cannot be supplied by ordinary TTL components--and generat-
ing the asymmetrical clock would take several TTL ICs--the prcblem is
simplified by the availability of the type 8224 clock generator IC.
Many computers need +12 V supplies already, for such accessories as
EIA interfaces, analog circuitry, and the like. Further, -5 or -9V
supplies are needed for many memory devices (RAM and PROM) commonly
used in microcomputers; these voltages may easily be dropped down from
the ~12 V supply.

The standard 8080 clock frequency is 2.0 MHz, as compared to the
500 KHz clock used with the standard 8008 (or the 800 KHz frequency of
the 8008-1).

Another reason for the increased speed of the 8080 is that a full
16-bit memory address is available at separate address terminals on the
8080's L40-pin package. (The 18-pin 8008 requires its data bus to carry
the low-order memory address, the high-order. address, and a data word
in successive cycles.) Thus, while an 8008 takes 20 us for a simple
instruction (12.5 us, 8008-1), the 8080 takes 2.0 us for a simple instruc-
tion. (In either case, a complex instruction prolongs the cycle.)

Since 16 address bits are used for memory addressing, the 8080 can
work directly with up to 64 K bytes of memory (65,536 8-bit data words).
(The 8008 addresses 16 K.) Because of thermodynamic considerations, a
17-volt N-channel MOS processor inherently has the potential for higher
speeds than a 14-volt P-channel processor (like the 8008) or a S~volt
N-channel CPU (such as the 6800). 8080s with instruction cycle times
as fast as 1.0 us were available as this bock went to press.

Improvements in the 17-volt MOS manufacturing process have resulted
in benefits other than higher speed. TFor example, the size of the
silicon die on which the 8080 is etched has been reduced significantly.

MR mmrocorgggltgerr‘ -

11 mlcrocornggltgerr‘

3-2 THE 8080

THE 8080 3-3

SEC, 3.2 8080 HARDWARE (cont'd)

Comparing die sizes among three 8080 manufacturers, one is 230 by 210
mils, or 48,300 square mils; the second is 170 by 197 mils, or 33,490
square mils; the third is 131 by 169 mils, or 22,139 square mils. Every-
thing else being equal, these reducticns in die size mean that more 8080s
can be produced from each silicon wafer--which leads to a reduction in
cost. Prices have fallen far since the $360 single-quantity price tag
for the 8080 was introduced. One advertisement has placed the price in
lots of one million at $6.00. Prices in more moderate quantities are
not this low, but at any reasonable price the implication is clear: a
powerful microcomputer can now be assembled at a cost that would have
seemed incredibly low only a few years ago.

The 8080 is available from multiple suppliers, guaranteeing its
acceptance as a standard part. These include Intel Corporation (3065
Bowers Ave., Santa Clara, CA 95051); Texas Instruments (P.0. Box 5012,
Dallas, TX 75222); Advanced Micro Devices (901 Thompson Place, Sunnyvale,
CA 94086); NEC Microcomputers (Five Militia Drive, lexington, MA 02173);
and National Semiconductor (2900 Semiconductor Dr., Santa Clara, CA 95051).

SEC. 8.8 8080 SOFTWARE

The 8080 does not include a program counter (PC) stack. Instead,
the PC stack is located in external RAM memory. The stack pointer (SP),
which points to the PC stack level from which instructions are currently
being fetched, is a full 16 bits wide. Any area in the 8080's 64 K
memory complement can be used for stack operations. A number of instruc-
tions have been added to the 8080 which permit direct manipulation of the
stack.

The 8008 is much more limited with regard to stack operations.
Addressed internally by a three-bit stack pointer, the 8008 PC stack
is not externally addressable. This limits 8008 program subroutine
nesting, a major disadvantage in long and complicated programs, and
in interrupt handling.

Two obvious disadvantages accrue from the 8080's external stack.
The first is that the minimal 8080 system must have at least some RAM
in it--which adds to the cost of small industrial controllers. The
second is that the stack pointer must be initialized to a valid RAM
address as programming begins. (The 8008 does not require any
special attention to its stack pointer when being initialized--which
occurs through an initial interrupt sequence.) Once again, however,
these disadvantages are outweighed by the unlimited subroutine
nesting and by the availability of PUSH and POP instructions for
storing and retrieving registers other than the PC.

SEC. 8.3 8080 SOFTWARE (cont'd)

A program written for the 8008 can be translated for the 8080 with
little trouble. The internal microcoding of the 8080 dictated a
rearrangement of opcodes, and the binary machine codes for most 8008
instructions have been changed. In most cases, a one-to-one substitution
can be made. There are two notable exceptions. First, since the SP
is entirely under program CPU control in the 8080, the stack pointer
must be initialized to a valid address in RAM when the machine is
started so that the PC may be pushed and popped when CALL and RETURN
instructions are executed, as discussed above. Second, 8080 INP and OUT
instructions take two bytes, rather than one as they did in the 8008.
The corresponding advantage: an increase in the number of addressable
I/0 ports.

Figure 3.3.1 shows a list of 8080 instructions, condensed from a
listing frequently seen in manufacturer's publications. Though the order
in which the instructions appear may seem arbitrary, there is an organiz-
ing principle. Namely, the instructions which appear in the first two
colums are all found in the 8008 microprocessor. The opcodes have been
changed, as well as the mnemonics.

The 8080 IN and OUT instructions, marked with an asterisk, are
similar to the 8008 equivalents, except (as noted above) they are two
bytes in length.

The instructions in the third and fourth columns of Fig. 3.3.1,
starting with IXI B, are those which have been added to the 8080
instruction set.

Note that with the 8080, the program is permitted to address certain
pairs of registers--not only the usual address registers, the H and the L,
but the B and C together, and the D and E together. Direct loading and
storing of the HL register pair at any memory location is also allowed.
Together with the double-precision add (DAD) and increment/decrement
instructions, these almost make the HL register pair into a 16-bit
accumlator (while the A register is certainly an 8-bit accumilator).

Also added are instructions to load immediate the register pairs;
and the BC and DE register pairs may be used as addresses for leading and
storing the A register.

The 8080 can increment or decrement either the A register, or memory
(the data word in memory addressed by the HL register pair) -- both of
which instruction types were not provided with the 8008.

MR mmrocorgggtgeg
|

MR mlcrocm'aggtgerl;
|

r . m THE 8080 3=-5
3-y THE 8080 :
SEC, 3.3 8080 SOFTWARE (cont'd) SEC. 3.3 8080 SOFTWARE (Cont Id)
Mnemonic Description .
XRI ixcluswe Or immediate with . IN tnput XTHL Excnange top of stack, H & L
i ouT Output SPHL H& L to stack pointer
MOV,), 5 Move register to register ORI Or immediate with A LX) 8 Load immediate register PCHL H & L to program counter 8 080 'NS TR UCT’O N SET
MOV M. ¢ Move register to memcry e Compare immediate with A Pair B& C DAD B AddB&CtoH&L
MOV M Move memory to register RLC Rotate A feft LXrp Load immediate register DAD D AddD&EtOH&L
HLT Halt RRC Rotate A roht ot Pair D & £ DADH AddH&LtoH&L
MVLr Move immediate register RAL otate A left through carcy LXIH Load immediate register DADSP Add stack pointer to H & L : . :
MVI M Move immediate memory RAR Rotate A right through Pair H & L STAXB Store A indirect Summary of Processor Instructions in Alphabetical Order
INR ¢ Increment register carry LXI SP Load immediate stack pointer STAXD Store A indirect
; DCR Decrement register J?P j"'“p unconditional PUSH B Push register Pair B & C an LDAX B Load A indirect
I INR M Increment memory jNC Jamp on carty stack LOAXD Load A indirect Mnemonic Description Octal Code Mnemonic Description Octal Code
j‘ DCRM chremgm memory iz J“:” ": ;': ia"y PUSH O Push register Pair O & E on INX B Increment B & C registers
:‘ ADO Add register 10 A Wz J:mz ;" nﬂrmo stack INX D Ingrement D & E registers ACI data Add immediate to A with carry 3 1 6 ORA r OR register with A 2 6 r
ADC e Add register 10 A with carry » Jump on positive PUSHH Push register Pair K & L on INXH Increment H & L registers ADC r Add register to A withcarry . 2 1 »r ORI data OR immediate with A . 3 6 6
| Susr Subtract register from A ™ Jump on minus stack INXSP Increment stack pointer ADD r Add register to A 2 0 p OUT port Output 3 2 3
| 588 ¢ Suhh"ba“ register from A e Jump on parity even PUSHPSW Push A and Flags OCXB Decrement B & C ADI data Add immediate to A 3 0 6 PCHL HL to program counter . 3 5 1
with borrow 0 Jump on parity odd an stack 0CX D Decrement D & £ ANA ¥ AND register with A . 2 4 r POP rp Pop register pair off stack 3 1
ANAr - And register with A CALL ol gt POPB Pop register pair B & C off DCXH DecrementH& L ANI data AND immediate with A 3 4 6 (only B, D, H)
! g::' ;musw:o”;g:m wth A o Call on carry stack DCXSP Decrement stack pointer CALL addr Call unconditional . . 3 1 5 POP PSW Pop A and flags off stack . 3 6 1
! ! ! register wit CNC Call POFD Pap register pair 0 & € off CMA Comptement A Ce addr Call on condition 3 e 4 PUSH Push register pair onto stack 3 rp §
CMP Compare register with A 2l on no carry stack STC Set carr rp g p
‘ ADD M Add memory to A €z Catl on zero POPH Pap register pair H & L off e c “I Y CMA Complement A o 5 7 (only B, D, H)
i ADCM Add memory to A with carry CNZ Call on no zero stack OAR D"",‘" elm:nl C‘X'V CMC Complement carry . . Lo.0 7 7 PUSH PSW Push A and flags onto stack 3 6 5
SUB M Subtract memory from A cP Call on positive POPPSW Pop A and Flags SHLO St?::; {";:rm CMP r Compare register with A .. 2 7 » RAL Rotate A left through carry o 2 7
SBB M Subtract memory from A oM Call on minus off stack LHLD oud H& L direct CPI data Compare immediate with A 3 7 6 RAR Rotate A right through carry .0 3 7
i with borrow CPE Call on parity even STA Store A direct £ Enable nterrupts DAA Decimal adjust A . 0 4 7 Re Return on condition . .3 e 0
i ANAM And memory with A ceo Call on parity odd LDA Load A direct ol Disable interrupt DAD rp Add register pair to HL 0 rp+1 1 RET Return - 301 1
I XRAM Exclusive Or memory with A RET Return XCHG Exchange D & E, H& L NOP No-operation DCR r Decrement register . .0 r s RLC Rotate A left . o 0 7
‘ ORAM Or memory with A :cc :"“"‘ an carry Registers DCX rp Decrement register pair . . 0 rptl 3 RRC Rotate A right o 1 7
CMP M Compare memory with A N £1urn on o carry DI Disable interrupts . 3 6 3 RST n Restart . . .3 on 7
ADI Add immediate to A Rz Return on zero EI Enable 1ntermpts 3 7 3 SBB r Subtract reg. from A w/borrow 2 3 r
ACl Add immediate to A with RNZ Return on no zero HLT Halt . . 1 6 6 SBI data Subtract imm. from A w/borrow 3 3 6
| carry Re Return on positive IN port Input 3 3 3 SHLD Store HL direct 0 4 2
i Sul Subtract immediate from A AM Return on minus _ INR » Increment reglster 0 » 4 SPHL HL to stack pointer . 3 7 1
. SBI Subtract immediate from A APE Return on parity even INX rp Increment register pair 0 rp 3 STA addr Store A direct .06 2
' ANI ::: :::Z::amwuhA :SP$' ::;'::tu" parity odd JIMP addr Jump unconditional 3 0 3 STAX rp Store A indirect (only B D) . 0 rp 2
Je addr Jump on condition 3 ¢ 2 STC Set carry . .. 0 6 7
i LDA addr Load A direct . . o 7 2 SUB r Subtract reglster from A 2 2 r
! LDAX rp Load A indirect (only B D) 0 rp+l 2 SUI data Subtract immediate from A . 3 2 6
LHLD addr Load HL direct .0 5 2 XCHG Exchange DE, HL register pairs 3 5 3
LXI rp, data Load immediate reglster palr .0 rp 1 XRA r Exclusive OR register with A. 2 § r
MOV 4, s Move register to register . 1 d s XRI data Exclusive OR immediate with A 3 5 6
MVI r, data Move immediate register 0 r 6 XTHL Exchange top of stack with HL 3 4 3
! . . Nop No operation . ¢ 0 0
| Fig. 3.3.1--8080 Instructions. P
: . . . ABBREVIATIONS 8080 INSTRUCTIONS IN OCTAL FORMAT
Fig. 3.3.2 shows the 8080 instruction set by alphabetical order. b I sie 5080 .
. A N . . . rev. eseription 1ts The is an 8-bit micro-
The format is designed to aid the 8080 user in learning the 8080 instruct- processor, and its instruction
l ion codes. As stated in the note on this chart, the 8080 is microcoded addr lgemgf)t"address lg code tends to break down into a
. . . . Lo] . c ondition 2/3/3-bit grouping. This is wh
‘ in such a manner that its instruction set is more easily memorized when d Destination 3 Tt was concentont in this chart
| presented in octal (rather than hex) format. Nevertheless, hex is datzz %a 8/§° to list 8080 instructions in
por port octal format, where digits follow
fr‘equently used. r Register 3 this same paétern.
rp Register pair 2
. . . . 3 i i -
. Flg 3.3.3 presents the 8080 instruction set graphically. The s Source bit ;Z"i:f:;mji zztzilafs‘e fl“/ 4
organlzatlon of this chart illustrates how various memory-referencing instead of octal, but since hex
\ instructions work, and should be useful to the 8080 user just becoming INSTRUCTION CODE VALUES i‘g:Sw;‘;ti§°:;§zg°’t‘:edggggtg to
familiar with its instruction set. ‘ Tt o+ + CONDITION +» + - -+ microcoded, hex instruction
OCTAL REGISTER REGISTER PAIR (e) codes are not readily listed in
. . . . N . . CODE (d, v, &) (rp) {rp+1) Abbrev. Description Flag condensed graphic form, and are
] A detailed description of each 8080 instruction is presented in the * more difficult for the programmer
| 8080 data sheet, reprinted near the end of this book. 0 2 BC w b Eziozero - ? to learn.
2 D DE -- NC No carry CY =0
3 E -- DE C Carry CY = 1
| 4 H HL -- PO Parity odd P=0
\ 5 L -- HL PE Parity even P =1
6 M SP -- P Plus §=20
7 A - Sp M Minus §=1 Copyright © 1976, Martin Research
|

mlcrocoraputer piaze 5.5.3
esign

"™y
t~ e
1
™ L ol
8 pe
2 AR RENESRN AN SR NS S NN NN N TN N N RN I SO AR TN Y OLO N E O Sm O 0N T QX
S L R R s R s R R R Aa58mn = 3
EEREREREREERERR R R SR Rk E R R KRR R R R R R REE R R R R EEERREREEEEE ma
MOAMTEANCONOAMTEIECROAMIAEC<NOANTEIE<RNOANT IS <MUAMTE IE < MOAQMT A €M OA LT I <
of MEARAANAUCSIJSdddAddadddduliltldd el IS SIS0y St dad O
2 BEB 2R R BB BRE RSB R R R R R R R R R R E R R R R R P P R R R R e e M D D s D D e o
a CEL0800008388888 R EEEEERGE) 3 3 2 3
8% mMMmHMMMMMMmMMMMMmmMMMmMMMMMMMmmmmMmmmvummMmmMmmmMmmmmmmmmmmmmmmm c
OHN® I © [agaym o~ ~ —
m u.uuuuh%uuW%mmu_%uwﬂs55%%Swww:Avmzcumwﬁw,owmw&wmmmM%%@ﬁﬁmnnnm%m.ﬂwwmmwmE.rh o
M 0123“5670123”5670123“.5670123u5670123h—-5670123h—.5670123“5670123“567
COO0COOO OO A A A A~ o~ m ™
§ 5382553300454 BNESAN8RGRnRA8ERE555388584 8338858588588 Raer (&)
<H
.]
_
o RER,
o .
o R
@ &
NS
~
IR
Bl 3 8
+ o
N By
S 3 N
o3 R [SRSETEY A RN 2R e Sy M
= Qa3 Q3 18] =3 & a 83
mm ERAE SRRE BRI 5RER 583 583 3
) &
o) 3] & B} 3 3
A Y Q W QW @ X Y
X & S B & 8 ES 2
M @ a =] S
M 4 BMBBBB .M.B.MBCCC Am.DMDDDD MDMDEEE grmmEm M.HmHLLL MMW Gxmxx= M.% o<
S o Pm MMRICWM W KO R MRIMn MMMIanm RWIMﬂW MRRIMnMA MRICnWA Eong
2 s} 3 3
B8 PRRARREJSANRAREECHGEERE R AR R N B AR AN IN R By
S w
S
AN ™ I~ o mo ~ ™ T w ™~ @ m Q — m
R m 8888388588388 888 30N R e N R oS8 9M RN 0 e N e aYaNNeHNNs LS eaSagan L
(=] T w — — o — =3
I 2 DMMMOO%mmlHHHHEH%ZﬂZN%%NM3ﬂ%3%%Wwm.:wwW%%wwmwwwwwwwmmmw&&wwunwwnww
. m 00
M
S
2
; %
ue | 13 LdNMYILNG T19VNI — | oo FER B THIX
e Msd dod e | g 1dNHHALNI 318VSI | oo Q3AUSAY SLHOIM 1TV =
---7 | Audvo dwoo/L3s 99t | LM 17V ae | om0 —
X9/ XNI 000 | don NOLLYH340 ON st | ovo HOUV3IS3Y NLLBYW 2 || wmeaw |Msd4_d04
e “HOAG/ HONI sec | 0e0 8261 0 1buAdo) A8 S 3
-—
- ILV10H . MSd_HSNd
10¥INGD INIHOVW | |= =
-l @av 318000 o | = w ioa
rrre 1SN NIV assnnn — 1™ 3
) 150 150 o] ; . -— :
ds29 W0<._u_ as'Gva | n'ava | a 'Sva | attva TH == THOL Y rnn_«m._m:oo_ H HsMd
z A8 ds 1ze
4s TH 3'a ER] ‘4230 1a a dod
W s2€
-— a Hsnd
oE | 0 | ez | scc | we | B2 | @z | uz | oz | wz | 4 awo ¥ HLIM | 3HVIWOD —
99 | o | ooz | ssz | wez | £9z | zez | s | 0oz | ez |+ wwo ¥ == ¥ HLIM 1 HO "HOGV O/1 = 3LAG ONZ — - @ %0a
os | wx | ez | ssz | vsz | esz | zez | 1sz | osz | esz | 4 wux ¥ == ¥ HLIM 2 40 0X3 il S P =
ove | INv | oz | sve | wic | ez | zvz | ez | ovz | oz | 0 wnw v == ¥ HLIM 2 QN €z¢ £ee -
o | tes | 9ez | gz | wez | ez | 2ez | iez | ose | ez | 4 mms V = V WOH4 (0+4) 8nS ino N .—.:&.—.:o ; nouo:m?.
sce | s | sez | sz | vez | ez | zm | 1z | oz | i |1 ans v <— v WOu4) ans 0dtno | i \ 1SNI 30
oic (v | oz | siz| mz | ez | @iz | uz | oz | wz |+ oav ¥ <~ vOLD+1dav 1NdNI “— | direanz | w iAW
ooc | 1av | ooz | soz | woz | oz | zoz | 10z | o0z | sz | 4 aav v = voL1aav H N 3nogy 335
K 3 g v —— oau -
awm | w | mj3]a SNOILONALSNI - aon [VONSE
750 760
niv wsw || a1 . — o xvar | b
0 T 70 z 3a z20
_ et _.ms_oo_ Eyed 135 AHHVD LNIWITIWGD / L3S saiag | ams | ooz | 0 RS
2)
Laa YALSIOY v ININI1WOD PE J — v va
wno val : 8
anv ped v ' 28 fr]
o 790 z00
o o HOLVINWNDOY 1SAFAY IWWIZIG pug | - vis -~ 8 Xvis
(o] A8 A8
o - oy JeAe— ‘wagv | viva| o3y HISNE |s3LAe J dagy |viva| o3 HISNI |s3LAg
AHOWIW
@© zo vy ABHYD QUHL 1431 |y 3iyi0u a
‘o oy LHBIY
00 > 1431
M < - JAOILS ? AVOT 1D3WIA SUIASNVYUL 1DIAIANI
o
€0 50 cE0 £10
+ 45 20 | M x00 | @ x2a | 8 Xoa Hlvd H31SIOIY L 180 0 120 100 aamwr | 2
N 0 w0 %5 o0 pp— s pafw xila mafs en 3
O as xni | M xni[a xwi e xw HIvd HILSI03W 4 3 e 3 T u
31 Idd THS oHox | —— n
Nt 45 TH 3a | o9 53 - o
I - QHOX T e s
3| S50 | 950 | S0 | S0 | 520 | 510 | %00 | 6o | wdoq ¥i1SI939 INIWINDIA >4 as T 30 28
[v90 | v50 | w0 | veo | w20 | mo | w00 | weo | zz__ HILSIO3Y L SYIASNVIL
=
NOIL¥YNILS3Q -
ST e B BN N I N B NOILVINdINVYW LI NOISID3¥d-319n0OQa
QOU 900 | 950 | ov0 | oo | 620 | o0 | S0 | 80 | 4 AW IUVIGINWI m>os_
3 I3 st I3 3 3 e 08 Lldvisas
—h pmx_o Gx_m 1sH _q »mx—n Ga_~ Gxﬁ_ Sx_o Gm_ — [st] et | el | 2L | 8L | osoL | ol [W
p=) a9L | sat | svL [seL | sz | SLL | gok | S 1 3 9=W y=H 2=0 0=8
v | o L v | ow 2
o Gic | oot | vse | ove] oee | ozz | o | 008 | | uie 04 909 Ndnidm voL | ¥SL | vl | vEL v o G271 €3 L=3 L=V
w Wo | d4 | 344 | odd | od | oNu | zu | ZNM 134 n”" M" M"" MM" W" ”"” MN" Nﬂn_—. M n
ol B B B Rl R B o R e dwnr 24 HSN4) 13v2 ﬂw, ta [e] oust f o [s oo [| 0 [‘HLSIOY H 3HL 40
028 SINILNOD 3H1 D3Y &
2z [7oc | 28 | o | @ | Zec | 2w | 206 | 6 | EOE awnr poodl It Il ol A I Bl Bl s IHLOL IAOW - 18 AOW
We | ar adr | odar | or | oNr 26 | 2N | THDd | dar 8L] gL | vl o LeL | LzL) o
3NNL [357v4 | 3nuL |35Tv4 | 30L |35Tv4 | 3nuL |3sTva | 1038 |TYNOL 1 o AdLN o D w 1 H 3 a 2 a M Y. | W&W N <¢ 1
™ -1a |1aNoo
. NOIS ALiyvd AHHYD ouaz N N0 NOILVNILS3d “mhm—owz
(3 WVY3I90idd
.
w M
[}
® 0 138 NOILDONYLSNI 0808

Figure 3.3.3

THE 8080

SEC. 8.8

OCTAL

200
201
202
203
201
205
206
207
210
211
212
213
214
215
216
217
220
221
222
223
224
225
226
227
230
231
232
233
234
235
236
237
2u0
241
242
243
244
245
246
247
250
251
252
253
254
255
256
257
260
261
262
263
264
265
266
267
270
271
272
273
274
275
276
277

8080 SOFTWARE (cont'd)

8080 8008
HEX SYMBOL SYMBOL
80 ADD B ADB
81 ADD C ADC
82 ADD D ADD
83 ADD E ADE
84 ADD H ADH
85 ADD L ADL
86 ADD M ADM
87 ADD A ADA
88 ADC B ACB
89 ADC C ACC
8A ADC D ACD
8B ADC E ACE
8C ADC H ACH
8D ADC L ACL
8E ADC M ACM
8F ADC A ACA
90 SUB B SUB
91 SUB C suc
92 SUB D Sup
93 SUB E SUE
9y SUB H SUH
95 SUB L SUL
96 SUB M SUM
97 SUB A SUA
98 SBB B SBB
99 SBB C 5BC
9A SBB D SBD
9B SBB E SBE
9C SBB H SBR
9D SBB L SBL
9E SBB M SBM
9F SBB A SBA
A0 ANA B NDB
Al ANA C NDC
A2 ANA D NDD
A3 ANA E NDE
Al ANA H NDH
AS ANA L NDL
A6 ANA M NDM
A7 ANA A NDA
A8 XRA B XRB
A9 XRA C XRC
AA XRA D XRD
AB XRA E XRE
AC XRA H XRH
AD XRA L XRL
AE XRA M XRM
AF XRA A XRA
BO ORA B ORB
Bl ORA C ORC
B2 ORA D ORD
B3 ORA E ORE
By ORA H ORH
BS ORA L ORL
B6 ORA M ORM
B7 ORA A ORA
B8 P B CPB
BS P C CPC
BA P D CPD
BB MP E CPE
BC aP H CPH
BD P L CPL
BE P M CPM
Br MP A CPA

Figure 3.3.4
(Part 2)

OCTAL HEX

300
301
302
303
304
305
306
307
310
311
312
313
314
315
316
317
320
321
322
323
324
325
326
327
330
331
332
333
334
335
336
337
340
341
342
343
344
3u5
346
347
350
351
352
353
354
355
356
357
360
361
362
363
364
365
366
367
370
371
372
373
374
375
376
377

[s3}
Cl
C2
c3
o0}
63
C6
c7
c8
9
CA
CB
cc
o]
CE
CF
o
D1
D2
b3
Du
D5
Dé
D7
ol:]
jas)
DA
DB
DC
oD
DE
DF
EO
El
E2
E3
E4
ES
EB
E7
E8
ES
EA
EB
EC
ED
EE
EF
FO
F1
F2
F3
4
FS
6
7
F8
9
FA
B
3¢
m
TE
T

8080
SYMBOL

RNZ
POP B
JINZ
JMP
NZ
PUSH B
ADT
RST O
RZ
RET
JZ
(Unde fined)
Cz

CALL
ACI
RST 1
RNC
POP D
JNC
our
NC
PUSH D
SUT

RST 2

RC

(Unde fined)
Jc

IN

cc

(Unde fined)
SBI

RST 3
RPO
POP H

(Unde fined)
XRI

RST §

RP

POP PSW
JP

s

[oi

PUSH PSW
ORL

RST 6
RM

SPHL

JM

EI

o4

(Unde fined)
CPI

RST 7

8008
SYMBOL

RFZ

JFZ
JMP
CFZ

ADI
RST 000
RTZ
RET
JTZ

cre
CAL
ACT
RST 010
RFC

JFC
ouT
CFC

sSur
RST 020
RTC
JTC
INP
[%i4

SBI
RST 030

CFP

NDI
RST 040
RTP

RST 050

RST peo

mlcrocorgputer

esign

THE 8080 3-9

SEC. 3.4 SELECTED 8080 TECHNICAL NOTES

In order to give the clearest possible explanation of a practical
8080 circuit, we have reprinted the data sheet for the Model 471 8080
CPU board near the end of this book. This data sheet includes a schematic
diagram with a full description of operations, including such adjuncts as
memory-mapped I/0 addressing and interrupt reset and hold circuitry.

This section presents important technical matters concerning 8080
designs generally. Some are to clarify points not made clearly in exist-
ing 8080 applications literature; other reflect design experience. We
recommend that the reader start with the chapter on the 471 CPU and

familiarize himself with the 8080 data sheet before reading the following
discussions.

3.4.1 Memory Access Time The designer unused to memory system design

may have difficulty in divining from the 8080
and memory data sheets whether a given chip meets the 8080 requirements.

An 8080 microcomputer addresses memory with its sixteen-bit address
bus; data transfers take place via the 8-bit data bus. The memory address
must be valid before the data transfer takes place, so that circuitry
external to the CPU can decode the address and provide suitable enabling
signals to the memory device that has been selected. The memory chip
cannot insta.ntaneously make the selected data word available, moreover;
there is always an appreciable delay between the time the chip is enabled
and the time that it can reliably be read from or written into.

The chart below,
requirements. The fi
8224 clock generator.

Fig. 3.4.1, relates 8080 speed to memory speed
gures are based on an 8080 system making use of the

Read Write Write
CPU Clock Cycle Access Time Access Time Pulse Time
8080A 500 ns 610 ns 720 ns 500 ns
8080A-2 375 ns 405 ns 465 ns 375 ns
8080A-1%* 325 ns 340 ns 400 ns 325 ns
8080A-4* 250 ns 225 ns 285 ns 250 ns

*See text

Figure 3.4.1--8080 Speeds Related to Memory Speed Requirements

X mmrocorgputer

esign

3-10 ' THE 8080

SEC., 3.4 SELECTED 8080 TECHNICAL NOTES

The values shown in Figure 3.4.1 are based on data sheets for the
8080 variations shown and on the 8224 clock driver. Note that the 8080
versions marked with an asterisk require an oscillator speed greater than
27 MHz, the speed 1imit of early Intel 8224 clock generators; a premium
device is needed. The read and write access figures shown are based
on ideal calculations, based on 8080 and 8224 characteristics alone--
plus 40 ns to allow for system delays. The paragraphs that follow
support these calculations.

The 8080 accommodates memory timing characteristics with the
following timing sequences. Within a machine cycle which addresses
memory, there are three states, T1-T3, each lasting one clock period.
As 62 goes high during T1, a memory address is clocked onto the 8080
address bus. The time it takes for this address to settle on the bus
is tda (address output delay from 62). At T3 time--two clock cycles
later—--data transfers take place. The interval between Tl and T3 is
provided principally so that memory access is assured before a data
transfer takes place.

When the 8080 is reading from memory, input data must be available
on the data bus before #2 of T3, when the 8080 latches up this data
internally. It must be stable previous to &2 by the period tds2 (data
set-up time to #2 dwring DBIN). The preceding factors give the formula
for memory access time during 8080 read cycles: 2 teoy - tda - tds2,
where tcy is the clock cycle time. TFor an 8080A running at the standard
2.0 MHz clock frequency, this is 2 (500 ns) - 200 ns - 150 ns, or 650 ns.
However, this figure is ideal; no delays have been allowed for bus
drivers, memory decoders, interconnecting cables, or other factors. A
safe practice is to specify memory with a read mode access time of 610
ns or better.

During the memory write mode, the minimum required memory access
time is measured from the time that the address becomes stable, to the
beginning of the memory write pulse. This signal, WR, is initiated
by the 8080 at the leading edge of 41 during T3 time. It lasts one
full clock cycle, 500 ns at standard speed. Thus, the 8080 again
provides memory with two clock cycles--here diminished by the address
set-up time, and by the amount of time that 41 precedes 2 (tds,
typically 120 ns with the 8080A). The formula provided by Intel is
taw = 2 tcy - td3 - tré2 - 140 ns, where tré2 is the clock rise time
(20 ns with the 8224 clock generator)--working out to 760 ns. Again,
this figure should be reduced to allow for system delays. Safe practice
is to specify a write mode access time of 720 ns or better.

Tactors to be considered in a practical memory design include how
the memory chip is selected and its address decoded. These matters are
discussed further in Chapter 13.

| }“ ’ THE 8080 3-11

MR mlcrocoraputer

esign

SEC. 3.4 SELECTED 8080 TECHNICAL NOTES

3.4.2 Memory Wait Cycles A slow memory device, which does not meet

8080 speed requirements, can be synchronized
with the CPU by pulling down the 8080's READY terminal shortly after it
has been selected. Detected by the CPU during T2 time, this condition
causes the 8080 to enter one or more TW states, essentially extra T3
clock cycles. Effectively, the DBIN enable signal (or WR output strobe)
is lengthened by the period tcy for each wait cycle incurred.

Swmmary : To produce » wait states in an 8080 system, pull down the

RDYIN input to the 8224 clock generator for a period of
approximately (n - 1/6) tcy, starting at the beginning of the STB system
strobe.

The following paragraphs explain this formula, and the circuit for
the 471 CPU board shows a practical wait circuit. (See the 471 data
sheet, near the end of this book, Sec. 1.10.) Assume that one wait state
is required in an 8080 computer operating with a 2.0 MHz clock, in order
to add 500 ns to the 8080 memory access cycle.

The 8080 samples the READY line at the falling edge of #2, during
T2 time. To provide proper data set-up time, the RDYIN input of the
8224 clock generator is generally used to synchronize wait requests with
the rising edge of é2. This means that to cause a wait state, the
request must be received by the 8224 before the rising edge of 42 during
T2 time. The selected memory device must enter its request sometime
during the period starting when it was selected by an address on the
address line--at about T1-42, plus delays--and ending at T2-62, when
the 8224 samples for requests. The request must be removed before
the rising edge of #2 of the last required wait cycle, to avold causing
another wait.

The one-shot requesting a wait is triggered by the leading edge
of the system strobe, STSTB (STB for short), which falls at A1A time,
just at the end of T1. This is about 1/9 tcy before T2-41, and 1/3
tey before T2-62. The 8224 clocks this request at the beginning of
T2-¢2; the 8080 sees it at the end of T2-62, entering a wait state.
The one-shot withdraws the request sometime after 62 begins; by the
next @2, the 8224 sees no request; the 8080 realizes that the wait
should end; and so it does.

In order to avoid precision timing components, the one-shot period
is chosen to end midway between ¢2 pulses (rising edges). TFor one
wait state, a delay (after the first 62) of 1/2 tcy is chosen; for two
wait states, the delay is 1% tcy; etc. This generalizes to (n - %) tey
for n wait states. But, since STB fires the one-shot 1/3 tcy before
T2-¢2, this period must be added: (n - %) tey + 1/3 tcy = (n - 1/6) tcy.

MR mmrocorgputer

esign

3-12

THE 8080

SEC. 3.4 SELECTED 8080 TEGCHNICAL NOTES

3.4.3 8080 Variations The 8080 devices available from the
different manufacturers may vary in
electrical characteristics. For example, the 9080A from Advanced
Micro Devices offers improved output drive current capability. Other
distinctions are discussed in the 471 data sheet, Sec. 1.2. The
reader should secure current specifications from the manufacturers

to supplement this information, since new developments are frequent.

Worthy of further note is the 8080 version available from NEC
Microcomputers, which operates from a 5-volt symmetrical clock (using
circuitry very similar to that discussed in Chapter 5 for the 8008).

3.4.4 Preventing 8080 Hang-up States An active concern in micro-

computer systems used as
controllers is that if some unforeseen failure should cause the CPU
to leave its normal program path, most likely the system will "walk
out" of the bad state and continue its controlling job as well as
possible.

Two design goals are important in preventing hang-up states. The
first is to minimize the probability that a noise spike can derail the
microprocessor. This is both a software and a hardware problem; the
hardware aspect requires the engineer to design the power supply,
packaging, wiring, and shielding to minimize interference from noise
sources., In terms of software, the 8080 is superior to the 8008 in
the respect that the 8080 has only one code for the HALT instruction--
166--whereas, the 8008 has three--000, 377, and 00l--the first two of
which might easily result from access to a non-existent memory location.

The other objective is to provide a method whereby the micro-
processor will recover its normal program mode. In interrupt systems,
the 8080 presents the problem that interrupts may be disabled by
software, and if the computer enters the HALT state while interrupts
are disabled, then there is no way for the CPU to continue unless it

is reset. A solution appears in the data sheet for the 471 CPU board
(Sec. 1.7).

mlcrocorgputger
esign

MICROPROCESSOR COMPARISONS -1

SEC, 4.1 INTRODUCTION

In electronics, the word microprocessor has become the buzz-word
of the mid-seventies. But there is a great deal of confusion surround-
ing the term. When for example does a microcomputer become a mini-
computer? Advertising claims tend to obscure the differences, and
much energy, time, and money are wasted by designers who mismatch a
computer with an application.

As a first approximation in clarifying the issue, let us use
price as a criterion. A computer costing less than $25.00 is a
microcomputer; a computer costing between $25 and $250 is a milli-
computer; one with a cost between $250 and $2500 is a minicomputer;
and a computer costing over $2500 is a main frame computer. These are
prices in volume to an original equipment manufacturer (OEM), and in-
clude the approximate cost of the central processing unit with all
control logic and associated memory.

Mieroprocessors which could be used to build mierocomputers by
this definition would include the 9002 from Electronic Arrays; the
F8 chip set from Fairchild; and the TMS 1000 series from Texas Instru-
ments. The Intel 4004 and 4040 are also in this category.

Millicomputers would be based on such processors as the Motorola
6800 (also available from American Microsystems); the Intel 8080 (also
available from Texas Instruments, Advanced Micro Devices, and NEC Micro-
computers); the MOS Technology 6500 series; and the Signetics 2650.
Computer Automation makes a computer called the Naked Milli which fits
roughly at the top end of the millicomputer price range.

Minicomputers, of course, are a class of small computers which
have been available since the early sixties. Finding wide use in
industrial, educational, and business applications, they are offered
by a number of manufacturers. Until the advent of integrated circuits
using large-scale integration (LSI)--based chiefly on metal-oxide semi-
conductors (MOS)--minicomputers were the smallest computers available.

Another way of distinguishing computing devices is by their in-
tended application. If the device in its final form locks like a
computer--with a console, and the ability to start and stop operations
in order to enter new programs under operator control--then it is prop-
erly called a computer. But if the processor is especially dedicated
to the control of a particular machine--and there are no operating
controls relating directly to the functioning of the computer as such--
then the processor operates as a controller.

There are at least two special characteristics of controllers.
First, an important feature is its ability to walk out of bad states.
In other words, there should ideally be no condition into which the
machine can get--through noise or hardware/software bugs-- from which

MR

mmroconnputer
esign

42 ' MICROPROCESSOR COMPARTSONS

SEC. 4.1 INTRODUCTION (cont'd)

it cannot successfully exit, resuming the task of machine control. A
hangup state might cause the machine to malfunction disastrously--or
sit inoperative until a skilled technician can reset it. This would
not be so important with a computer (used as such), which encounters
little noise--and which, in case of failure, can simply be reset by
the operator, restarting the program.

A second way of distinguishing a controller from a computer is
the kind of programming it is called upon to execute. The processing
power, memory-addressing capability, and (sometimes) the speed of a
general-purpose computer may be wasted on many small controllers--
whose main function is often to control data I/0 functions and to time
various machine functions. When the machine is to be produced in high
volumes, a simpler processor will optimize the cost of the machine
without sacrificing any machine potential.

If the application requires a great deal of complex data handling,
the cost of including a computer in the final product depends not just
on the hardware, but on the software. Large computer users were forced
to realize in the fifties and sixties that the cost of programming is
often greater than the cost of the computers themselves. Many micro-
computer and millicomputer users are discovering this in the seventies.
Fortunately high-level languages are becoming available for use in
developing software for these computers. Even so, there remain many
applications needing complex software where the availability of tested
programs makes minicomputers competitive. This is especially true
when the production volume is expected to be relatively low; it makes
no sense to develop thousands of dollars of software, to save hundreds
of dollars in hardware.

SEC, 4.2 SYSTEMS DESIGN

When planning a computer application, the designer should be
thinking at the systems level--not just about the CPU., The
microprocessor revolution has focused so much attention on the
processor that this point is often lost. As a result, one often
hears someone planning to interface 32 K bytes of memory, a floppy
disc controller, and a $2000 video terminal-~to a millicomputer
or even a microcomputer. The CPU itself accounts for a very tiny
part of the system cost--too small a proportion, in fact. This
is analogous to purchasing a high-fidelity music system with a $300
record changer, a $600 tape deck, and a $500 stereo receiver—-and
connecting it to two $5 four-inch speakers. The camputer system
would be limited by the abilities of the processor--which cannot
access 32 K of memory in a reasonable time, or input a megabyte
of data rapidly.

mlcrocorgputer

MR esign

MICROPROCESSOR COMPARISONS 4-3

SEC. 4.2 SYSTEMS DESIGN (cont'd)

Along the same lines, it makes little sense for a retail store
owner to purchare a millicomputer or microcomputer for doing inventory
for his store, plus compiling bookkeeping records at the end of the
month--at least, unless he is an expert programmer, or can purchase a
specially designed program tailor-made for his application. Here,
software availability limits the computer, as much as the hardware; but
the limitation is just as significant.

However, a large manufacturer might be able to produce 2,000 such
business machines profitably. The costs of developing the software could
be spread out over a number of products, justifying the effort.

Microcomputers and millicomputers very definitely have their place.
Many are ideally suited as controllers, buried inside a piece of business
or industrial equipment that the user might not suspect has a computer
in it at all. Here is where the minicomputer makes little sense. Its
memory-addressing power, its powerful instruction set, and its speed
are just overkill for an automobile emission control system, or inside
a printer, or for hundreds of other such applications.

In addition, microcomputers are ideal for educational purposes,
in teaching computer science principles at all school levels. Micro-
computers offer students the first practical opportunity to own their
own computers. In a classroom setting, multi-processor arrays can
be assembled, allowing many students to perform problems, and to
access a central computer for complex subroutines and high-speed
peripherals on a time-shared basis.

SEC. 4.3 PROCESSOR COMPARISONS

This section consists of brief sketches of selected current micro-
processors (including some that might more properly be termed milli-
processors). By no means exhaustive, this compilation is intended.only
to summarize some important features, and to sketch limitations and
advantages.

4.3.1 8008 and 8080 Discussed in detail in this boock, the 8080 is

generally used in new applications. 8008 machines
are being upgraded to the 8080, where the added features are advantageous.
A comparison between these processors appears in Chapter 3 above.

The disadvantages of the 8080 include the necessity for three
power supplies: +12, +5, and -5 V. However, the current required at
=5 V is very low, and a negative voltage is necessary anyway for many

MR mncrocoraguter

sign

L-4 ' MICROPROCESSOR COMPARISONS

SEC, 4.3 PROCESSOR COMPARISONS (cont'd)

PROMs, some RAMs, and much analog circuitry (including EIA circuitry
for interfacing with terminals). A concomitant advantage: with 17 V of
on-chip potential, the 8080 is available in high-speed versions which
are significantly faster than 5-volt processors.

A programming disadvantage: the lack of branch relative instruc-
tions in the 8080 (or 8008). These instructions, well-known to mini-
computer programmers, allow one to create jumps to locations near the
current instruction location, without having to specify an absolute
memory address. This facilitates the writing of program loops, and
greatly simplifies the task of relocating programs during software
development. Instead of loading the second and third bytes of
a branch instruction into the program counter (as is done with the 8080),
the value of the second instruction byte is added to the program counter
using two's complement arithmetic. The machine jumps to the specified
new location, ranging forward 127 bytes or backward 128 bytes, depending
on the value of the second instruction byte.

On the other hand, the 8080 (and 8008) include a relatively large
number of internal index registers--six eight-bit registers, addressable
(in the 8080) as three 16-bit registers for many purposes. This both
facilitates memory addressing, and at the same time, allows many data
storage needs to be satisfied without recourse to external memory at all.

The 8080 is multiply-sourced, and has clearly become a standard
eight-bit milliprocessor (though not the only one). Software is
available, and is likely to continue being generated for some time to
core.

4.3.2 6800 'The 6800 was the second processor of second-generation

capabilities to reach production. If only because the
8008/8080 came first, the 6800 took longer to become widely used by
large manufacturers. But the designer who is just now making a choice
may find it difficult to choose between the 6800 and the 8080. The
6800 often has the edge, except where maximum speed is important.

One of the outstanding advantages of the 6800 is its single power
supply, +5 V, which cuts the cost of those systems which do not
otherwise need 12 V supplies.

Equally important, the 6800 instruction set locks like classic
computer software. A minicomputer programmer is more likely to feel
comfortable with the 6800, at least at first glance, than with the
8080. Included are relative addressing instructions, outlined
briefly above.

MICROPROCESSOR COMPARTSONS 4-5

M m|crocorgggltgerl;

SEC. 4.3 PROCESSOR COMPARISONS (cont'd)

The 6800 requires a two-phase clock generator with high-capacitance
drive capability and fast rise and fall times. Special hybrid clock
generators are available, since these requirements are not easily met
with standard TTL circuitry; however, they are inherently more costly
than monolithic clock drivers such as the 8224 (for the 8080). Just
as with the 8080, the requirement for an external clock generator
is a disadvantage--especially in small computers where low price is
critical.

The 6800 uses an external general purpose stack, in RAM (similar
to the 8080), providing for subroutine nesting and facilitating interrupt
handling.

The 6800 is second-sourced, and is likely to remain another standard
eight-bit milliprocessor. Its die size is relatively large (when
compared to some 8080 versions), which may put the 6800 at a cost
disadvantage in high volumes, compared to the 8080.

4.3.3 6500 Series Patterned after the 6800, the 650X processors are
especially attractive for microcomputer applica-
tions. Like the 6800, these processors address an external general
purpose stack--but the stack pointer is only eight bits long, limiting
the stack to 256 bytes. This is not however a practical limitation.
In fact, because the stack pointer is eircular--ie, instead of under-
flowing into the next page in RAM, starts again at hex FF--the system
cannot so easily go wild when an excessive number of stack levels are
used. That is, in a microcomputer allowing unlimited subroutine nesting,
the stack pointer is free to run into areas of RAM dedicated to other
data storage, destroying information; or it may overflow and point to
non-existent memory locations.

The 6501 is pin-compatible with the 6800, differing only slightly
in hardware interfacing. Its instruction set, while similar to the
6800, is not directly compatible.

The 6502, also in a 40-pin package, features an on-chip clock
oscillator. Requiring only an external capacitor (or crystal) and
a resistor for main timing, this CPU effectively requires less PC
board area, and saves on component cost. Similar in features to both
the 6501 and 6800, it is attractive as a 6800 replacement in new designs.

A number of 650X versions are available, including CPUs in 28-pin
packages where some 6501/6502 features are sacrificed. Aggressively
priced, the 650X series is available both from MOS Technology and from
a second-source, Synertek. A microcomputer chip with many millicomputer
features, the 650X should prove very competitive,

MR mmrocornggtgell;
l

4-6 MICROPROCESSOR COMPARTISONS

SEC. 4.3 PROCESSOR COMPARISONS (cont'd)

For the purposes of illustration, a sketch of a 650X-based micro-
computer--the MIKE 5--appears in Sec. 4.4 below.

4.3.4 2650 The 2650 would rank as an excellent milliprocessor--at

least, considering its instruction set, which is probably
the best of the currently available eight-bit processor chips. However,
its weakest link is an on-chip, non-addressable PC stack with only eight
levels. This limits subroutine nesting and interrupt handling (just as
the same fault impedes the 8008), and relegates the 2650 to the micro-
computer category.

Available from Signetics, other 2650 advantages include a TTL
clock; a single power supply; and completely microcoded indexed
addressing.

4.3.5 F8 Available from Fairchild and Mostek, the F8 is a well-
designed microprocessor chip set. It requires +5 and +12
V power supplies, and a simple RC combination suffices to complete
its on-chip clock oscillator. The F8 lacks a general-purpose stack;
instead, each chip in the series (RAM, PROM, etc.) includes an on-
chip program counter and one-level program stack. The F8's instruction
set is quite versatile. Its disadvantage: does not interface readily
with standard general-purpose memory parts. Though memory interface
chips do exist, their use in production designs would remove the
advantages of the F8 over other processors, such as the 650X series.
The main F8 application: large-volume microcomputers, especially
controller applications.

4.3.6 S8C/MP The SC/MP is an eight-bit microprocessor from National

Semiconductor (second source, Rockwell). Designed to
fill the gap between four-bit CPUs (4004, L4040) and eight-bit millipro-
cessors, the SC/MP features a 12-bit address bus, interfacing directly to
4 K bytes of standard memory; provision for simple interrupts and DMA;
on-chip serial data input port and output port; versatile memory address-
ing, including relative addressing instructions; and an on~-chip clock
oscillator, requiring only an external capacitor. Perhaps most important
is its single power-supply requirement, +10 to +14 volts, permitting use
of an unregulated power supply, and providing CMOS compatibility.

Disadvantages: TTL~compatible version (metal mask option) requires
two supplies, +5 and -9 V. Most important, the SC/MP is manufactured
with the older P-channel MOS technology, and is much slower than N-charnel
CPUs. The simplest instruction takes five microcycles, each 2 us long--
making the SC/MP about as fast as the 8008. Nevertheless, SC/MP should
be attractive in industrial controllers in which speed is not critical.

MR mlcrocorgputer

esign

MICROPROCESSOR COMPARISONS 4=7

SEC. 4.8 PROCESSOR COMPARISONS (cont'd)

4,3.7 7-80 The 7Z-80 is a third-generation member of the eight-bit

microprocessor family which includes the 8008 and 8080.
Produced by a new corporation, Zilog, the Z-80 is compatible with the 8080
in terms of software, right down to the instruction code level. In addi-
tion, the Z-80 employs some of the 8080's unused opcodes to add a number
of very useful instructions, including relative addressing and block
transfers. The Z-80 incorporates such useful features as on-chip
prioritized interrupt handling, and memory refresh circuitry for dynamic
RAM. Finally, the Z-80, like the 6800, requires only a single +5 volt
supply. Beginning in the last quarter of 1976, the Z-80 is available
from Mostek as well as from Zilog.

The advent of the Z-80 is effectively a great advantage to the
8080 family, insofar as the Z-80 combines all the advantages of the 8080
processor with those of the 6800. As this book went to press, Martin
Research was introducing a Z-80 based microcomputer to its product line--
the MIKE 8.

SEC. 4.4 THE MIKE 5 MICROCOMPUTER

Tor the sake of illustration, this section includes a sketch of
a small microcomputer based on the 6502 CPU (Fig. 4.4.1). Including only
six ICs in addition to the CPU, the MIKE 5 has one page of RAM (256 bytes),
a page of PROM, an input port, and an output port. The power supply o
required is simply +5 volts--unless the PROM employed requires an additional
supply.

Tull eight-bit I/0 ports could be provided by replacing the six-bit
latch and driver ICs with eight-bit devices. The 74IS174 can be replaced
with a 7418273, and the 74367 with a 741LS241--both available from Advanced

Micro Devices.

The MIKE 5 is an example of a small microcomputer suitable for incor-
poration into industrial controllers. For developing software, however,
a computer with full expansion capabilities and a Monitor program is
preferable. For typical examples, see the information on the modular miero
series at the end of this bock.

MR mlcrocorgputer

esign

4-8 MICROPROCESSOR COMPARISONS
SEC. 4.4 THE MIKE 5 MICROCOMPUTER (cont'd)
A7
A6
__ a5 | RAM
A a 2112
] $ o0 — OUTPUT
—al 1} q BS BB S5 |
SV N D S L B4 [
_FEG Y ————::: 74Lsi74 |
__jz!___j; T :::
a7 [we ce BB3 BBY -
A6 </ BB2 . D
A5 | P, LT oUT
na 2112 BBg
—Ai— INPUT
W E— 8BS |
AB BB 4 |
CPU . BB3 | 74367 |
ALl —BB2 1340097 |
v . 8B 1 |
—, PROM 1Y -
AB -
RESET 650X A7 BT _—I—T
[as BB6
[as 885
% (a4 BB 4
l A3 883
a BB2
Al 8B 1
Y . s8g
'TM_I < BB7 —_
T PROM
BBS
4 BB4
_ GETTIE DECODER
= §>_§5'— . PROM
QYT P __
| R/W | 0UT
SYNC 741838 p———
o1 VI R i
| PH2 Al ¢
T AlQ e —
A9 N A

Figure 4.4.1--Sketch of the MIKE 5, a 650X-Based Microcomputer

MATN TIMING 5-1

Both the 8080 and 8008 microprocessors require two-phase clock signals,
which must be generated by circcuitry outside the microprocessor. The 8008
requires clock voltages at standard TTL voltage levels, while the 8080
requires PH1 and PH2 signals referenced to +12 V.

The first part of this chapter is devoted not only to the generation
of clock signals for the 8008, but to other main timing requirements as well.
Since the 8008 does not include internal TH and DL address registers, these
must be added (Sec. 5.4). 8080 clock circuitry is discussed in Sec. §.5.

SEC. 6.1 8008 CLOCK CIRCUITS

Symmetrical clocks are the best place for the 8008 designer to start.
CPU circuits may be converted to skewed clocks, for slight improvement in
system speed during the late stages of circuit design if it is found
advantageous.

Most symmetrical clock designs are made up of three sections:

(1) the oscillator;
(2) the counter;
(3) the decoder.

The oscillator section provides the basic signal source at a constant
frequency. The counter section then divides the frequency by two to provide

two related frequencies, fo and 1/2 fo . The decoder section then selects
the 01 and 11 states from the counter, providing the 41 and @42 signals re-
quired.

Figure 5.1.1 shows the timing diagram for a two-phase clock generator
which uses a positive-logic decoder.

cowvr a o] LT LT LI LM LML LT LT
] J J]

COUNT B (fo/2)] L L L L |
PHASE 2 M _r r_JyirJv
PHASE | _I—L 'L 1 JL [

Figure 5.1.1--Two Phase Clock Generator Timing Diagram

X mucrocornputer

esign bl m

mlcrocorgputer
esign

5-2 MATIN TIMING

SEC. 6.1 8008 CLOCK CIRCUITS (cont'd)

5.1.2 Oscillators Two basic oscillator circuitg are descpibed here.
Other oscillators which provide approximate square

waves may also be used.

The first oscillator shown, in Figure 5.1.2, is very %nexpegsive and
uses readily available components. The disadvantage to this oscillator 1s
that it is inaccurate. Adjustment components may be added.to‘tbls cireuit,
as shown in the figure, but the temperature drift may be significant,
depending on the application.

-

i i

| 2.5K 330.n]

j+5V i

|

: Optional }

| Adjustment [C

I Components { e

[g
1

Oscillator

% I Output

Figure 5.1.2--Inexpensive CPU Oscillator: Three Inverters and Capacttor

The second type of oscillator is also quite simple,.bur.useg a‘crystal,
which makes it more expensive. The main advantege to this circuit is its
stability. (A microcomputer built into instrumentation needing an accurate
frequency or time standard will need such an oscillator anyhow.) TFigure
5.1.3 shows the crystal oscillator schematic. The value of R must be

%
i)

Figure 5.1.3-~CPU Oscillator: Two Inverters, Crystal for Stability

_

X mmrocoqggltge;

s S s <

MAIN TIMING 5-3

SEC. 6.1 8008 CLOCK CIRCUITS (cont'd)

decreased for crystals with high internal resistance. Resistor values may
range between 270 and 1000 ohms. If the characteristics of the crystal
are unknown, a 270-ohm resistance is generally recommended.

Sometimes a precounter may be used with a crystal oscillator, as shown
in Figuwre 5.1.5 below. The precounter implies the use of a higher-frequency
crystal, which is smaller and less expensive. For prototypes, the precounter
may be eliminated. For the production version, the cost-effective approach
should be used.

5.1.3 Counter Section The simplest counter is a single fiip-flop.

Whether the desired flip-flop should be positive-
or negative-edge-triggered depends on the type of decoder used. In order to
avoid race conditions, a negative-edge-triggered flip-flop is used with a
positive decoder, and a positive-edge triggered flip-flop is used with a
negative decoder. (See following section on race conditions.)

5.1.4 Decoders The two phases, 1 and 62, can be decoded from the counter
section with only two gates. Since positive pulses are

required for the 8008, either AND or NOR gates are used because their excep-

tional output states are logic one. (The exceptional output state is that

state occurring with only one combination of inputs.) Figure 5.1.5 shows

the use of AND gates for a positive decoder (exceptional input state of

logic one). Figure 5.1.6 shows a negative decoder, which uses a pair of

NOR gates (exceptional input state of logic zero). Notice the use of neg-

ative-edge-triggered flip~flops with positive decoders, and vice versa, as

mentioned previously.

When using TTL decoders, it is advisable to add 1 K ohm pullup re-
sistors (to +5 volts) to ensure an adequate voltage swing to drive the
CPU's MOS inputs. If a CMOS decoder is used, these resistors may be
eliminated.

The following should help explain the cautions on avoiding race condi-
tions in this section. A binary counter made up of flip-flops (including
multi-count ripple counters like the 7490 series) exhibits certain inherent
race conditions during count transitions. Take for example the single flip-
flop counter shown in Fig. 5.1.5, which goes through four states (see Figure
5.1.4):

STATE ~TBINARY COUNTER| COUNT | POSITIVE TECOERS) COUNT [NEGATTVE —
NUMBER STATES DIRECTION |STATE DIRECTION | DECODERS

£ £.72 NAME STATE
NAME
0 0 0 RACE-PRONE STATE é1
1 0 1 $1, PHASE ONE RACE
2 1 0 RACE-PRONE STATE 62
3 1 1 |42, PHASE TwWo RACE

Figure §.1.4--Two-Phase Clock Generator Timing Diagram

MR

mlcrocoraputer
esign

5y MAIN TIMING

SEC. 6.1 8008 CLOCK CIRCUITS (cont'd)

|7
7

|
|
{ PRECOUNTER
OSCILLATOR | (OPTIONAL)
R R {
| I
] DiVIDE
| BY 16
|
|
|
|

_— _—_

PB

AND 2
74107 ‘s__)"“

Figure 5.1.5~-A Single Flip-Flop Functions as Counter. Negative-
Edge-Triggered Flip-Flop Used with Positive Decoders.

CLOCK
INPUT

D Q NOR g2
7474 ——a| 7402
Dc
——] NOR Al
ob—é d 7402

Figure §.1.6--Counter Using a.Positive-Edge-Triggered Flip-Flop
and Negative Decoders.

MATN TIMING 5-5

1-I mncrocornputer

esign

SEC. 5.1 8008 CLOCK CIRCUITS (econt'd)

During the transition between state number 1 (binary output code 01)
and state number 2 (binary output code 10), both bits must change state.
This transition is not immediate, and in this kind of counter, the low-
order bit must change before the high-order bit can change. This means
the count is really 01, (00), 10 (where the 00 count is very short, just
a glitch). If the decoder were looking for the 00 state, a glitch would
appear at this point. Similarly, in the transition between state 3 (11)
and state 0 (00), the counter passes through the 10 count. Glitches are
avoided by making sure not to decode the 00 or 10 counts.

A similar situation occurs when positive-edge-triggered flip-flops are
used, except that the safe states are now the even counts, and the counting
direction is reversed (Figure 5.1.%, to the right). Schematic: Figure 5.1.6.

5.1.5 Monolithie Clocks Instead of the TIL-based two-phase clock circuits
shown above, the designer may choose to specify
a monolithic clock generator. One such is the National Semiconductor MH8803
two-phase oscillator/clock driver. A circuit diagram is shown in Figure
5.1.7. With the frequency control pins left open, as shown, the oscillator
runs at 300 KHz, with a 750-nanosecond pulse width.
) + 5v +5v

f_

Voo Vce

10 PHASE 1
MH8803 l

PHASE 2

Vss

=i2v
Figure 5.1.7--Monolithic Two-Phase Clock Generator

SEC. 5.2 ENABLE AND STROBE GENERATION

One of the functions of the main timing logic in the 8008-based
microcomputer is to develop the signals necessary to activate associated
input selectors, memory, and output ports at the proper times.

Chapter 2 has already covered the basic timing characteristics of
the 8008. Here the hardware is developed to accomodate the 8008's
requirements.

mlcrocorgputer
esign

5-6 MAIN TIMING

MATN TIMING 5-7

SEC. 5.2 ENABLE AND STROBE GENERATION (comt'd)

5.2.1 Fight-State Decoder Most of the 8008 designs previously published
have used decoders to transform the S2, Sl
and SO state outputs from the microprocessor and develop eight separate
state signals. The schematic for this circuit is shown in Figure 5.2.1.
Usually the WATITING and STOPPED signals are then used to control lamp driver
circuits which inform the user when the CPU is waiting for memory or has
hit a HLT instruction. Then a large nunber of inverters, gates, and flip-
flops are added to generate strobe and enable signals to perform the
appropriate data transfers to and from the CPU at the proper times. The
presence of this large and often confusing mass of TTL has probably dis-
couraged more designers from using the 8008 microprocessor than any other

single factor.

- ., o b TE O\

S| B o | o p—

8008

(o) A i 0 o p——-os—

T3 INDIVIDUALLY
DECODED
STATES

El o I P

5 eles 00 o b WAITING/

Figure 5.2.1--Octal Decoder Generates State Signals

SEC. 6.2

5.2.2

A Practical Strobe Generator

ENABLE AND STROBE GENERATION (cont'd)

A very significant savings in gates
can be accamplished by using the

strobe inputs of the decoder to eliminate the need for these additional
gates, as shown in Figure 5.2.2.

s2

S!

SO

SYNC

22
15

FROM
\ g2

E

7/ GENERATOR

E3

E2 o 1 r p———

S2 S| SO

INDIVIDUALLY
= DECODED
STROBES

oo o p————o //
74LS138

Figure 5.2.2--Strobed State Decoder Simplifies CPU Logic Design

The only potential objection to this technique is that the STOP and
WAIT lines become a string of pulses rather than a steady level. If
somecne is using an oscilloscope
will actually find it advantageo

quickly recognized

Sweep more readily than a DC level signal.

than a level,

to look for STOP or WAIT states, he
us, since a string of pulses is more
and pulses will trigger his scope

If STOP or WAIT indicator

lamps are required, the pulse signals again will work better than level

signals in driving

LED readouts.

The designer merely calls for a smaller

cu;rent—}imiting resistor in series with the LED display, since it is
being driven in the pulse mode.

M mmrocornputer

esign

mncrocorgputer
esign

5-8 MATN TIMING

SEC. 5.2 ENABLE AND STROBE GENERATION (cont'd)

Figure 5.2.3 shows a circuit to perform these functions.

15_n_
— +5vV
WAIT 330
15
LED —_— +5v
sTop >0

Bypass
Capacitor

LED

Figure 65.2,3--Pulse-Driven WAIT and STOPPED Lamps

5.2.3 Generating the T3A Enable/Strobe When the CPU is inputting data
during T3 time, it needs an enable
pulse which comes between the ST2 strobe and ST3 strobe. This signal anti-
cipates the T3 state in order to give time for the information coming into
the CPU to settle on the bus. This signal is called T3A. See Chapter 2

for a further description of T3A.

There is more than one way to generate the T3A enable pulse, but per-
haps the most convenient one is shown in Figure 5.2.4.

773
[\M]

: T3A
sync | ANP

107
—~
(]

Figure 5.2.4--A T3A Enable Generator to Enable CPU Input Sources

MR mlcrocorgputer

esign

MAIN TIMING 5-9

SEC. 5.2 ENABLE AND STROBE GENERATION (cont'd)

The flip-flop is set by ST2 and reset by ST3. During the interval
between these signals, while the output of the flip-flop remains high,
the SYNC signal is passed through the AND gate to the output. The pulse
width of T3A is approximately equal to the PHASE TWO clock period.

It may be desirable to suppress the T3A enable signal during a PCW
gmemory write) cycle, when the CPU is outputting onto its bus rather than
inputting. In order to accomplish this, the reset of the flip-flop is
connected to PCW rather than to ST3. ST3 still resets the flip-flop, now
Figure 5.2.5 shows this revision.

a D~type device, through its clock.

ST2 STAG
S
STAG j
r— D Q SYNG 7408 T3A
ST3 >C v ——4
7474
R
CCi
cc2 7400 FCw
1

Figure 5.2.5--Blanking of T3A During PCW Memory Cycles

MR

mmrocorgputer
esign

5-10

MATN TIMING

SEC. 5.2 ENABLE AND STROBE GENERATION (cont'd)

Figure 5.2.6--Shows How the T3A Enable Pulse is

| S| L
U

I
LI

1

T
|8}

1
NO T3A
|

1

J
S

L

| S
U

i
)

I 1
L=a

L [
Sz
© S
- N o % < |2 o«
> o - -3 l»— I Lo % - © L f_tm
w 1%} w " v v 2]) v a [<:
3o

During PCW Cycles

The instruction being emecuted is LMA.

NOTE :

Eliminated

MAIN TIMING 5-11

MR

mICI'OCOI'H

puter
esign

SEC. 5.2 ENABLE AND STROBE GENERATION (cont'd)

Secticn 5.2.4 describes the generation of RAM write pulses. Since
this usually requires the generation of the PCW signal anyway, the T3A
generation circuit of Figure 5.2.5 is still minimal.

It is necessary when using the circuit of 5.2.5 to load the CC2 and
CCL bits on the beginning of the ST? pulse. With rising-edge-triggered
flip-flops, this is usually accomplished with the STAG signal. Figure
5.2.6 shows the timing diagram associated with the circuit of 5.2.5.
The instructions being executed are an LMA, followed by the fetch por-
tion of the next instruction (which might be any instruction). Notice
how the PCW cycle suppresses T3A. The use of this circuit is more
fully explained in Chapter 26.

5.2.4 Generating the "STEW'" Strobe The other signal which is often

(but not always) needed in an 8008
microprocessor system is ST3W. This strobe is generated when the CPU is
outputing information (during T3 cycle) to be stored in RAM. This output
condition occurs only when a PCW cycle is being executed. Since the PCW
cycle is denoted by CC2 and CCl being high, strobe generation may be as
simple as a NAND gate and an inverter. Figure 5.2.7 shows two possible
circuits which both fit equivalent logic equations.

ST3W = CC2 - CC| - ST3 ST3W = CC2 - CCl - ST3

cc2
ccl
— cc2 —
— I NAND ST3IW NAND PCW —
sST3 cCl p— OR ST3wW
8T3 o

A) METHOD No. | B) METHOD No.2

Pigure 5.2.7--Methods for Gemerating "STEW"

The limitation of this circuit is that the ST3W pulsewidth is only
as long as ST3 (the width of a PHASE TWO pulse). For an 8008-speed clock
this pulse would be 500 nanoseconds wide. This pulse is quite sufficient
for many RAMS. The ST3W signal is called "STEW" probably because it is
more easily pronounced.

X m|crocorgputer

esian

—

5-12 MATN TIMING

MATN TIMING

5-13

SEC. 5.2 ENABLE AND STROBE GENERATION (cont'd)

For those RAMS requiring wider
write pulses the circuit in
Figure 5.2.8 may be used. The normal ST3W pulse is generated, as in
Figure 5.2.7, and a set-reset flip-flop is added to broaden the write
pulse.

5.2.5 Generating the "STEWED" Strobe

|

Is!

3
(21
-4
ol
£

ccl
cce NAND

lﬁ

=al)

Figure 5.2.8--Generating "STEWED," a Wider Write Pulse

The flip-flop shown is an AND-OR design. (For a description, see
the article "Another Way to Build a Two-Gate Flip-Flop" by the present
author in Electronics, June 13, 1974, page 124.) It is reset to a low
level by the negative-going ST3W strobe, starting the ST3WD pulse. The
positive-going edge of the next PHASE 1 clock pulse sets the flip-flop to
a high level and terminates the strobe. For systems using a symmetrical
clock, this flip-flop doubles the write pulse width. Therefore, with
a clock designed for normal 8008 speed, the write pulse will be a full
microsecond in width. In any case, the STEWED signal always staggers
around a little longer for systems with slower memory.

SEC. 5.2

ENABLE AND STROBE GENERATION (cont'd)

cc2
cci |7400
7400 T3A

7402

BB7
B B6 T
BBS
BB4 1 :
883
BB2
BBl
BBO
2 I3 |4 |5 |6
+5v D7 D6 DS D4 D3 D2 DI DO
J Vee ‘I;IB: J ST
13 ST
8008 oio 573
100 o“—s—
001 DEL__éié_-
Vpo a1 92 i bz ST4
o2
I P~ 3
-9v 54 o1 1 jol2__STOP
[-] 15 WAIT
ooo p2—=0 1
K2 IK 74LS138
Q <
74107 7408 STROBE DECODER
Dc
7408
Q }—

Figure 5.2.9--Basic 8008 Timing with Little Peripheral Logic

mmrocorgputer |
esian Ak

MR

mICI'OCOTH

puter
esian

MATN TIMING 5-15

5-14 MATN TIMING
C _
C
C
C
L
C n)
C il
] g
C cui:l
IvRIRY
C L
C. g0
[;]
C 1
C
C
7 - |

Fig. 5.2.10--Basic Main Timing Signals for an 8008 Microcomputer

SEC. 6.2 ENABLE AND STROBE GENERATION (cont'd)

5.2.6 Summary The above main timing circuits are combined in Figure

5.2.9, which shows:

(1) the clock which produces é1 and #2;
(2) the CPU itself;

(3) the strobed decoder;

(4) the ST3A generator; and

(5) the ST3W generator.

Figure 5.2.10 shows the main timing logic signals used by an 8008.
The relative simplicity of firing up an 8008 CPU is becoming more clear.

SEC. 6.8 MASTER RESET

Nearly every complex logical system requires some method for initia-
lization when power is first applied. Otherwise flip-flops, latches coun-
ters, and other devices with bistable logical states will take on arbitrary
and possibly undesirable values. The system might even enter an illegal
state, where the machine hangs up and refuses to respond to inputs at all--
a most frustrating habit, as every designer who has encountered it knows
well. The solution is generally a master reset circuit which develops a
reset signal for a fraction of a second when power is first applied.

5.8.1 Simple Master Reset Circuits A simple master reset circuit which

uses only one or two TTL gates is
shown in Figure 5.3.1. The capacitor is initially discharged, so that the
7404 output is initially high. After the capacitor charges to the 7404
logic one threshold value, the output goes low, and remains low as long
as the power is on. The output signal is commonly called MR, and is used
for devices (such as a 7490 decade counter) with positive-logic resets.
When a negative-logic signal is needed (as to reset a 7474 flip-flop), the
MR signal can be inverted using another 7404 stage, producing FR.

+5v

MR

c c 4049

s i

Figure 5.3.1--(A) Simple Master Reset Circuit Using TTL; (B)CMOS Versiom

)

MR/

mICI"OCOI'H

puter
esian

‘MR mlcrocorgputer |

esign

5-16 ’ MAIN TIMING

MAIN TIMING 5-17

SEC., 6.3 MASTER RESET (cont'd.)
SEC. 5.4 ADDITIONAL CIRCUITRY REQUIRED FOR BASIC MICROCOMPUTER

With a standard TTL gate, as shown, R should normally be not less
than 1 K ohms (to protect the gate against power supply transients), 5.4.1 Address/Data Registers
nor more than 25 K chms (to provide sufficient input current). The dicde
shown is optional, and forces the capacitor C to follow the power supply
voltage down rapidly when power is turned off.

During T1 time, the CPU outputs infor-
mation on its data bus which is intended
for temporary storage in an external register, called the DL Register.

In most instances, the DL register contains the law-order portion (eight

)) bits) of the address in memory which is being read or written into by
Note that the circuit is power-supply rise-time dependent. If the the CPU. When an output instruction is being executed, the data trans-—

+5-volt supply tends to come up more rapidly than other suppligs in the i ferred to the DL register—-during memory cycle two--is intended for an
machine, consideration should be given to increasing the capacitor’s value. output port. (For clarification, the reader may study the chart on in-

ternal processor operation in the 8008 manual.)
The circuit of Figure 5.3.1-B, using CMOS, allows the use of smaller

capacitors and larger resistors. Of course, drive capabilities are also The strobe used to load the DL register from the data bus at the

reduced (2 TTL loads with the chip shown). The circuit of Figure 5.3.2 proper time is STI. It occurs far enough into T1 time to ensure that
can be used to minimize power supply rise-time dependency. the data which the CPU is outputing has had time to settle on the bus.

+5v Figure 5.4.1 shows how simply the DL register may be added to the
2.2k : CPU. The eight-bit latch used should be a low-power device,

whose input current requirements will not overload the CPU output bus

Dﬁ MR drive capabilities.

4049

Figure 6.3.5--Master Reset with Reduced Power Supply Dependency

! BB7 DL? BB7 cc2

5.3.2 8008 Initialization The 8008, which contaJ:_ns a nunber of internal BB6 bLE BB6 U cc
registers and other bistable elements, has B85 LS 385 ;_DHs
its own initialization provisions. As the power supply and system clock 8 BIT 8 BIT _
come on, the CPU executes a HALT instruction automatically. During the BB4 LATCH DL4 BB4 LATCH DH4
ensuing STOPPED condition, the CPU automatically clears its internal BB3 DL3 BB3 DH3
memories in sixteen clock periods. The CPU may be started by causing its BB2 DL2 BB2 DH2
INTERRUPT terminal to go to logic one. ™ oL 8B DM
For more information on initial interrupts with the 8008, see ' BBO DLO B8O DHO

Chapter 16. GSee also the practical example in Chapter 25. ¢ <

2
7]
[V

-

A) DL Register (B) DH Register

Figure 5.4.1--The DL and DH Registers Connected to the CPU Bus

»

S

microcomputer | microcomputer
MR l’aeSIQ" - IHgsmm

5-18 MATIN TIMING

MATN TIMING 5-19

SEC. 5.4 ADDITTONAL CIRCUITRY REQUIRED FOR BASIC MICROCOMPUTER (cont'd)

During T2 time, the CPU outputs the address or instruction intended
for the DH register. The two high order bits (DH7 and IH6) are, in all
cases, used to determine the type of instruction cycle being performed.
Since they are control bits, rather than memory-addressing bits, DH7 and
TH6 are usually referred to as CC2 and CCl (respectively) in this book.

The remaining six low-order bits of the IH register usually contain
the high~order memory address information. In the case of input or output
instructions, the CPU loads the IH register with the I/0 instruction itself,
in its eight-bit binary code.

The strobe used to clock the data bus information into the DH reg-
ister is called STZ.

Figure 5.4.1(B) shows an eight-bit latch being used as the DH reg-
ister. Cautions similar to those mentioned for the DL register must be
observed with regard to loading down the CPU data bus.

5.4.2 Basic 8008 Microcomputer A working 8008 microcamputer requires

the addition of read-only memory (ROM)
for program storage, and an input/output/memory select decoder. These
matters are outside the scope of a chapter on main timing logic, and are
discussed elsewhere in the book. However, we are now very close to a de-
sign for a minimally configured microcomputer. See Chapter 25 for a de-
sign example.

SEC. 5.6 8080 CLOCK GENERATION

The 8080 CPU requires a two-phase clock referenced to +12 V. System
timing requirements dictate an asymmetrical clock, where PHI has a duty
cycle of 2/9, followed immediately by PH2 with a duty cycle of 5/9, followed
with a gap of 2/9. The standard 8080 clock cycle is 500 ns (2.0 MHz
frequency), derived from a crystal oscillator running at nine times that
frequency, or 18.0 MHz. PHL and PH2 are produced by decoding the outputs
of a divide-by-nine counter.

SEC. 6.6 8080 CLOCK GENERATION (cont'd)

A collection of TTL circuits--crystal oscillator, divide-by-ni
(7HL$193),'and_decoders--plus two high-level buffers %ould progzcgliﬁecountep
gigzlred girgultry. ?ﬁbrid 8080 clock generators are also available.

ver, 1t 1s more efficient simply to use the e 8224 clock chi
the 8080 manufactgrers. The 8224 saves PC boardtzgace, especialf?lggizém}t
1n§orporates special gating for producing the 8080 system strobe and two
flip-flops for synchronizing external wait and reset signals. The hybrid
circuits lack these extra features, include a relatively high labor

content, and will probably always be mo . .
tion volumes. ¥ Y re expensive than the 8224 in produc-

For a practical application of the 8224, with functio ipti
nal descriptio
see the 471 data sheet near the end of this Book (Sec. 1.4). e

microcomputer
M H esian

mmrocorgputer
esign

BUS STRUCTURES 6-1

SEC. 6.1 INTRODUCTION TO BUS STRUCTURES

6.1.1 What is a Bus? A bus consists of a nunber of actual wires which

may be driven by more than one source. The fol-
lowing sections will concentrate on the types of busses most cammonly ap-
plicable to microprocessors.

The wired-AND function (sametimes called the wired OR) used in DIL
is a primitive example of a one-bit bus. Figure 6.1.1 shows two RTL in-
verters with their outputs wired together. RIL is used in this example
for simplicity: the gates have passive (resistor) pullups rather than active
(transistor) pullups as in TTL devices with totem-pole cutputs.

+V

R

Figure 6.1.1--A "One-Bit Bus" Example

Referring to the figure: if either point A or point B is raised to
logic one, the associated transistor will turn on and the "one-bit bus"
will be actively pulled down to logic zero. The portion of the figure
enclosed in the dashed rectangle is considered the bus. This orientation
is important in clearly defining the difference between a bus input and
a bus output.

Thus, when the RTL inverter outputs are connected to the bus, they
become bus inputs. The RIL inverters themselves function here as bus
drivers. Naturally the bus is not very useful until a bus receiver is
connected to it. A bus receiver uses the output of the bus to drive its
input. Many bus receivers may be attached to a bus.

mlcrocorgputer
esign

6-2 - BUS STRUCTURES

BUS STRUCTURES 6-3

SEC. 6.1 INTRODUCTION TO BUS STRUCTURES (cont'd)
SEC. 6.1 INTRODUCTION TO BUS STRUCTURES (cont'd)

The real value of a bus structure becomes apparent when one uses the

same bus to transmit different information at different, well-defined times. 6.1.2 Why Bother? All this effort is hardly justified with a one-bit
Information can then be time multiplexed onto the bus. Only one bus driver bus; three wires are used (a bus and two strobe lines)
can be active at one time, and bus receivers should pay attention to the to transport information that could have been commumnicated over two wires
information on the bus only when it pertains to them. , with no extra logic. However, consider an eight-bit bus: similarly con-

figured, it would need ten wires (the eight bus lines and two strobe lines),
as opposed to sixteen wires. As the system beccmes more complex, the sav-
ings become more apparent. And when the designer is using large-scale-

*ov oV) integration (LSI) chips, the cost of the real estate of the silicon chip
R R is less expensive than the extra printed circuit board copper, PC board
connectors, and backplane wiring. And LSI chips intended for time-multi-
v °- plexed bus use are themselves less expensive, ultimately, because fewer

pins and bonds are required.

INPUT A 200\ 0UTPUT A
— 7401 r SEC. 6.2 LATCHING LOGIC

STROBE A
STROBE B . . .
cLocK >c) The next step is to improve the circuit of Figure 6.1.2 by adding
7400 Yo-2UTPUT B a latch to the bus receiver. Naturally it is necessary to latch up
Q ‘ the information at OUTPUT B only when it is valid. This may be diffi-
@)— cult to do with the circuit in Figure 6.1.2. The problem which arises
‘ : is that the information on OUTPUT A should not be latched up until
INPUT_B | ENABLE A has been on long enough for the data to propagate down the
bus and settle on the output of the 7400.
+8v +5v
R R
Figure 6.1.2--Two Drivers and Two Receivers on One-Bit Bus o ONE BIT BUS
Figure 6.1.2 shows a bus circuit with two bus drivers and two bus re- | } =~~~ T T T T TTTTTTTOITTT T YT - T
ceivers. The timing circuit consists of a clock driving a single flip-flop. INPUT_A b
The flip-flop alternately enables the two 7401 gates. When STROBE A is ENABLE A
high, the information on INPUT A is impressed onto the bus, and the top- 7474
most 7400 gate is enabled. OUTPUT A then follows INPUT A logically. When INPUT 8 \ STROBE A D OUTPUT A
the next clock pulse occurs, the flip-flop complements, which disables ENABLE | 7401 ‘ op———
STROBE A and enables STROBE B. Now the information on INPUT B goes onto
the bus and is recognized by OUTPUT B.
—1D Q \
7474 7402
cLockl-o— ¢ — D
i 7474
Q 740 2\ STROBE B c
/ OUTPUT B
Qp—
!
BUS TRANSMITTER + TIMING CONTROL | BUS RECEIVER
) Figure 6.2.1--One-Bit Bus with Enables and Latches
N J

microcomputer
MR microcomputer
design (KA mputer

6-u BUS STRUCTURES

SEC, 6.2 LATCHING LOGIC (eont'd)

In order to do this a timing signal is needed for each driver and each
receiver. Figure 6.2.1 shows a circuit which not only transfers the infor-
mation, but latches it in flip-flops so that it is continuously available
at OUTPUT A and OUTPUT B.

The timing diagram in Figure 6.2.2 shows the sequence of events as in-
formation is transferred from each of the bus driver inputs to the appro-
priate bus receiver output latch without any problem. The clock must be

slow enough to let the enabled data settle on the bus before the receiver
strobe causes the data to be latched.

[N T S I s 0 O N

ENABLE A] L__J L |
STROBE A I L L M1 [

! ! ' }
ENaBLE B L L L [1
STROBE B ~ L 1 ! 1
f f

CLOCK

f

Figure 6.2.2--Timing Diagram for Figure 6.2.1

The arrows in Figure 6.2.2 indicate the points at which the output
flip-flops are loaded. Note that loading occurs a significant time--
one-half clock cycle--after the associated bus driver has been enabled
onto the bus.

The bus-structured designs discussed up to this point have used open-
collector bus drivers. Integrated circuits with open-collector outputs
have only two output states: that is, the gate can either pull the bus
down to logic zero, using an active circuit element (the gate's internal
output transistor); or it can allow the bus to be pulled back up to logic
one by a passive circuit element (an external pull-up resistor). To dis-
able the bus driver, a signal is applied to an extra input terminal which

MR

mlcrocmnputger
esign

BUS STRUCTURES 6-5

SEC. 6.2 LATCHING LOGIC (cont'd)

causes the gate's internal output transistor to turn off. The disabled
bus driver then allows the pull-up resistor to pull the bus up to the
logic one state--or allows some other bus driver on the same bus, which
is enabled, to pull the line down to logic zero.

SEC. 6.3 THREE-STATE DEVICES

A relatively new class of logic devices is available which offers
better performance in bus-structured designs than the open-collector
devices described in the previous sections of this chapter. The in-
tegrated circuit with three-state outputs has both active pull-up trans-
istors, and active pull-down transistors, in its output stage--like
ordinary TTL with totem-pole outputs. To disable the outputs, an extra
terminal is used, commonly termed OUTPUT ENABLE. When the outputs are
disabled, the output floats; that is, the output stages neither sink
nor source a significant amount of current, but allow the output vol-
tage to be determined by another circuit element cornected to the output
bus. This third state is often called the high-Z or high-impedance state.

The term TRI-STATE is often used; this is the registered trademark
of National Semiconductor Corporation for three-state devices.

Figure 6.3.1 shows some common symbols for three-state buffers.

Circuit (e) is similar in circuit function to the 7401 open-collector
gate described above.

THREE -~ STATE THREE - STATE
INPUT N ouTpPuT INPUT N ouTpuT

ENABLE | ENABLE i

(a) (b)

THREE - STATE THREE - STATE

INPUT OUTPUT INPUT OUTPUT
ENABLE ENABLE
(c) (d)

Figure 6.3.1--Common Symbols for Three-State Buffers

MR mlcrocorggg;tgeg

6-6 BUS STRUCTURES

BUS STRUCTURES 6-7

r —f N s D _l
E INPUT_A 5 : ONE BIT BUS | o ofoureuTA |
|] | Dc :
! ! I 7474 l
I MEUT B 123 ' : OUTPUT B :
! } | ! o '
| | =" |
|
| | 7474

(TRANSMITTER| | J L —RECEIVER
N __ENABLE A - T UstroBE B =
! ENABLE B STROBE A :
: -d !
i Q -0 !
I CLOCK Dc :
| Qp—=e —O) |
| 7474 |
| ! |
| TIMING _CONTROL]

SEC. 6.3 THREE-STATE DEVICES (cont'd)

A very valuable property of almost all three-state buffers is that,
when disabled, not only the outputs but the inputs are in a high-Z state.
If a nunber of three state devices are connected to an ordinary TTL output,
the load factor is defined by the maximum number of three-state devices
which may be enabled at one time, not by the total number. This property
is very handy in the design of large bus-structured systems.

To minimize the possible conflict between two three-state devices
trying to drive the same bus line at the same time, most manufacturers
have designed their devices such that the output enable time is longer
than the output disable delay time. The designer should design his system
timing and strobe signals to make use of these properties and avoid any
output overlaps between two bus drivers. Otherwise current spikes may
appear. While not likely to destroy the buffers--whose outputs are gen-
erally current-limited--these spikes can easily disrupt normal system
functions.

SEC. 6.4 ADVANCED STROBE TECHNIQUES

The bus circuits discussed earlier are extended further here through
the use of three-state buffers. The circuit in Figure 6.4.1 is similar

Figure 6.4.1--Three-State Buffers Replace Open-Collector Devices-
Timing Control Shown Separately

SEC. 6.4 ADVANCED STROBE TECHNIQUES (cont'd)

to that in Figure 6.2.1, except that three-state buffers are used in place
of open-collector gates. The timing logic is separated into a third sec-
tion of the schematic. The timing circuitry could have been included
either with the bus drivers, or the bus receivers.

The 7474 flip-flop in the timing control section of Figure 6.4.1 may
be considered a one-bit counter, and the pair of 7402 gates may be con-
sidered a two-bit decoder. Note the similarity between the above schematic
and the 8008 main timing circuitry in Chapter 5.

The capabilities of the timing section shown above can be expanded by
using multiple-bit counters and decoders, as shown in Figure 6.4.2.

ENABLE DECODER
i p—Iz
* c 11op—218

—¢ 1ot T4 ENABLE
——¢ A 100 fp—12% 8 OCTAL
F

o1 p—== BUS
DRIVERS

» ® 0o O

Ain

olop—I2
ool p—TL
000 p—1L

74L5138

ST7
S2 ST6

St STS STROBE
Yo ST4 8 OCTAL

ST3 BUS
SYNC otl D—_STZ RECEIVER
S olEN o10p—21% LATCHES

cLocK & g2 EN ool p—3LbL

ooopﬂ. /

STROBE DECODER

Figure 6.4.2--Ezpanding Number of Bus Drivers and Receivers with
Only a Few Chips

MR mmrocoraputer

esign

MR mlcrocornputer

esign

6-8 : BUS STRUCTURES

SEC. 6.5 TYPES OF BUS STRUCTURE

6.5.1 Input Bus An input bus is a bus which drives only one set of
receivers, but has more than one driver. An example:
the three-state data outputs of many RAMs and ROMs are connected together
to the inputs of a single set of buffers. Figure 6.5.1 shows a CPU input
bus which accepts information from a ROM or one of two RAMS, all of which
have three-state outputs. The decoder must provide enable signals to en-
sure that no more than one memory IC is driving the input bus at one time.

6.5.2 Output Bus An output bus is a bus which contains only a single

set of drivers, but several sets of receivers. In
the example in Figure 6.5.1, the CPU is connected to eight buffers, whose
outputs constitute the CPU output bus. The RAM chips receive data to be
stored from this CPU output bus. The WRITE STROBE line both enables the
RAM, and strobes the data to be written onto the chip at a time when the
data on the CPU output bus is stable.

6.5.3 Bi-Directional Bus A bi-directional bus employs more than one

set of drivers and more than one set of re-
ceivers. Non-overlapping enable signals should be provided to the drivers,
and correctly-timed strobes should be provided to each of the receivers at
a time when the bus is stable.

Note that, in Figure 6.5.1, the symbol NB is used to represent an input
bus; the symbol TB denotes an output bus; and BB is a bi-directional bus.

6.5.4 Tri-Bus A bus structure whose hardware is designed using three-

state devices is called a tri-bus in this book. Unlike
the above bus designations, this term refers primarily to hardware (elec-
trical) considerations. A tri-bus normally has several bus drivers con-
nected to one or several bus receivers, and is otherwise unterminated--
ie, no pull-up resistors are used to +5, nor pull-down resistors to
ground. This distinguishes the tri-bus not only from open-collector bus
structures (discussed above) but from other bus configurations with
120-chm impedance characteristics.

For a good introduction to tri-bus circuitry, the reader is referred
to the data sheets for the National 8830 series (and to Application Note
83, Data Bus and Differential Line Drivers and Receivers).

Figure 6.5.2 gives a brief summary of the types of busses defined
above.

11 mlcrocorgggtge;
|

BUS STRUCTURES 6-9

SEC. 6.6 TYPES OF BUS STRUCTURE (eont'd)

BIDIRECTIONAL
CPU BUS

3

N

<
% ox
H : ©
; @®
[mif (e
Coy (o o|a
iy X z|z|z|z
o -4# >
[4 Qs
: 8 '
5 <
1 g <X
3 - €0
"33 [
-

. o|2jn RN
o a2 o>
¢ H UDm ojz|m
P 5 -
- Pt MmN —

- EE
[[- H

3 [}

5 o

h ™ X<

f

b < x

i [7Y 0

¥ -— [4

g &

“ -

T /\ 2

g W

NE \

u o

5 25 o|¥|mnjn|-|a

¥ 4 (2 I A] olalls

‘ s <l<l<l<laic 21313

i 2= — ~—
wljx! 7]

; alix Lo

! 4

. 3

! o

: <

BIDIRECTIONAL
CPU BUS

: Fig. 6.5.1--Examples of Different Kinds of Bus Configuration, in a
it Hypothetical Four-Bit Data System J

MR mlcrocorgggtgerr‘
I

6-10 ’ BUS STRUCTURES

SEC. 6.5 TYPES OF BUS STRUCTURE (cont'd)

CONTROL
OF RECEIVERS # OF TRANSMITTERS NAME OF TYPE OF | SIGNALS
ON BUS ON BUS BUS BUS NEEDED EXAMPLES
Only One More Than One Input Bus | Tri-Bus | Enables, | "NB" Bus;
Strobe Data from
memories
More Than One Only One Output Bus | Direct Strobes "TB" Bus;
Bus outputs
of DL
register;
data to
RAM mem-
ories
More Than One More Than One Bi-Direc- |Tri-Bus |Enables, | "BB" Bus
tional Strobes (CPU Bus,
Bus D7-D0)

Figure 6.5.2--Names and Types of Bus Structures
SEC. 6.6 BUS TRANSCEIVERS AND BI-BUS DRIVERS

6.6.1 Bus Transcetvers Various interconnections of the terminals of

bus receivers and bus drivers, on the same in-
tegrated circuit, produce devices which are useful in bus-structured com-
munications. For example, a bus transceiver is formed when the cutput of
a bus driver is connected to the input of an associated bus receiver. Fig-
ure 6.6.1 shows a bus transceiver, often used to add peripheral devices to
provide three-state buffering and interface to long bus lines. The dotted
line is often drawn solid in device schematics, to indicate that the drive
section does not load the driver input when the driver is disabled.

BUS STRUCTURES 6-11

_

mlcrocorgputer
esign

SEC. 6.6 BUS TRANSCEIVERS AND BI-BUS DRIVERS (econt'd)

DRIVER INPUT

r—
OUTPUT CONTROLi J TRI -BUS

RECEIVER OUTPUT /|

Figure 6.6.1-~Bus Transceiver Circuit

A number_of vary%ng circuit configurations are available--ie, clamped
or unclamped inputs, inverting or noninverting buffers, and various dis-
abling schemes.

6.6.2 Bi-Bus Drivers A very useful device in bus-structured designs is

) the bi-bus driver. We use this term to refer to
the circuit of Figure 6.6.2(a), where two three-state bus drivers are con-
nected in parallel, with complementary driving direction. The two enable
terminals are shown separately in Figure 6.6.2, and part (b) shows a con-
venient symbol to designate the bi-bus driver. When ENABLE #1 is activated,

TRI -BUS TRI - BUS
ENABLE Neo. !
ENABLE No.2
(a)
TRI- BUS TRI- BUS
ENABLE No. |
ENABLE No.2 ()

Figure 6.6.2--(a) Dual-Enable Bi-Bus Drivers; (b) Convenient Symbol

MR mmrocorgputer

esian

6-12 BUS STRUCTURES

BUS STRUCTURES 6-13

SEC. 6.6 BUS TRANSCEIVERS AND BI-BUS DRIVERS (cont'd)

the tri-bus to the left drives the tri-bus to the right, and when ENABLE
#2 is activated, the direction is reversed. When neither is enabled, no
data transfer occurs between the two busses. The control signals are de-
signed such that at no time are both INABLE terminals activated.

Figure 6.6.3 shows a bi-bus driver where the two ENABLE signals are
connected to the same terminal, and where one driver is enabled by an
active low input. Thus the enable terminal is labeled DIRECTION CONTROL,
and one or the other of the drivers is normally on at any given time. (As
with other three state devices, internal circuitry assures that each dri-
ver can be disabled more quickly than it can be enabled, so as to avoid
driver overlap.)

TRI-BUS No.l TRI -BUS No.2

DIRECTION CONTROL

Figure 6.6.3--Single-Enable Bi-Bus Drivers

The bi-bus driver finds application in large bus systems where a long
bus is broken into two or more sections, each of which has lower capacitance
(and thus higher speed) than a whole bus would have.

Bi-bus drivers alsoc are used in the input/output structures of LSI in-
tegrated circuits. Take for example an LSI chip which has an internal bus
structure, and provisions for bus-structured communications (both inputs
and outputs) to the outside world. If each of the various internal bus
drivers were constructed so as to be able to drive bus receivers on the
outside of the chip, each would have to have relatively high power capa-
bilities. This is indicated graphically in Figure 6.6.4(a), in "Integrated
Circuit No. 1," where large bus drivers are shown. Compare this with part
(b), "Integrated Circuit No. 2." Here a bi-bus driver is used to interface
the chip's low-power internal drivers and receivers with the outside world.
The bus drivers within the integrated circuit can be made much smaller (as
shown graphically), that is, take up less chip area and consume less cur-
rent, since they need only drive the chip's internal bus receivers and the
input to the bi-bus driver.

SEC. 6.6 BUS TRANSCEIVERS AND BI-BUS DRIVERS (cont'd)

[- I - -/

NS

INTEGRATED CIRCUIT CHIP No. |

o]

Loe—e—————__INTEGRATED CIRCUIT CHIP Ne2 ______ ______ a

Bl-BUS
DRIVER

Figure 6.6.4--Bi-Bus Drivers Save Chip Area by Handling
Interface with External Bus

SEC. 6.7 THE 8008 DATA BUS

6.7.1 Bi-Bus Drivers in the 8008 The 8008 microprocessor employs what
amount to single-enable bi-bus drivers

at its eight data bus pins. These bi-bus drivers connect the bi-directional

bus internal to the CPU chip, D7 through DO, with the bi-directicnal data

bus external to the CPU, called in this book BB7 through BBO. The single-

enable signal which controls the driving direction of the bi-bus drivers

is developed within the CPU.

The CPU bi-bus driver drives outwards during most of its states. That
is, the internal eight-bit data bus is transmitted outward to the external
BB bus.

The CPU bi-bus driver drives i{mwards during the T3 state, except dur-
ing PCW cycles. That is, the data on the external BB bus drives the CPU's
internal data bus. The directionality is inwards also during the WAIT and
the STOPPED state, when the external BB bus is not being driven.

MR mmrocoraggtgrr‘
I

I-X mncrocorgggltgeg

6-14 ’ BUS STRUCTURES

SEC. 6.7 THE 8008 DATA BUS (cont'd)

6.7.2 T4 and T5 Times The T4 and TS5 states occur in the 8008 during

idle states, and during internal processor oper-
ations which require data transfers internal to the chip. That is, during
T4 and T5 times, bus drivers within the 8008 are transmitting to bus re-
ceivers on the internal data bus. During these states, the 8008's bi-bus
drivers clearly must be enabled in such a manner that information on the
external BB bus 1s not driven inwards, or else the internal data bus would
be disrupted. Thus, the bi-bus drivers drive outwards during T4 and T5
times, and the state of the internal data bus is available on the external
BB bus.

The chip manufacturers state, in a footnote to the chart called INTERNAL
PROCESSOR OPERATIONS (reprinted in Chapter 2), that the "Content of the
internal data bus at T4 and T5 is available at the data bus. This is de-
signed for testing purposes only." The above discussion should demonstrate
that this fact is a logical consequence of the bus structure used within
the 8008. An unnecessarily complex bi-bus driver circuit would be re-
quired to design this feature out (one with dual enables and extra ga?lng).
Thus one need not fear that the availability of this information is likely
to change on future 8008 devices.

The availability of internal bus data during T4 and T5 times is
used in Chapter 11 of this bock for adding extra instructions to the 8008.

6.7.3 8008 Data Bus Buffering As discussed in Chapter 2 above, the 8008's
internal bi-bus drivers are just

capable of sinking 1.4 MA under normal voltage and temperature conditions.

Many 8008 designs therefore add low-power TTL buffers (or CMOS buffers fol-

lowed by regular TIL buffers) to the 8008's eight data outputs, producing

an output bus which, in this book, would be labeled TB7 through TBO. The

direct connections to the 8008 data terminals now form the input bus,

labeled NB7 through NBO.

Another approach, used in the designs in this book, is to use low-power
Schottky integrated circuits for interfacing with the 8008 data bus. Up to
three such devices may be driven directly by the 8008. The additional cost
of these devices must be considered, but so must the cost of the buffers
(including stocking, testing, and insertion) and the PC board space saved.

When buffers are not used, the same bi-directional bus (BB) serves both

for inputs and outputs to the CPU. This leads to added simplicity in the
bus structure on the microcomputer PC board.

Input bus considerations are discussed further in Chapter 8 below.

INPUT/OUTPUT INSTRUCTIONS 7-1

X mncrocoqgtsjltgerl;

SEC. 7.1 I/0 ADDRESS MODES

Communications between a microprocessor and data-handling circuitry
external to the central processing unit are commonly implemented by executing
input and output (I/0) instructions. Special circuitry generates timing
signals necessary for synchronizing the I/0 device with the CPU--a strobe
signal which causes an outport port to latch up information on a bus at the
appropriate time, or an enable signal which activates the bus-driving
circuitry associated with an imput port, causing the input data to be
transmitted to the CPU.

Just as when the CPU is reading from or writing into memory, a means
must be provided for addressing the desired I/0 port. This I/0 port address
must be available outside the CPU board at the same time that the I/0 data

transfer takes place--in practice, for proper synchronization, a little
earlier.

Examples of I/0 ports are printers; keyboards; television typewriters
and graphic displays; analog to digital converters and digital to analog
converters; digital displays; cassette recorders; and so on.

There are at least three common modes for addressing I/0 ports, each
being used by a different standard eight-bit microprocessor.

8008 Mode--In the 8008, the simplest of these processors, the I/0 port
address appears on five bits of the high-order address. bus, namely DH5
through DH1. Output data appears on the low-order address register, DL7-DLO.
Input data is transmitted to the CPU via the CPU data bus, DB7-DBO.

8080 Mode--In the 8080, the I/0 port address appears in duplicate on
both address busses, DH7-DHO and DL7-DLO. Both input and output data
transfers take place via the CPU data bus, DB7-DBO. The 8080 microprocessor
provides signals which are used to create I/0 strobes for activating these
data transfers at the appropriate time. Data transfer is unidirectional--
i.e., input only or output only.

6800 Mode--In the 6800, there are no I/0 instructions as such; I/0 ports
are simply addressed as memory. Typically, one section of memory is set

aside for I/0 use. Just as with memory, I/0 data transfers take place via
the data bus, DB7-DRO.

The first part of this chapter concentrates on 8008-type instructions.
A method of decoding the strobe and enable signals for these instructions is
described next. Finally, information is presented on 8080~type I/0 instruc-
tions. A method of generating a universal I/0 strobe enable signal,
COMPATIBLE WITH ALL THREE I/0 ADDRESSING MODES, ends the chapter.

mlcrocorgpgtgg
esi(

7=2 INPUT/OUTPUT INSTRUCTIONS

SEC. 7.2 8008 INPUT/OUTPUT INSTRUCTIONS

7.2.1 Instruction Codes The 8008 has a complement of eight input
instructions and 24 output instructions,
as shown in Figure 7.2.1.

INSTRUCTION INSTRUCTION INSTRUCTION INSTRUCTION
BINARY OCTAL MNEMONIC BINARY OCTAL MNEMONIC
OIRRMMMI 0 1RRMMMI
01111111 177 ouT 37 01011111 137 ouT 17
01111101 175 OUT 36 01011101 135 OUT 16
01111011 173 OUT 35 01011011 133 OUT 15
01111001 171 OUT 34 01011001 131 OUT 14
01110111 167 ouUT 33 01010111 127 OUT 13
01110101 165 OuUT 32 01010101 125 OouT 12
01110011 163 ouT 31 01010011 123 OoUT 11
01110001 161 ouT 30 01010001 121 OUT 10
01101111 157 ouT 27 01001111 117 INP 07
01101101 155 OUT 26 01001101 115 INP 06
01101011 153 OUT 25 01001011 113 INP 05
01101001 151 OUT 24 01001001 111 INP O4
01100111 1u7 OuT 23 01000111 107 INP 03
01100101 145 ouT 22 01000101 105 INP 02
01100011 143 ouT 21 01000011 103 INP 01
01100001 1u1 OUT 20 01000001 101 INP 00

Fig. 7.2.1--The 32 8008 I/0 Instructions

These instructions are one byte long, as shown in the chart above.
The binary instruction code takes the form 01 RRM MM1. TIf RR = 00, the
instruction is an input instruction—-Inmput 7 through Input 0--where the
input nurber is defined by the eight combinations of MMM. If RR = 01,
10, or 11, the instruction is one of the 2U possible output instruc-
tions, Output 37 through Output 10.

The 8008 user may find the following rule convenient in remember-
ing I/0 instruction codes. Take the number of the input or output port;
double it (using base 8 arithmetic); add 101. The result is the octal
instruction code.

MR mlcrocoraggtgeﬁ
|

INPUT/OUTPUT INSTRUCTIONS 7-3

SEC. 7.2 8008 INPUT/OUTPUT INSTRUCTIONS (cont'd)

Actually all 32 I/0 instructions can be used to output data from
the 8008. Only eight can be used for inputting data. This point is
discussed and developed further in Chapter 9.

During an input instruction, the information at the selected input
port is transferred into the 8008's internal A register. Subsequent
instructions may be used to process the inputted data.

Before an output instruction is executed, the data to be trans-
ferred out is first loaded into the 8008's A register. During the
execution of the instruction, this data is transferred to the selected
output port.

7.2.2 The PCC Memory Cyele I/0 instructions in an 8008 microcomputer

system require two memory cycles to execute.
The first memory cycle, a PCI (instruction) cycle, is used to fetch the I/0
instruction from memory, and is just like the first part of any other 8008
instruction. It consists of the T], T2, and T3 states only--T4 and T5 are
skipped. See Figure 7.2.2.

PCI MEMORY CYCLE PCC MEMORY CYCLE

INSIR. | T1 | T2 T3 T1 T2 T3 T4 T5

PCL | PCH | FETCH REG. A | REG. b | IDLE | [none] | [none]
OUT | OUT | INST. TO OUT | TO OUT
QUTPUT TO IR
& REG.

DATA | FLAGS | REG. b
INPUT " 1 1" " " T0 b | ouT o)
REG. REG. A

Fig. 7.2.2--8008 I/O Imstructions: Internal Operations

microcomputer
MR esian

INPUT 7-5

7-4 INPUT/OUTPUT INSTRUCTIONS

SEC. 7.2 8008 INPUT/OUTPUT INSTRUCTIONS (cont'd)

INPUT INSTRUCTIONS

CPU EXTERNAL HARDWARE
A b DATA |INPUI| D DH_ JouTP

TIME | ree. | meg. |FLAGS| Bys | oPUItE| REs. | AEG. PQBIUT

_71 |outeuT

PCC-TI "paTA, ® +®
INSTR. .

PCC-T2 CODE ® —+®

®) ~{INpuT OUTPUT ®
“TDATA | DATA, >

FLAGS-->®

SEC., 7.2 8008 INPUT/OUTPUT INSTRUCTIONS (cont'd)

During the second memory cycle, a PCC (command) cycle, an I/0
instruction departs significantly from the other 8008 instructions.

During PCC-T1 time, the data in the A register goes out on the
8008 data bus. (This information was loaded into the A register by a
previous instruction.) As always, the DL register external to the
8008 latches up whatever is on the data bus at ST1 time. Usually the
information on the bus during T1 time is part of a memory address, so
this use of the DL register is somewhat unexpected.

PCC~-T3

During PCC-T2 time, the instruction itself goes out on the 8008
data bus. It is latched up in the external IH register at ST2 time.
Now the DH register serves (temporarily) as a source from which the
control logic can derive the binary code for the I/0 instruction. The
relevant bits are DHS through DHI.

PCC-T4

INPUT
INNESXT.'I.R. PROCESS

_--.L@

7.8.2 Output Instruction Sequence Consider the case where data is

being outputted. The output in-
formation has been loaded into the A register by a previous instruction
During T1 time of the PCC cycle, this data leaves the CPU. But the ex-
ternal hardware does not yet have any indication where this information
is going! So, the information is stored temporarily in the DL register.
Then, at T2 time of the PCC cycle, the instruction is latched into the
IH register. Now the destination can be decoded. At T3A time, which
during output instructions is an idle state for the CPU, the appropriate
output port is strobed. The information then passes from the DL register
to the output port. See the top half of Figure 7.2.2 below.

OUTPUT INSTRUCTIONS

' CPU EXTERNAL HARDWARE

Thus, output information from the 8008 normally travels via the DL TIME FLAGS | DAT. PU D D OUTPUT
register, rather than directly from the CPU data bus to the output posts. RéG' REG' BAUSA 'SEV'CE Ré@- R&' SERT
This is necessary to accomodate the 8008's internal processor operations.) PREV. LOADED
This feature is actually convenient to the hardware designer because the INSTR. !
eight-bit latch which makes up the DL register serves as a buffer which 2 pcc-T| |QUTPUL ® ®
keeps the output ports from overloading the CPU data bus. DATA - -

'

R . N
. . . b ® —®
After T3 time of the PCC cycle the output instruction has done t

its job, and the T4 and T5 states are skipped. : PCC—-T3 1DLE OgX_PrRT ®

Z
(/)]
—

PCC-T2 I

(2]
[e)
m

7.2.83 Input Instruction Sequence During T2 time, PCC memory cycle, s
of an iInmput instruction, the in- ~ *An input imstruction may also be used to output data, as
struction code is used to select the input port designated by the shown by the steps marked with an asterisk. See Chapter 9.

Figure 7.2.3--Data Transfers During PCC Cycle of 8008 I/0 Instructions

MR mlcrocorgggtgeg
I

microcomputer
MR IHesmn

7-6) INPUT/OUTPUT INSTRUCTIONS

SEC. 7.2 8008 INPUT/OUTPUT INSTRUCTIONS (cont'd)

instruction. Then, at T3A time, the CPU bus inputs data to its internal
b register. At TS5 time, the input data is transferred to the A register,
and the input instruction has achieved its purpose.

(At T4 time of a PCC cycle, the four flags appear on the data bus.
This is an auwxiliary function unrelated to I/0 data transfers. It is
useful in equipment where the flag conditions are displayed on a front
panel, or in flag-saving hardware: see Chapter 17).

Figure 7.2.3 illustrates the data transfers which take place dur-
ing I/0 instructions.

SEC. 7.8 INPUT AND OUTPUT SYMBOLS

An eight-bit digital input device from which the CPU derives data
is called an inmput port. Generally it is a multiplexer with open-
collector output circuitry, or an integrated circuit with three-state
output circuitry (as discussed in Chapter 8). The eight-bit digital
output devices to which the CPU sends data are called output ports.
Digital ports are represented by the symbol D, and analog ports by 4.
Inputs are referred to by the symbol ¥ and ocutputs by the symbol T.
Thus DN refers to a digital input, and AT to an analog output.

DT17 refers to digital output 17, and when used without a suffix,
is used to dencte the strobe signal used for loading output port 17.
Similarly, an enable signal for digital input 5 would be represented
as DN5. Since such enable and strobe signals are usually provided by
the outputs of active-low decoders, the signals are often shown in their
complemented state--DTL17, DNG5, etc.

Figure 7.4.1 in the next section shows all possible digital input
and output strobes.

In order to refer to an input or output strobe in a general way,
the characters X, ¥, or Z replace numerical designations. Thus, ANX
is a reference to an active-low strobe for an undefined analog input

port.

A particular digital input or output bit is referenced by adding
a dashed suffix to the associated enable or strocbe symbol. Hence, bit
7 of digital input 3 would be called DN3-7. When these symbols are used
with analog inputs, they refer to one of several analog signals in a
multi-channel (multiplexed) analog system. AN4-7 would refer to the
eight-bit digital value at digital input port #4 which derives from
analog input chamnel number 7. (See Chapter 22.)

INPUT/OUTPUT INSTRUCTIONS 7-17

MR mmrocoraggtge'l;
I

SEC., 7.4 GENERATING 8008 INPUT ENABLES AND OUTPUT STROBES

During input instructions the 8008 CPU receives data on its bidi-
rectional bus during T3 time, PCC cycle. In practice, the input de-
vices are enabled slightly in advance of the beginning of T3 time, '.that
is, during T3A time. Output ports are also loaded, from the DL register,
at T3A time of an output instruction, PCC cycle. A general-purpose
strobe/enable signal which occurs only at T3A time of I/O instructions
may be formed by gating the T3A state (developed by the main timing
circuitry discussed in Chapter 5) with CC2 and CCl (the latter two
signals defining a PCC cycle). In this bock, this signal is called
DIN--or DIN when it is an active-low signal.

Figure 7.4.2 shows DIN generated by a three-input NAND gate, and
being used to enable I/0 strobe/enable decoders. The encoded number
of the input or output port is cobtained from the DH register, where
the I/0 instruction was stored during T2 time, PCC cycle. Note how
simply the signals for all 32 input/output instructions are generated.
In a practical microcomputer design, not all 32 ports would necessarily
be used. For example, the lower decoder in Figure 7.u.g would be
omitted in a system needing all eight inputs but only eight output

ports.

Figure 7.4.1 shows a 74LS138 3-to-8 decoder being used to generate
four output strobes and four input enables--all with only one ghll_a.
Note that in this example, the DIN signal is not accessible: it is
generated within the 74LS138 chip.

I3A $Ies

£€C2 542 DIN
Sl 4y5p,

74LSI38

I
o

Fig. 7.4.1--I/0 Decoder for Four Inputs, Four Outputs

X mncrocoraggltgeg

7-8

INPUT/OUTPUT INSTRUCTIONS

GENERATING 8008 INPUT ENABLES AND OUTPUT STROBES (cont'd)

NOTE: THIS SECTION INCLUDED
ONLY IN PROCESSORS
NEEDING MANY OUTPUT

DH4
DH3
DH2
DHI

o
4

DH5

SEC. 7.4
T3A
=
CCli
_—
|
[
|
I
|
[
I
|
|
[
|
I
1
|
1
|
I
[
i PORTS.
|
[
L

19

DHS IB:

—d

18

) 9311

20
21
22
23

74154
74L154

9311
93L11

74154
T4Li54

3L

17 DTI7
16 DTI6
515 DT 15
N D714
513 DTI3
T OTI2
510 oT Il
-2 DT10
58 DNT
o7 DN 6
-6 DN S
-5 DN4
g DN 3
,3 DN 2
2 DN 1
o ! DN @
517 DT37
16 DT36
.15 DT35
14 DT34
NE DT33
I D132
10 DT31
9 DT30
-8 DT27
b7 pT26
6 D125
-5 D124
-2 D123
n3 DT22
2 D721
! DT20

Fig. 7.4.2--Generating ALl 32 8008 I/0 Strobes and Enables

MR

mICI‘OCOTH

puter
esign

INPUT/OUTPUT INSTRUCTIONS 7-9

I

SEC. 7.4 GENERATING 8008 INPUT ENABLES AND OUTPUT STROBES (cont'd)

Note that the circuit of Figure 7.4.1 ignores DHS5 and DH3. This
means that the decoder does not distinguish between I/0 instructions
which are identical with regard to IH4, DH2, and DH1, but may differ
so far as DHS and DH3 are concerned. This decoder is restricted as to
the number of inputs and outputs available; and different I/0 instruc-
tions will produce the same strobe. For example, a INO pulse will be
generated by INP 000, INP 004, OUT 010, or OUT 030. Any one of these
instructions can be used as an output instruction: the data left in
the A register by a previous instruction can be strobed into an output
port at PCC-T3A (DIN) time. But, as discussed in the previous sections
of this chapter, only in the case of the two input instructions--INP
000 or INP 004--will input information present on the data bus at
PCC-T3A time end up in the A register when the instruction is finished.
With this distinction in mind, the programmer might find places where
he would use an OUT 010 and others where the INP 000 instruction would
be needed.

SEC. 7.0 PERIPHERAL STROBE DECODING TECHNIQUES

7.5.1 Using DIN and the DH Register When peripheral devices are
being connected to the main
logic board in a microcomputer, it may be very cumbersome to decode all
the needed strobe signals on the CPU board and provide all those

extra pins on the connector. A more efficient approach is to provide
the DH register and the DIN signal. Then the needed strcbes are de-

coded by the peripheral itself.

This approach also leads in the direction of a universal and
flexible peripheral bus structure. See Chapter 20 for a more complete
description of how peripheral busses should be designed.

Every input or output
instruction in an
8008 microcamputer contains five address bits. If all combinations

of inputs and outputs are to be utilized, then any strcbe generated
should depend on all five bits of this instruction address. (The
example in Figure 7.4.1 does not uniquely decode inputs and outputs.)
The strobe should depend not only on the five bit addresses; it should
be enabled only when the DIN signal is active (logic zero). Therefore
there are six signals which must be gated together to provide any one
uniquely-defined I/0 strobe. These six signals are DH5, DH4, DH3. DH2,

7.5.2 Developing a Peripheral Strobe Approach

MR mlcroco%puter

esign

7-10 ‘ INPUT/OQUTPUT INSTRUCTIONS

INPUT/OUTPUT INSTRUCTIONS 7-11

SEC. 7.6 PERTIPHERAL STROBE DECODING TECHNIQUES (cont'd)

DH1, and DIN. Figure 7.5.1 shows a six-input NAND gate and three in-
verters being used to decode an INPUT 007 strobe (]7%7) . By inserting
and deleting inverters in all the various combinations at the DHS
through DH1 inputs, all 32 of the 8008 I/0 strobe/enable signals could
be generated.

DIN J‘)D
DH5 CD

DH4 % .
DH3 DN7

DH2
DHI

Fig. 7.5.1--A NAND Gate Decodes the Six Signals Necessary to
Produce a Strobe or Enable

This NAND gate is obviously quite awkward. What is needed is a
single integrated circuit which combines the six required input bits
and provides a number of input/output strobe/enable signals. This one
IC could be located in the peripheral device and decode the few 1/0
control signals which it might need.

The 7415138 TTL integrated circuit is a 3-to-8 decoder with three
strobe inputs. Two of the strobes are active-low, and one is active-
high. This turns out to be very convenient for many decoding applica-
tions, and therefore members of the '138 family appear frequently in |
this book. They include the 745138 (Schottky) as well as the commonly-
used 7418138 or 3205 (8205) (low-power Schottky).

_

mlcrocoraputer
esign

SEC. 7.5 PERIPHERAL STROBE DECODING TECHNIQUES (cont'd)

Figure 7.5.2 illustrates the 74138 decoder with the strobe functions
shown to the left as an AND gate. All three inputs must be in their active
positions in order for any output to be enabled (ie, to go low). The
inputs labeled 0 must be at logic zero, and the input marked I must
be at logic one. One and only one of the eight outputs can be active
at a time; which is selected depends on the C, B, and A input lines.

Each output line is labeled with an octal number which corresponds to
the three-bit binary combination at the C, B, and A inputs which selects
that output line.

74LS138

Pig. 7.5.2--74LS138 3-to-8 Decoder Schematic

This integrated circuit satisfies the requirements outlined above
for a peripheral strobe decoder, since it has exactly the six inputs
desired, and provides eight active low outputs.

In application, the active-low DIN strobe must be gated with all
outputs, and thus must be connected to cne of the 74138's two active-
low enable inputs. Then the DH register bits--DHS through DH1--are
connected to the remaining input terminals in any order.

mlcrocoraputgerr‘
esi

j INPUT/OUTPUT INSTRUCTIONS 7-13
7-12 INPUT/OUTPUT INSTRUCTIONS

‘ SEC. 7.5 PERIPHERAL STROBE DECODING TECHNIQUES (cont'd) 7 SEC. 7.5 PERIPHERAL STROBE DECODING TECHNIQUES (cont'd)

7.5.3 Selecting the Desired Combination of Strobes There are twenty
unique ways in

!‘ which the five DH register bits may be connected to the 74138 peripheral

| strobe decoder. They are shown in Figure 7.5.3. Eight of these com-

| binations provide output strobes, while the remaining twelve combina-

! tions provide some inputs and eome outputs.

OUTPUTS
2
0
0
0
0

Note that with this scheme, INP 000 is never decoded. This strobe
can be generated only when all five DH register bits are logic zero,
but the 74138 requires that there be at least cne active high input bit
(at pin 6). For a similar reason, the DI37 strobe cannot be generated.
Therefore INP 000 and OUT 037 are usually designated as I/0 ports
located right on the main CPU logic board.

7
3
3
3
3
3
3
ﬂ47

T neut,
[
1
1
2
2
2
2

21 11 0
1

2 11 O
n
2
2

In evaluating the usefulness of the various cambinations of sig-
3 nals provided, note that an "output instruction" in the 8008 is really
i an output-only instruction: it cannot be used to input data to the

| CPU. On the other hand, an "input instruction" is really an input/
output instruction, and may be used for either inputting or outputting
(or both). This point i1s elaborated further in Chapter 9.

3
3
5
3
3

3
3
6] 5| 4

7F 6] 5]
6
3

7

For the further convenience of the designer, the twenty rows in
Figure 7.5.3 are realigned in Figure 7.5.4 as colums. This diagram
is a graphic representation of how the decoder inputs may be wired,
and what control signals result.

1] 0
1
1
y
y
y

2
2
1
u
u
y

3
3
5
5
5

The decoders on the various peripheral circuit boards of a
system need not completely avoid overlap in input/output signals. All
that is necessary is to develop a sufficient number of wnique input/ v
output control signals to fulfill the needs of each peripheral device.

As design examples of this peripheral strobe technique, Figures
7.5.5 and 7.5.6 show the circuit diagrams which correspond to columms
15 and 18 respectively of the table in Figure 7.5.4. If these two de-
coders were used in two different peripherals, each would have eight
I/0 ports which do not conflict with the other peripheral.

OUTPUTS ONLY

37]36135]3u}33]32| 3130y} 27|26 25| 2u]23 22|21 |20) 17f16f15f2u]13}L12]1L |10

6f 5| &
5
5
5
6
6

! Chapter 20 more fully describes the bus structure to which these
’ peripherals might be attached, and gives a block diagram of an efficient
| peripheral bus system.

With slight modifications, the same bus structure is used in the
modular micro series of microcomputers, available from Martin Research. |
The Model 471 CPU board, based on the 8080, is described near the end of
this book. The 471 supports not only 8080 I/0 instructions of the standard
variety, but also 8008-compatible I1/0s, as well as memory-mapped I/0
instructions using the DIN strobe. Therefore the strobe decoding techniques
described in this chapter are very useful in an 8080 system.

DH
BITS
54321
10CBA
1CO0BA
1CBOA
1CBAD
C10BA
C1BOA
C1BAO
CB1O0OA
CB1lAO
CBA1O
01CBA
0C1BA
0CB1laA
0OCBAl
CO01BA
COB1A
COBAL1
CBO1A
CBOAL
CBACG]

1
2
3
n
5.
6
7
8
9
0
16.
17
18.
19
20.

NO.
11.
12
13.
14
15.

LINE

Pig. 7.5.3--The 20 Combinations of Outputs Produced by the
Peripheral Strobe Decoder

AT mlcrocoraggtgeg -
| -

7-14 . INPUT/QUTPUT INSTRUCTIONS
INPUT/OUTPUT INSTRUCTIONS 7-15
SEC. 7.6 PERIPHERAL STROBE DECODING TECHNIQUES (cont’d)
SEC. 7.6 PERIPHERAL STROBE DECODING TECHNIQUES (cont'd)
sEEHEEERHEEEERE
2 gl gzl 28] |ELEEIEEIEklE
EHHEEERHHEEERE o6 S8
| «| @l o] =] = Sl ERTRTEN o] -] L 3 7
dEHEEHEREEERERE ' DHa 5E
| =l =l ol ol = zg‘zmh@mN : —QE2 6
SR A B AL [RIEIRIEIEIE BB PN 44l 5
A2l sl [BIEIEIE]e|elele 3
aHEBEBEERIEABAE ' ows 3| 2
aBHEHBEERIEEENAAAE } oz 2]y |
sHEEEEREEEREDEE H—Ha e
SdHEEHEREEEERE
SHHBEEERHENEEAE
© % % ’ué % % ‘%)Eg % .% ‘E ’E l% % Fig. 7.5.5--Peripheral Strobe Decoder Corresponding to
alolol =] o ’%%%%ﬂiﬁ% Colwm 15 in Figure 7.5.4
~lelelelal =] [EIEIEIEIEIE|EIE
Al ol vl 21 SR IEIRBIBIEIR]E
ClE[B|E[A|A BElE|E ’[5 (E’ 15 ‘E ‘E oo 745138
SEHEHER I EEE DHz 6 r&3 7joL——2132
-lzlglzlelz] |EIEIEIEIEIBIEIE LLES P94 o032
Aol 2ol o clRIEIRIEIEIR]I DIN D723
SEEEEE ‘asa’a’a‘zlgg e sple—=
Aol zlwl o sl lIEIRIRIRIRIER 1 D122
~ [N [N 1N N &——_—-—
zlelzlzlgl |BIEIEIEIEIEIEIE 4 a—
Jelelzlel2] [RIE[EEEIE]E[E spi—0
BB (EE|R DH5 3. 2|3'6'TE
\/\/\/\(\/ DH4 2]s ol4 N3
| ol o] -] & o DN2
Jldddddd 8 DHI 1A o5 W2
M~ © 1 ¢ 0O N - 8 3
T
': Fig. 7.5.6--Peripheral Strobe Decoder Corresgonding to
0 Lo O m < 0 Colum 18 in Figure 7.5.4; Provides Signals
of] « wl o — 8 Complementary to Figure Above.
|§ | 2] e

Fig. 7.5.4--20 Ways to Produce 8 I/0 Strobe/Enables with the 74LS138

microcomputer

7-16 INPUT/OUTPUT INSTRUCTIONS

SEC., 7.6 8080 I/0 INSTRUCTIONS

The 8080 instruction set includes the two instructions IN (input)
and OUT (output). Each is a two-byte instruction, the second byte of
which is an eight-bit I/0 port address. Thus, the 8080 is able to
address 256 input ports and 256 output ports. The 8080 develops a
distinct output strobe signal (output write, IOW), and a separate input
enable signal (input read, IOR). These are related to IN and OUT
instructions in the same way that memory read and write signals (MEMR
and MEMW) relate to memory-referencing instructions. These distinct
strobe signals mean that the I/O ports are addressed independently from
memory.

This 8080 I/0 mode is similar to the 8008 in its separation from
memory-referencing instructions. However, in the 8080, output data
appears on the data bus, rather than on the low-order address bus.

Also, with the 8080, there are eight I/0 address bits (rather than
five) which appear redundantly on both the high-order and low-order
address lines (DH7-DHO and DL7-DL0). To produce output strobe signals,
a decoder combines the output strobe, TOW, with various combinations
of the eight address lines. Similarly, to create input enable signals,
a decoder combines IOR with the address lines.

Unless an unusually large number of I/0 ports is required in an
8080 system, it is unnecessary to use all eight address lines in the I/0
decoding circuitry. Five lines are often more than adequate--producing
32 input ports and 32 output ports. This allows the 74LS138/3205 IC
to be used in an 8080 system, just as described earlier in this chapter
(Sec. 7.5).

One method is simply to ignore three of the address lines in the
I/0 decoding circuitry. Then referring to the decoding circuitry in
Sec. 7.5, IOR or IOW replaces the 8008 signal DIN.

Ancther technique is to create an 8080 version of the signal DIN,
and to use it for memory-mapped I/0 instructions. That is, a given
area in memory is assigned to I/0 ports, and memory read/write instruc-
tions are used instead of IN and OUT. The signal DIN is produced by
combining 8080 memory read/write signals with three selected address
bits, thus uniquely defining a portion of the memory map for I/0 ports.
The remaining five address bits are combined with DIN by the 7415138
peripheral strobe decoder to produce any eight of the 32 possible I/0
strobe/enable signals.

These techniques are discussed in further detail, with examﬁles,
in the 471 data sheet, Sec. 1.6, near the end of this book.

A method of creating a 16-bit output port for the 8080 is
discussed at the end of Chapter 9.

mlcrocornputer

MR esign

INPUT/CUTPUT INSTRUCTIONS 7-17

SEC. 7.6 8080 I/0 INSTRUCTIONS (cont'd)

The appendix on the 471 CPU board (near the end of this book)
presents a method for generating strobe/enable signals which may be
used for all three I/0 addressing methods: 8080 I/0 instructions;
8008-type I/0 instructions; and memory-mapped (6800 style) I/0
instructions. This circuitry confers the advantages of all three I/0O
modes, including combined I/0 instructions. The 471 data sheet briefly

presents the software necessary for implementing these I/0
with the 8080 CPU. P & address modes

mlcrocoraputer
esign

INPUT DESIGN APPROACHES 8-1

SEC. 8.1 INPUT DESIGN

This chapter describes several methods for inputting digital in-
formation to a microcomputer. It is assumed that the information is
available at TTL logic levels.

Both the 8008 and the 8080 microprocessors receive input data
through an eight-bit bidirectional data bus. The data bus is used not
only for receiving data, but also for outputting data from the CPU and
for addressing memory, all at different stages in the internal proces-
sor operations. This imposes the first input design requirement: the
input devices on the bidirectional data bus must be disabled when the
CPU is not supposed to be accepting data.

Since more than cne eight-bit data source is usually required, the
second requirement is some method of selecting the desired input source.

After a preliminary discussion of 8008/8080 data bus input voltages,
this chapter discusses two basic input approaches: using multiplexers,
and using three-state bus structures.

SEC. 8.2 8080/8008 DATA BUS INPUT VOLTAGES

The 8008 and 8080 microprocessors have been designed for compati-
bility with TIL circuitry. However, their internal MOS circuitry needs
a little help in recognizing logic high voltages. TTL devices typically
output logic high voltages of about +3.4 volts, but are not guaranteed
to deliver more than +2.4, The 8008 requires a logic high input of
Voe = 1.5 V, or +3.5 V with a +5 volt supply. The 8080 requires +3.3 V.
(The AM9080A from Advanced Micro Devices requires only +3.0 V, but to
allow interchangeability, the designer should provide for +3. 3)

In early 8008 designs, an array of pullup resistors was usually
connected from each data bus line to +5 V. In one published circuit,
the resistors were connected through diodes to a transistor switch,
which was activated during input selection cycles. The 8080 internal-
izes this feature with active pullup resistors which are switched on
during DBIN cycles. Still, these resistors are not guaranteed to turn
on until the minimum Viy is reached. (The NEC uPD808CA omits them.)

When the CPU data bus terminals are connected to bus drivers, to
increase the CPU's ability to address an expanded system, a bidirectional
bus driver IC may be chosen which is rated to provide voltage levels
of over 3 volts when driving inwards. Examples: Signetics 8T26 and 8T28;
Intel 8216 and 8228. (The 8228 is a special driver/controller for the
8080.) 1In small systems, MOS memory connected directly to the data bus
(2102 RAM, 2708 PROM, for example) provides the required voltage levels;
MOS memory ICs are manufactured with the same (or very similar) process
as the 8080 or 8008 itself. The 340097 CMOS driver (Fairchild) also
interfaces to MOS microprocessors.

MR mlcrocoraggtgerr‘
I

8-2 INPUT DESIGN APPROACHES

SEC. 8.2 8008/8080 DATA BUS INPUT VOLTAGES (cont'd)

There are two basic methods of driving these MOS microprocessors with
TIL ICs. The first is to use pullup resistors, as do the manufacturers in
their prototype designs. Resistors in the range of 10 to 22 K ohms are
suitable for data busses using three-state input devices.

The other approach is to make sure that the devices driving the CPU
data input bus are specified for a logic high output voltage of +3.5 volts
or better. Many off-the-production-line TIL devices meet this specification
already.

As manufacturers are called upon to deliver integrated circuits in
quantity which can drive MOS LSI devices without pullup resistors, they
will probably comply by supplying respecified parts (perhaps at premium
prices). Intel Corporation has announced the availability of ICs guaran-
teed to deliver a +3.65-volt logic high level, which provides a safety
margin for protection against noise. An example of this is the 8212,
an octal latch with three-state outputs, available in a 24-pin package.

SEC. 8.8 INPUT MULTIPLEXERS

8.3.1 Three-State Multiplexers The multiplexer is essentially a digital
electronic switch, which selects the in-
put designated by its data select code. TTL designers will be familiar with
such devices as the 74153, a dual Y4-to-1 multiplexer with TTL totem-pole
outputs. A multiplexer which is to interface with the bidirectional CPU

bus must be capable of being disabled. TFigure 8.3.1 outlines a design in
which multiplexers with three-state outputs connect to the CPU bus.

The block diagram in Figure 8.3.1 shows a three-state multiplexer
array with six eight-bit <mput ports. Input ports #2 and #4 are con-
nected directly to the multiplexer. The circuitry used here is totem-
pole TTL.

Multiplexer input ports #0 and #1 are connected to a three-state in-
put bus. (See Chapter 6 for definitions of bus types. In the diagram, the
symbol 3-g indicates a three-state device.) A second input bus fumnels
information from inputs #6 and #7 into the multiplexer.

_

mlcrocorgputer
esign

TNPUT DESIGN APPROACHES 8-3
SEC. 8.3 INPUT MULTIPLEXERS (cont'd)

INPUT INPUT

PORT * 7 PORT #6

11

34 THREE —STATE /8 >
4

s

4:|

/

INPUT BI—STATE /8 > MULTIPLEXERS
7

PORT#4

TO CPU
DATA BUS

Z
INPUT - N
poRT#2 | BIZSTATE /8)

yi ya
93/ THREE—STATE /8 >
Y 8 7

A

INPUT INPUT
PORT#| PORT#0

Figure 8.3.1--Input Design Uses Both Multiplexers and
Three-State Input Bus

Figure 8.3.2 shows the essential details of the multiplexer pgrtion
of the preceding figuwre. This circuit uses 74253 three-state multi-
plexers in a 32-to-8-line array. A few sample input connections
are shown. The symbol DN1/0-7 refers to the high-order bit (bit 7)
of either input #1 or input #0. The line labeled BBO refers to the
low-order bit of the CPU's bidirectional data bus. Other lines are
labeled in similar notation.

As implied in the general discussion
of bus structures in Chapter 6, open-
collector multiplexers may be used to interface with the CPU bidirecticnal
data bus. For example two 8267 open-collector multiplexers could be
connected to the CPU data bus. The designer may choose to emulate

this approach; but consider that it may necessitate pullup resistors on
the data bus.

8.3.2 Open-Collector Multiplexers

mmrocorgputge;
esl

8-4 INPUT DESIGN APPROACHES

SEC. 8.3 INPUT MULTIPLEXERS (eont'd)
DN7-7_ Ny DN7/6-7
74126
DH|

DN6-7 N DN7/6-7
74125

DN4-5

I/3 7404

74L5253
DN7/6-7 13 o
bNA—7 12
10 9 BB7
DN2-7 11]., D
DNI/B7 10
00
pN7/6-6 3. |
DN4-6 4
pNz—6 5.9 7 BBS
DNI/8-6__6 oo
ONT/65 132l
DN4=5 12
DN2=5 11 2 BBS
DNI1/2-5__10
DN7/6-4 3
oNa-4 4
bN2—4 5 . B84
DNI/P-4 _6|B A OF
ont/e3 132l TS
DNa—3 12
DN2=3 T > BB3
DNI/8-3__10
DN7/6-2 3
DN4-2 4
DN2-2 5 N7 _BB2
DNI/P-2__ 6
oN7/6-1 i3 A2I4NTIS
DNA-T 12
BNZ2=1 11 2 BB
DN170-1___10
DN7/6-0 3
DNa—@ 4 , BBO
DN2-9 5 —
DNI/-0__6
NERALAE
__bAz
BIN

Fig. 8.3.2--Essential Cireuitry for Figure 8.3.1

MR mmrocoraputer

esign

INPUT DESIGN APPROACHES 8-5

i
i
i
!
¢

[

SEC. 8.4 INPUT ENABLE AND SELECT SIGNALS

8.4.1 Decoding the Input Enable Signal--8008 CPU The 8008 reads input
data during T3A time
of an input instruction. Therefore, in Figure 8.3.2, the 74LS253's
three-state output enable pins (1 and 15) could be connected to a 3-input
NAND gate, one of whose inputs is connected to T3A. Only during memory
cycle two of an input (or output) instruction (PCC cycle) will the high-
order control bit, CC2 (sometimes referred to as DH7) be logic zero, 4AND
CCl be logic one. Therefore the other two inputs to the 3-input NAND
are CCZ and CCl--and now the multiplexers will be enabled during T3A time
of either an input or an output instruction. If, at this time, DH5 and
DHY4 are low, then the instruction being executed is an input instruction.
DH5 and DHY could have been added as additional inputs to the NAND gate
(which would then have to be a 5-input NAND)--but this logic is unneces-
sary. It does not matter if the multiplexer tries to input data during
an output instruction. The T3 state of the PCC cycle during an output
instruction is an idle state. The 8008's bidirectional data bus driver
reads data inward onto the internal data bus, but nobody is listening
inside. The designer can thus reduce a S5-input NAND to a 3-input NAND.
In a complex 8008 system, this concept can save a number of ICs.

8080 CPU--The I/0 strobe signal to be used depends on which I/0
___addressing mode is used with the 8080, as discussed in
Chapter 7. IOR is the normal 8080 input enable signal, but DIN or
MEMR may also be used. (See the 471 data sheet, Sec. 1.6.)

8.4.2 Selecting Input Ports--8008 CPU As discussed in Chapter 7,
the eight-bit binary code for
the input instruction itself appears on the data bus at T2 time of
memory cycle two (PCC cycle). It is latched up in the DH register,
and the DH3, DH2, and DHl bits contain the three-bit binary code for
one of the eight possible 8008 input ports. In the circuit of Figure
8.3.2, DH3 and DH2 are used as the multiplexer data select lines,
thereby selecting one of four combinations of two input ports (7 and 6;
5 and 4; 3 and 23 1 and 0). To select cne input port from any of these
pairs, the low-order input select bit, DH1, must be used. The 74126
three-state buffer at the top left of Figure 8.3.2 uses DHl to select
one bit of input port 6. These techniques may easily be extended to
provide an array of up to eight 8-bit input ports, the normal 8008
input capacity.

8080 CPU--The 8080 outputs the I/0 port number on both the DH and
DL address registers, redundantly, at Tl time during an I/O instruction.
A full eight-bit decoder may be used, or, a predecoded strobe signal
(DIN) may be used for 8008-compatible I/0 instructions or for straight
memory-mapped I/0 using MEMR and MEMW. See the 471 data sheet, Sec.
1.6.

microcomputer
i B

8-6 INPUT DESIGN APPROACHES

INPUT DESIGN APPROACHES 8-7

SEC. 8.5 BUS-ONLY INPUT DESIGN

8.5.1 Direct Bus Approach In small microcamputers, all of the input de-

vices may simply be connected directly to the
CPU bidirectional data bus, using three-state devices. Only the selected
input device is enabled during an input instruction (and, permissibly, dur-
ing output instructions: see paragraph 8.4.1 above). At other times, all
of the input devices are disabled, and draw only a small leakage current
from the bidirectional data bus. For an example of this approach, see the
microcomputer design in Chapter 26.

The practical limitations to the direct three~state bus approach are
bus line capacitance and the leakage currents demanded by disabled three-
state devices.

8.5.2 Bus Capacitance The data bus terminals of both the 8080 and

8008 are specified at rated speed for up to
100 picofarads of load capacitance. It is difficult to predict the
capacitance of a given bus circuit with accuracy, because of the
influence of printed circuit geometry. As a rule of thumb, the designer
can estimate 7 picofarads of capacitance for each IC pin added to the
bus. Large arrays, or long bus lines, are likely to cause trouble.

Capacitance loads greater than 100 pf will of course cause
longer delays in data transfer. The 8008 specifications indicate that
an increase from 100 to 200 pf causes the output delay to move from
about 0.85 us to 1.01 us. In the 8080, adding 50 pf will add only 20
ns of output delay. These delays may be tolerable in slow-speed
systems, but if the CPU is operating close to its maximm speed,
the clock may have to be slowed down accordingly to compensate. When
many three-state devices are to be cormected to the BB bus, it
is best to create a CPU input bus system using a three-state bus driver,
as described in paragraph 8.5.4. This is the practice in all but very
small microcomputers.

8.6.8 Three-State Leakage A second limitation to the direct bus
approach results from the leakage

currents demanded by disabled three-state devices. Each output terminal

of a typical three-state IC may demand up to 40 microamps of leakage

current when disabled. A large array of input devices on the CPU data

bus may cause total leakage currents that imperil the CPU's ability

to drive external devices.

The Intel 8080A is capable of sinking 1.9 ma to 0.45 V, while the
AMD Am9080A will sink 3.2 ma to 0.40 V. The designer should check
current data sheets to note any updates to these figures. The specs
differ between manufacturers, and between the 8080A and older 8080.

SEC. 8.6 BUS-ONLY INPUT DESIGN (cont'd)

The 8008 microprocessor is capable of sinking approximately 1.5 mil-
liamps to a logic low level of 0.4 volts (+5 volt, -9 volt power supplies,
0-70°C). It is capable of sourcing approximately 3.2 milliamps from a
logic high level of 3.0 volts. Any problems with leakage current are
likely to derive from the logic low specification. Take for example a
circuit where the 8008 is required to drive three low-power Schottky de-
vices with 360-microamp logic low input currents. This leaves a margin
of some 420 microamps--encugh to supply leakage currents to about ten
disabled three-state input devices.

Another possibility is that leakage currents will endanger the abili?y
of external ICs to drive the (PU. This problem is most likely tc occur with
MOS memory chips connected directly to the CPU data bus.

The bus structure designer must calculate these factgrs carefglly when
designing small microcomputers with multiple three-state input devices di-
rectly on the CPU data bus.

8.5.4 Adding an Input Bus When many three-state devices are to be used

as inputs to the microprocessor, it is best
to create a CPU input bus system. An eight-bit three-state buffer arvay
is connected between the individual three-state input devices and the CPU
data bus. The three-state buffers drive the CPU data bus when enabled by
a T3A enable signal, as shown in Figure 8.5.1. The inputs to the buffer
array make up the input bus (NB), relabeled because it is no longer bi-
directional. The same NB bus is often comnected not only to input ports,
but to three-state memory devices, as shown in Figure 8.5.1.

ROM DATA
Ol{TPUT ADDED
N(BUFFERS
} 3/s NB BUS 8,/ 3/8 8/BB
CPU DATA
BUS
//\\
INPUT INPUT INPUT

PORT NO.7 PORT NO.6] |PORT NO.5

Figure §.5.1--Block Diagram of Input System Using NB Bus

MR mncrocoraggltgerl;

I-X mlcrocorgggltgeg

INPUT DESIGN APPROACHES

SEC. 8.5 BUS-ONLY INPUT DESIGN (cont'd)

So far as the loading of the CPU bus is a factor, the three-state
buffer circuitry of Figure 8.5.1 is similar to the three-state multiplexer
circuitry in Figure 8.3.1 above. Each places only one three-state device
on the BB bus. The choice of circuitry depends on the number and type of
input port devices to be used in the microcomputer being designed.

SEC. 8.6 EXPANDING 8008 INPUT PORTS WITH CONDITIONAL INPUTS

Some microcomputers require more than the eight input ports which can
easily be provided in an 8008 system. The problem is not the input multi-
plexer chain which can easily be extended. An input bus structure can be
expanded even more readily simply by adding more three-state devices to the
bus. The problem comes in performing an input instruction with the 8008
which will create more than eight distinct input enable signals.

During memory cycle two of an input instruction--a PCC cycle--the in-
struction itself appears at T2 time. Only three bits of that instruction--
DH3, DH2, and DHl--are available for selection of input ports, as discussed
in Chapter 7 and earlier in this chapter.

A simple and convenient method of expanding inputs is to decode the DL
register during the execution of input instructions. As an example, the
following design decodes the seven conventional input instructions, INP 006
through INP 000. The eighth input instruction, INP 007, is broken down into
eight different instructions, numbered CDN 077 through CDN 070.

Immediately before executing a conventional INP 007 instruction, the
programmer must set up the three low-order bits of the A register. During
execution of the input instruction, the content of the A register appears
during memory cycle two (PCC cycle) at Tl time. This information is latched
up in the DL register, which is always strobed at STl time.

In the circuit shown in Figure 8.6.1, the decoder to the left produces
the conventional eight input strobes. The input #7 strobe is fed to an ad-
ditional 3-to-8 decoder chip, which decodes the three low-order DL register
bits-~DL2, DL1, and DLO--to produce the eight conditional input strobes
labeled CIN77 through CDN70.

8080 CPU--Although this conditional input technique could be
used in an 8080 system, it is generally unnecessary.
The normal 8080 I/0 addressing mode supports up to 256 input ports
and 256 output ports. If 8008-compatible I/O ports are used in an
8080 system—-using DIN--all 32 I/0 addresses can be used for inputs,
as well as outputs. See the 471 data sheet near the end of this
book, Sec. 1.6.3.

MR mmrocorgguter

sign

INPUT DESIGN APPROACHES 8-9

SEC. 8.6 EXPANDING 8008 INPUT PORTS WITH CONDITIONAL INPUTS (cont'd)

" 7415138 _ 745138
L ES L £3
L2 Syes E2
Lo _dqg, El
DH3 DL2
DH2 DLI
DHI oLg a

Figure 8.6.1--Input Strobe Decoder Provides Fifteen Input Ports

The circuit shown expands the number of 8008 input ports from eight
to fifteen. Obviously the number can be expanded still further with this
approach, with a hardware cost of one 3205 decoder for each seven new in-
put instructions afforded. Bits other than the three low-order DL register
bits may also be used.

Figure 8.6.2 shows 8008 software examples. The instruction pairs shown
are used to create conditional input strobes.

LAT 007 GENERATE A. . .
INP 007 . « . . .CIN77 STROBE.
XRA GENERATE A. . .
INP 007 .+« . .CDN70 STROBE.

FPigure 8.6.2--Instruction Pairs Used in Expanding Input Ports

This approach is an interesting example of how the designer can
make full use of the 8008 microprocessor by thoroughly understanding
its intermal processor operations. Consider what happens during memory
cycle two (PCC cycle) of an input instruction. At PCC-T1 time, the
content of the 8008's intermal A register is outputted on the CPU bus
and latched up in the external DL register. This data transfer

MR mmrocorgputer

esign

8-10 INPUT DESIGN APPROACHES

INPUT DESIGN APPROACHES 8-11

SEC. 8.6 EXPANDING 8008 INPUT PORTS WITH CONDITIONAL INPUTS (cont'd)

is not ordinarily of any importance in an <nput instruction, whose
purpose is usually to select data from a designated input port, and
transfer that information to the CPU's internal A register at PCC-TS
time. Luckily for the conditional input approach, the A register can
be loaded with a conditional input address during the previous instruc-
tion.

It might be asked why the 8008 bothers to output the content of
the A register during PCC-T1 time of an input instruction in the first
place. Certainly this information is not normally needed outside the
8008 at this time. The principal reason is that it was easiest to
design the microprocessor so that input and output instructions are
as similar as possible. The transfer of the A to the DL register is
an essential part of an output instruction (Chapters 7 and 9).

SEC. 8.7 ADDITIONAL INPUT PORTS DEFINED AS MEMORY

Input ports may be added to a microcomputer simply by defining certain
memory locations as inputs. This is an important technique in systems using
the 8008 microprocessor, which has only eight regular input instructions.

An input port can be added using the technique shown in Figure 8.7.1.
At left is a circuit showing a 1702A 256 x 8 PROM with its eight address
bit terminals connected to the microcomputer's DL register. The active
low chip enable terminal is connected to a memory select signal--PAG77--
which enables the chip when it is addressed during memory read cycles.
The outputs of the memory chip are connected to the microprocessor input
bus.

At right a four-bit three-state buffer replaces the memory chip. It
can be expanded to a full eight-bit imput port by adding another 74125.
The new 7u4S241, an eight-bit buffer, may also be specified (Schottky clam-
ping; Schmitt-trigger inputs; 20-pin, 0.3" Skinny-DIP package).

This kind of input port is not addressed with an input instruction like
a normal input, but with a memory-reading instruction. In an 8008-based
microcomputer, this would mean an LrM instruction. The input port desig-
nation would not be included in the binary-encoded instruction, as with
input instructions. Instead, the appropriate memory location must be set
up in the H register before executing the memory-reading instruction.

SEC. 8.7 ADDITIONAL INPUT PORTS DEFINED AS MEMORY (cont'd)

1702A 74125
DL7 - NB7 DN77-4 IN__NB4
DL 6 \ NB6 5
OLS y_NBf’ DN77-3 INU NB3
pL4) NB4 l¢§
OL3 >___NB3 DN77-2 INL NB2
DL 2 NB2 5
oL | »NBI DN 77- | . NBI
DLO \ NB® 5

ol PAG 77 |
PAG77

Figure 8.7.1--The Memory at Left Replaced by Three-State Buffer
"Input Port" at Right

In the example shown, the H register is loaded with 077 (PAGE 77), an
ILrM instruction is executed, and the four bits (DN77-4 through IN77-1) are
read into register r. The disadvantage of this input port technique is
that it requires the use of a high-order memory address. An advantage
is that the input information may be read into any internal register--
not only the A register, as with input instructions, but the B, C, D,
E, H, or L registers.

The memory-mapped 1/0 technique is applicable to nearly all
microprocessors, with variations as to connections and software.
Schematics, circuit descriptions, and typical software for the 8080
rzl:fe preser)rted in the 471 data sheet, near the end of this book

Sec. 1.8).

MR mlcrocorggg;cgerrl

mlcrocmgputer
esign

OUTPUT TECHNIQUES 9-1

This chapter begins with a section devoted to 8008 output signals.
Starting with Sec. 9.2, a nurber of output techniques are discussed
which are applicable in any microcomputer. Sec. 9.4 discusses varia-
tions applicable to microcomputers based on the 8080.

SEC, 9.1 8008 OUTPUTS

Chapter 7 outlines the similarity in internal processor operations
between the 8008's eight input instructions and 24 output instructions.
From the point of view of this section, on 8008 outputs, it may be said
that the 8008 has 32 output instructions, eight of which also perform
the input function.

During memory cycle two of an output instruction, the 5T2 strobe
will load CC2 with zero, and CCl with a logic one. This bit combination
defines an I/0 operation. This chapter refers to all 32 I/0 instruc-
tions as outputs: the first eight as <mput/outputs, and the last 24
as output-only instructions (see Figure 9.1.1). Therefore, when CC2 = 0
and CCl = 1 (defining a PCC cycle), it alwaye indicates that an output
instruction is being performed.

Recalling from Chapter 7: input/output and output-only instructions
are identical in their first five states. At Tl time of memory cycle
two (PCC cycle), the contents of the A register are latched up in the
external DL register. At T2 time the instruction itself is latched up
in the DH register. In imput/output instructions, T3, T4, and TS times
are used to input the data from the input port to the CPU's internal
A register.

During memory cycle two of an output-only instruction, T4 and TS
times are amitted. T3 time is not used to input information into the
CPU, as with input/output and many other instructions. T3 time is an
idle state within the CPU, which effectively waits for hardware/external
to the CPU to take the output data which has been stored in the DL
register, back at Tl time, and load it into an output port.

A typical microcomputer output port would be an eight-bit latch, the
data inputs of which are connected to the appropriate bits of the DL
register. The eight output bits of the DL register are connected to the
data inputs of all the microcamputer's output ports, and as such
constitute an output bus (as defined in Chapter 6). Each output port
latches up the information on the output bus only when it is strobed at
T3 time, memory cycle two, of the appropriate output instruction.

For the sake of convenience, the T3A signal is generally used to
produce output strobes. The T3A signal is developed in 8008 micro-
canputer primarily to produce imput enable signals. T3A begins late in
T2 time, before T3 proper begins. This is because, during Imput/output
instructions, cne desires to put the input data onto the CPU data bus
for a short period before the CPU begins to input data at T3 time, to be
sure that the input data has time to settle on the data bus.

LT mlcrocorgggltgeﬂ

OUTPUT TECHNIQUES 9-3

9-2 : CUTPUT TECHNIQUES
SEC. 9.1 8008 OUTPUTS (econt'd)
INSTRUCTION INSTRUCTION INPUT OUTPUT ALTERNATE

BINARY OCTAL MNEMONIC ENABLE STROBE DESCRIPTION DESCRIPTION

01111111 177 OUT 037 (WA) DT37 OUTPUT-ONLY OUTPUT
01111101 175 OUT 036 (N4) DT36 OUTPUT-ONLY OUTPUT
01111011 173 OUT 035 (NA) D35 OUTPUT-ONLY OUTPUT
01111001 171 OUT 034 (NA) DT3k OUTPUT-ONLY OUTPUT
01110111 167 OUT 033 (NA) Dra3 OUTPUT-ONLY OUTPUT
01110101 165 OUT 032 (NA) D732 OUTPUT-ONLY OUTPUT
01110011 163 OUT 031 (N4) DT31 OUTPUT-ON1Y OUTPUT
01110001 161 OUT 030 (N4) DT30 OUTPUT-ONLY OUTPUT
01101111 157 OUT 027 (N4) DT77 OUTPUT~ONLY OUTPUT
01101101 155 OUT 026 (NA) D126 OUTPUT~ONLY QUTPUT
01101011 153 OUT 025 (N4) D25 QUTPUT~-ONLY OUTPUT
01101001 151 OUT 02y (NA) DT2y OUTPUT-ONLY OUTPUT
01100111 147 OUT 023 (NA) DI73 OUTPUT-ONLY OUTPUT
01100101 145 OUT 022 (NA) D122 OUTPUT-ONLY OUTPUT
01100011 143 OUT 021 (N4) D71 OUTPUT-~ONLY OUTPUT
01100001 1u1. OUT 020 (N4) DT20 OUTPUT-ONLY QUTPUT
01011111 137 ouUT 017 (NA) DT OUTPUT-ONLY OUTPUT
01011101 135 OUT 016 (NA) DT16 OUTPUT-ONLY OUTPUT
01011011 133 OUT 015 (NA) DI15 OUTPUT-ONLY OUTPUT
01011001 131 OUT 014 (NA) DIk OUTPUT-ONLY OUTPUT
01010111 127 OUT 013 (N4) DI13 OUTPUT-ONLY OUTPUT
01010101 125 OUT 012 (N4) DT1? OUTPUT-ONLY OUTPUT
01010011 123 OUT 011 (N4) DT11 OUTPUT-ONLY OUTPUT
01010001 121 OUT 010 (N4) DT10 OUTPUT-ONLY OUTPUT
01001111 117 INP 007 N7 N7 INPUT/OUTPUT OUTPUT
01001101 115 INP 006 N6 NG INPUT/OUTPUT OUTPUT
01001011 113 INP 005 DNS VLY INPUT/OUTPUT OUTPUT
01001001 111 INP 004 DNy NG INPUT/OUTPUT OUTPUT
01000111 107 INP 003 DN3 N3 INPUT/OUTPUT QUTPUT
01000101 105 INP 002 N7 DN2 INPUT/OQUTPUT OUTPUT
01000011 103 INP 001 DNT INT INPUT/QUTPUT OUTPUT
01000001 101 INP 000 ja o) INO INPUT/QUTPUT OUTPUT

NOIE: See the 471 data sheet, Sec. 1.6, for the equivalent
8080 instructions.

Fig. 9.1.1--8008 I/0O Instructions, with Associated Strobes and
Enable Signals, and Deseriptions

MR mlcrocorgputer

esign

SEC. 9.1 8008 OUTPUTS (econt'd)

Chapter 7 describes how INX and DIY signals are produced at T3A
time, for use as strobe/enable signals. When used to load information
from the output bus into an output port, the;e signals are functioning
as strobes, following the nomenclature of this book.

This method of generating strobes makes it possible to realige a
number of kinds of output hardware with ease. The following sections show
a number of techniques for generating both levels gnd pulses. They all
are based on the principle that output data is derived from the output
bus (DL register), and 1s valid when the IN or DT strobe goes low,
signifying execution of the appropriate output instruction.

oL }
REG DL BUS

OUTPUT OUTPUT
LATCH 10} JLATCH 4

STROBE OUTPUT OUTPUT
DECODER}, DN 4 PORT 10 PORT 4

Fig. 9.1.2 Showing the DL (Output) Bus.

microcomputer

MR esign

9-4 OUTPUT TECHNIQUES
SEC. 9.2 PULSE OUTPUTS
9.2.1 Using the Strobes TFigure 9.2.1 shows the simplest possible pulse

output. It consists simply of one of the out-
put strobes.

and they are so simple that they are often forgotten.

DTIS L

OUTPUT

Fig. 9.2.1--Very Simple Pulse Output

The pulse width of this output is 2.0 us for an 8008 running at its
normal speed (500 KHz symmetrical clock); 1.25 us for an 8008-1 (800 KHz) ;
and 500 ns for an 8080 (2.0 MHz clock cycle). This output technique is
inexpensive in hardware, but costs a whole output instruction for only one
pulse. It is useful in an 8080 system, where there are usually plenty of
I/0 ports, and in an 8008 system where there are sufficient I/0 ports.

The four examples in Figure 9.2.2 show pulses which are controlled
by one of the output bits. The pulses in Parts (a) and (b) , for example,
occur during an Output 15 instruction, only when the high-order data bit
being outputted is Zow. Up to eight independent pulse outputs may be
driven with one particular output strobe.

9.2.2 Conditional Output Pulses A conditional output is one where the
particular output, either pulse or
latch, depends on more than ome of the DL register bits. An addressable
output is one which uses a decoder to provide more than cne conditional
output. The circuit of Figure 9.2.3 is conditional because the enable
inputs of the 3205 are connected to DL4 and DL3. It is also addressable

because the decoder address inputs are connected to DL2, DL1, and DLO.

Up to 32 such outputs may be provided in an 8008 microcomputer,

y

mmrocorgputer
esign

OUTPUT TECHNIQUES

SEC. 9.2

DTI5
DL7

DTIS

DL7

DTI5 4

DL3

DL2
DLI
OLO

NAND

(c)

n

PULSE OUTPUTS (econt'd)

OR

(b)

DTIS

PTI5-7 AND

Lz

(d)

Fig. 9.2.2~-Pulse Outputs Using Gates

(4]

07 PCTIS-7
09 PCTI5-6

oIO PCTI5-5

7Lsi3s | PCTI5-4

OI2 PCTI5-3

I3 _PCTI5-2
o————
ol4 PCTI15-I

15 PCTI5-0
o

Fig. 9.2.3--Conditional Pulse Outputs

PTI5-7

x

PTI5-7

;

16565055

mlcrocmnputer

esign

3-6 OUTPUT TECHNIQUES

OUTPUT TECHNIQUES 9-7

SEC. 9.2 PULSE OUTPUTS (cont'd)

Eight distinct pulse outputs are provided by one IC in Figure 9.2.3,
A pulse may be generated by an Output 15 instruction, but only when the
output word contains a particular two-bit combination: DI15-4 = 0, DT 15-
3 = 1. Only one of the eight pulses occurs, as selected by the three low
order bits of the output word. Thus, in an 8008 microcomputer, the in-
struction sequence LAI 013, OUT 15 would cause a PCTI5-3 pulse.

9.2.3 Modified Pulse Widths Pulses longer or shorter than the
available output strobe signal may be
obtained by using one-shot multivibrators such as the 74123 (or 26123
for more accuracy). Notice, in Figure 9.2.4, how conveniently the in-
verting A input may be connected to the output strobe, and the non-invert-
ing B input to a particular bit on the output bus (DL register). In the
example shown, an output pulse will occur only if the sign bit of the
A register is set when an OUT 013 instruction is executed. (In other
words, DI13-7 = 1.) The RESET input may be connected to MR, from the
microcamputer master reset circuitry, or it might be connected to a
negative-going pulse output. If a 74221 dual one-shot is used, it cannot
be retriggered once fired by a previous output pulse, unless reset.

+sv R ¢

£

15 14

RX/CX CX

ls PT23-2

DTI3 lc
DL7__2 4 PT23-2

Fig. 9.2.4--Other Pulse Widths Generated With a One-Shot

SEC. 9.3 LATCHING OUTPUTS (cont'd)

9.3.1 Latching Registers It is often desirable to have an output
port lateh up the data it receives when
strobed, and to store the output data until it receives another out-
put cammand. Figure 9.3.1 shows D-type latches, such as the 7475,
being used for this kind of output-with-memory. Since the 7475 has
two strobe connections, it can function (as shown) as a dual two-bit
output port. The uppermost two latches are controlled by the Output
15 strobe, bits 7 and 6. Both true and inverting outputs are presented.
The two lower latches are strobed during an INP 2 instruction. Here an
input/output instruction is being used as an output instruction--that
is, an OUT 002 instruction.

DT15

Go+3 Qg 16 DTI5-7

DL7 2 -
o, L DTI5-7

"""" 15 DTI5-6
DL6 3o 2 -
- 12 Q, 014 DTI5-6

7475 q 10 DT2-7

DL7 6 D, |

o, plLDT27

9 DT2-0

DLO 7

D 8 DT2-0
Y Qg lo———

DN2

Fig. 9.3.1--Four Latched Output Bits

0f course, the DL and DH registers themselves are examples of this
kind of latching circuitry. These registers, however, receive their
input data directly from the CPU data bus, at T1 and T2 times respect-
ively, while output latches receive data from the DL register at T3A
time.

MR mlcrocon(]gtsltge;
l

LT mncrocoqgg;tgerr‘

9-8 OUTPUT TECHNIQUES

SEC. 9.8 LATCHING OUTFUTS (cont'd)

9.3.2. Conditional Latches The conditional output approach can be

applied to output latches, as shown in
Figure 9.3.2. Here, the value stored in one of the four latches can be
changed by an OUT 035 instruction, only when the two high-order bits of
the A register are zero. This may be considered a simple output multi-
plexing circuit. Note that the output bits are labeled as conditional
outputs, CT036-5, etc. The four latches are cleared to zero by an OUT
010 instruction. In this circuit, the three-state capabilities of the
74173 are not used.

DL 149 3 CT0o35-
__2____ DI OI V_______E
DL4 13| 4 CT035-4
D, Qo p—
DL3 12 5 CT035-3
=, Q3 p——
DL2 Il CT035-2
=2 Mo, Q4
DL?
_‘_90 DATA
ENABLE
DL6 10,
bLe 104)
74173
! OUTPUT
2 CONTROL
C
2 R
—_— 7 15
DT35
DTIO

Fig. 9.8.2--Four Conditional Output Latches

9.3.3 Addressable Latches A form of conditional latch, the 9334

addressable latch in Figure 9.3.3 drives
eight current-limited light-emitting diodes (LEDs). The states of the
three low-order bits of the A register, before executing an OUT 021 in-
struction, define which lamp is to be addressed. The next higher-order
bit defines whether the lamp is to be turned on or off (0 = on, 1 = off).
Thus the instruction sequence LAI 013, OUT 021 would cause output CT21-3
to go high, turning off the associated lamp. LAI 001, OUT 021 would turn
lamp CT21-1 on.

I mlcrocorgputer

esign -

OUTPUT TECHNIQUES

9-9

SEC. 9.8 LATCHING OUTPUTS (econt'd)

+5VOLTS
o fzcrai7)’
- 7 —o—
DT2I cTal- Ia

4 en 0g PlCTaI6
v,
o 10 CT21-5 P
DL3 4

3l 5 a, |2 cT21-4 P
9334/ |7 crar3 I"ﬂ:
74259 3
DL2 3 6 CTa2l-2 %
— e, —-—I@—<
DLI 2 “

az QI 5 CT21-1 I$
DLO -
LI S ag |4 CT21-0
c

15
LONE

Fig. 9.3.3--Addressable Latch Controlling Currvent-Limited LEDs

The addressable latch concept is useful for driving outputs other

than LEDs, of course.

9.8.4 Lamp-Driver Latches The circult of Figure 9.3.4 uses an
o integrated circuit designed specifically
for driving LEDs. The IM8559 has a pin for adjusting the current to the

LEDs.
DLS "\
D5 T5 -
"
DL4 D4 T4 —{¢—
DL3 W
D3 T3 —|q¢—¢
DL2 DM8859 ")
D2 T2 pP——lq—¢
DLI W
DI T p——ie—
DLO "
[
DOSTROBETo "
DTI5 CURRENT ADJUST

Fig. 9.3.4--LED Driver-Latch IC as an Output Port

+5VOLTS

MR mICI’OCOIH

puter
esign

9-10 OUTPUT TECHNIQUES

OUTPUT TECHNIQUES 9-11

SEC. 9.3 LATCHING OUTEUTS (cont'd)

Chapter 19 contains an extended discussion of digital displays.

9.3.5 Flip-Flop Latches An ordinary D-type flip-flop provides the

simplest one-bit latch. As shown in Figure
9.3.5, one half of a 7474 connects to an output strobe and to a DL bit
to provide a single output bit and its complement.

LONE

oL7 DTIS-T
Q

o

TIS

—bc

DTI15-7

Fig. 9.3.5--A D-Type Flip-Flop Provides One-Bit Latch

Hex or octal D-type flip-flops may be comnected to provide many
output bits with one IC. The circuit shown in Figure 9.3.6 shows a
74174 hex D flip-flop, which provides six output bits. _The reset line
on the flip-flop may be connected to MASTER RESET NOT (MR) so that all
outputs will reset to zero during power-on initialization. A 74273
octal D flip-flop would provide eight output bits.

Pig. 9.3.6--Hea Flip-Flop Provides Six Output Bits

9.3.6 Alternate-Action Flip-Flops Various special output functions may
be provided by using simple flip-
flops and gates. One example is shown in Figure 9.3.7 This flip-flop

SEC. 9.3 LATCHING OUTPUTS (cont'd)

changes state every time the sign (high-order) bit is set to one dur-
ing an OUT 015 instruction. If the sign bit is zero, the flip-flop will
not toggle.

J q |_SDTi5-7
pTI15
—QpC
¢ 74107
DL7 K o ok SDTI5-7
MR

Fig. 9.3.7--Alternate-Action Flip-Flop

SEC. 9.4 8080 OUTPUTS

The output examples earlier in this chapter have been based on
the 8008 microprocessor. However, the techniques presented~-pulse
outputs, conditional pulses, latched registers, and so forth--are
equally applicable to the 8080 (or to any other microprocessor).

As explained in Chapter 7, the 8008 is unusual in that output
data is presented on the low-order address bus, DL7-DLO, rather than
on the data bus. Thus, if the standard 8080 instruction mode is
used--INPUT and QUTPUT instructions, creating the IOR and IOW
strobe/enable signals--output data appears on the data bus. The
connections shown in the diagrams in this chapter must then be
modified. DB7 (data bus, bit 7) should replace DL7 (low-order address
bus, bit 7); DB6 replaces DL6; and so forth.

The 8008-compatible I/0 mode may nevertheless be useful in an
8080 system. This is true not only when compatibility with earlier
8008-based machines is necessary, but also to take advantage of
combined I/0 techniques (Ch. 10).

MR mlcrocorgputer

esign

M mmrocorgputer

esign

9-12 OUTPUT TECHNIQUES

OUTPUT TECHNIQUES 9-13

SEC. 8.5 16-BIT OUTPUT PORTS FOR THE 8080

Though an eight-bit output word usually suffices, some micro-
computer applications require a larger word length. For example,
precision digital-to-analog converters often require a resclution
better than eight bits (one part in 256: see Ch. 22 for representative
eight-bit circuitry). Ten or 12 bits are typically required. Since
DAC circuitry usually requires parallel input data, with all input
data available simultaneously during conversion, two output instruc-
tions would be required if only eight-bit output data were available,
with the complete data word becoming available only after a second
output instruction.

Though the 8080 is an eight-bit microprocessor, it is capable
of outputting 16-bit data. See Figure 8.5.1.

DL7 18 19 DT7-15 DB7 s fis OT7-7
DL6 17 16 DT7-14 DB6 17 16 DT7-6
DLS 14 15 DT7-13 DBS ia 1s DT7-5
OCTAL OCTAL
DL4 13 FLIP-FLOP i2 DT7'|2 DB4 13 FLIP-FLOP 12 DT7‘4
DL3 a] 74273 9 DT 7l DB3 s | 74273 |9 DT7-3
DL2 7 e DT7-10 D82 7 e DT7-2
DL! 4 s DT7-9 DBI 4 s DT7-1
DLO 3 2 DT7-8 D8Q 3] 2 DT70Q
C R C R
PN A
DN7 JURL e Y
LONE

Fig. 9.6.1--16-Bit Output Port for 8080

SEC, 8.6 16-BIT OUTPUT PORTS FOR THE 8080 (cont'd)

The normal 8080 output instruction might be said to waste eight
bits of output data. The output data itself appears on the data bus,
and the output port number appears redundantly on both the DH and DL
address lines. In Fig. 9.5.1, the low-order address bus (DL7-DL0) is
used for eight bits of output data, and the data bus (DB7-DBO) is
used for another eight bits.

A memory write instruction is used to output to the 16-bit
output port. Assume the instruction to be MOV M,B (move to memory
the contents of the B register). The L register--normally a low-
order memory address--contains the eight high-order output bits. The
B register contains the eight low-order output bits. The H register--
a memory page address--is decoded by externmal circuitry to produce a
suitable output strobe signal--here, DN7. 16 bits of output data
appear in Output Port 7.

A convenient way of producing DN7 is to use DIN--essentially a
predecoded strobe signal, addressing up to 32 I/0 ports with memory-
mapped instructions. (See the data sheet for the 471 CPU board,
Sec. 1.6.4, near the end of this book.)

Alternately, the port address and high-order output data can
be set up in the BC register pair, with the low-order output data in
the A register. Then a STAX B instruction would produce the 16-bit
output.

Notice that all 16 output bits become valid at the same time. This
could prove important in a DAC (digital-to-analog converter) application.
If the data were outputted to the DAC in two stages--eight bits at a time--
the DAC would create an extraneous intermediate output voltage after
the first byte had arrived. Of course, extra hardware could be added
to delay data transfers to the DAC until the second output byte arrived--
but this is unnecessary when the circuit in Fig. 9.5.1 is used.

Another way of creating a 16-bit output port is through straight
memory-mapped I/0. Two memory locations, 012345 and 012346, serve as
memory-mapped output ports. The 8080 instruction SHLD 012345 would
output the data stored in the H and L registers to these two locations.
The L register value would move to the I/0 port at location 012345
during one memory cycle, and the H register value to location 012346
during a subsequent memory cycle. This technique--essentially a
6800-mode output instruction--works with the 8080, but differs from
the technique described above (Fig. 9.5.1) in that the 16 bits do
not appear simultaneously.

MR mlcrocoragg;tge;

MR mlcrocorgputer

esign

COMBINED INPUT/OUTPUTS 1lo0-1

SEC. 10.1 COMBINED INPUT/OUTPUT TECHNIQUES

With the 8008 microprocessor, every input instruction is also an
output instruction--as discussed in Chapters 7 and 9 above. Advantage
may be taken of this fact by adding certain features to the microcom-
puter. The basic principle, with the 8008, is that during the PCC

cycle of an input instruction, data flows both into and out of the CPU.

8008—compatible combined input/output instructions may be added to
an 8080 CPU board. (See the 471 data sheet near the end of this book, 1.6.)

SEC, 10.2 TABLE LOOKUPS

One combined I/0 technique involves table lookups. The micro-
computer outputs a digital value, then inputs a new digital word which
corresponds to some desired function of the original word. In a sense,
the microcomputer is loocking up the answer in a numerical table. The
first of the following two subsections describes how a table lookup
program would normally be written for an 8008 microprocessor. The
second describes how the same function could be performed more effi-
ciently using a combined I/0 technique.

10.2.1 Table Lookup with 8008 Program A table containing the squares
of the integers 0 through 5

is shown in Figure 10.2.1. The LOCATION column corresponds to an ad-

dress in the microcomputer's read-only memory (ROM). The CONTENTS

colum shows the digital value stored at that location (in octal). If

the 8008's H and L registers are loaded with a number between 000000

and 000006, and an LAM instruction is executed (Load A from Memory) ,

the A register will then contain the square of the number.

LOCATION CONTENTS CONTENTS
Split Octal in Octal Decimal
000000 000 0
0ooool 001 1
000002 ooy 4
000003 011 9
00000y 020 16
000005 031 25
000006 Okl 36

Fig. 10.2.1--Table of Integer Squares Stored in Memory

mlcrocorgputger
esign

— NUMBER IS IN A REGISTER. QLT 7
LHT 000 POINT TOWARDS TABLE START. DL6 1]
i LA POINT TOWARDS TABLE ENTRY. DLS 19
| LAM LOAD SQUARE OF NUMBER. DL4 20}
DL3 =
Fig. 10.2.2--Program for Squaring a Number with a Lookup Table DL2 |
DL 2

10-2 COMBINED INPUT/CUTPUTS

SEC. 10.2 TABLE LOOKUPS (cont'd)

If the nunber to be squared was originally in the A register,
then the program shown in Fig. 10.2.2 will convert this number to
its square. (8008 mnemonics are shown.)

The procedure used here to perform squaring can also be used
to find the sine, cosine, or any trigonometric, algebraic, or arbi-
trary function of an eight-bit variable. A 256-byte lookup table is
convenient for many desired functions because the variable to be
looked up may be placed in the CPU's L register, and the page number
of the lockup table in the H register. Thus any convenient page
in memory may be used, with the table values stored in PROM or ROM.
Usually the H register is not used in referring to the variable
itself, but addresses the lookup table in the same manner that other
pages of memory are addressed. Of course, the lockup table is
usually located at scme other page number than 000--so the table of
nurbers shown in Figure 10.2.1 would more likely start at location
020000, and the LHI 000 instruction in Figure 10.2.2 would be replaced
with LHI 020.

10.2.2 Table Lookup Using a Combined I/0 Technique The 256-Dyte table

lookup program
discussed above could instead be implemented using a carbined I/0
technique. TFigure 10.2.3 shows a 256-byte PROM--the same memory element
that could have been used in the above subsection--as an input/output
port. This configuration, called the Table Lookup option, requires little
or no additional hardware in PROM-configured systems.

In an 8080 system, it makes more sense to address the lookup
table as a page in memory. This is because several instructions must
be used to address an 8008-compatible combined I/0 port with an 8080,
and the advantages of this technique are lost. (For the programming
required, see the 471 data sheet, Sec. 1.6.) Though 8008-compatible
combined I/0 instructions make sense for the 8080 in some applications,
they are impractical for table lookups.

s’

COMBINED INPUT/OUTPUTS 10-3

SEC. 10.2 TABLE LOOKUPS (cont'd)

DLQ 3

am— 14 lis 124
QEEL______T PROM

-9V

Fig. 10.2.3--Table Lookup Option: PROM Funetions as I1/0 Port

. With the 8008 CPU, addressing a table lookup with a combined I/0
instruction produces a savings in programming. Only one instruction
1s required to transform the contents of the A register, instead of
the three required when addressing the table lockup as memory (Figure
}0.2.2). For the circuit shown in Figure 10.2.3, that one instruction
is INP 006. During PCC-T1 time, the contents of the A register go out
on the CPU bus and are latched up in the DL register. The DL register
addresses the 1702 PRCM. Then, during PCC-T3A time, the TN input
gnable pulse reads the contents at the selected table address back
into the A register. Thus, when the input instruction is complete,
the A register contains a new data word which corresponds to the
desired function of the old A register.

Not only are two instructions saved, but there has been no need
to Q1sturb the H gnd L registers. Since these are the only two 8008
registers addressing memory, this enhances programming flexibility.

10.2.3 Four Table Lookups with an 8 K ROM The Table Lookup option
may be applied to large
ROMs as well. For example, in Figure 10.2.4, a 1024 x 8 ROM is used to
perform four table lockups. The four pages (each 256 x 8) within the
PROM_cannot_Eg_enabled separately through the 8308's two chip enable
terminals (CET and CE2), so a different addressing scheme is devised.

°|

mmrocorgputer X

microcomputer
esign rnp

esign

—

10-4 COMBINED INPUT/CUTPUTS

SEC. 10.2 TABLE LOOKUPS (cont'd)

This section applies to the addition of an 8308 to an 8008 system.
To begin with, DHO is always high during input instructions, and so
cannot be used to distinguish table loockup pages from one another.
Second, since OUTPUT instructions ignore any data that is on the 8008
data bus during PCC-T3A time (that is, DIN time), it is unnecessary

to distinguish between input and output instruction modes in this circuit.

Since the only purpose of using DH5 or DH4 in addressing the PROM would
be to make this distinction, they too are unused. If it should happen
that an output instruction is executed whose instruction code looks
just like one of the four table lookup input instructions-—except for
DH5 and DHu--one of the 8308's stored data words will be addressed;

the 8308 will be enabled with DIN; and the table loockup value will

be impressed onto the BB bus. But the CPU is simply not listening.

DH2
DHI

DL7
DLé
DLS
DL4
DL3
DL2
DL

DL®

|

;

DH3

Fig. 10.2.4--A Single 8 K ROM Chip Serves as Four-Page Table Lookup

The DH3 bit connects to the noninverting chip enable terminal of
the 8 K ROM. This prevents the chip from being activated during input
instructions 3 through 0. Therefore, the circuit of Figure 10.2.4 pro-
vides four table lockups, activated by INP 007, INP 006, INP 005, and
INP 004. The circuit is quite simple and requires only one integrated
circuit.

COMBINED INPUT/OUTPUTS 10-5

MR mlcrocorgggtgeg
I

SEC. 10.2 TABLE LOOKUPS (cont'd)

10.2.4 Trigonometric Tables In the following example, a lookup
table allows a microcomputer to
find the sine of an angle, by addressing a 256-location PROM.

Only the sines of angles between 0° and 90° are stored in the table.

Values in the other three trigeonometric quadrants (90°-360°) may be
readily calculated from the first quadrant values. And since sin
(90° - 8) = cos 8, the cosine function is also easily derived with a
few added instructions.

Both the number representing the angle, and the value of the sine
function, are limited to eight bits in this example. The address bits
of the PROM must be weighted such that the octal numbers 000 to 377
correspond to angles between 0° and 90°. Figure 10.2.5 shows a typical
scheme.

Address bit A7 A6 A5 A4y A3 A2 Al AD

Weighting 30° 90° 90° 90° 90° 90° 90° 90°
factor 7 T &% T T 8 I’

Pig. 10.2.5--Weighting Factors for Address Bits of Sine
Funetion Lookup Table

The range of the values of the sine function is from zero to one.
The usual scheme allows all eight bits in the table to represent a
binary fraction, with the binary point to the left of the high-order

bit. This provides possible sine values between 0 and 255/256 (decimal).

Figure 10.2.6 shows the weighting of each data bit which provides for
this range of values.

Data bit D7 D6 D5 D¢ D3 D2 DI IO
Weighting 1 1 1 1 1 1 1 1
factor 7 % g It 32 ©®y 7128 2%

Fig. 10.2.6--Weilghting of Data Bits in Sine PROM

The PROM is then programmed to give the best match between angles
and their sines. For example, say the PROM address is 01010101, or 125
oetal. This corresponds to an angle of 125/400 oetal of 90°, or 85/256
decimal of 90°, or about 29°53'. The sine of this angle is 0.4984S
decimal (from a trig table). This value is converted into a binary

MR mlcrocorgggtgerr‘
I

10-6 COMBINED INPUT/OUTPUTS)

COMBINED INPUT/QUTPUTS 10=7
SEC. 10.2 TABLE LOOKUPS (eont'd) SEC. 10.2 TABLE LOOKUPS (cont'd)
4 sin A sin 4 sin 4 sin 4 sin 4 sin fraction with a resolution of 1/256 decimal: 0.498u9 x 256 = 127.61+. 1

000 000 053 103 126 201 201 266 254 337 327 370
001 002 054 104 127 202 202 267 255 340 330 370
002 003 055 106 130 204 203 270 256 340 331 371
003 005 056 107 131 20% 204 271 257 341 332 371
ooy 006 057 111 132 206 205 272 260 342 333 371
005 010 060 112 133 210 206 274 261 3u3 334 372
006 012 061 114 134 211 207 275 262 343 335 372
007 013 062 115 135 212 210 276 263 34k 336 372
010 015 063 117 136 214 211 277 264 345 337 373
011 016 o6u 120 137 215 212 300 265 345 3u0 373
012 020 065 122 140 216 213 301 266 3u46 341 373
013 021 066 123 141 220 214 302 267 347 342 374
014 023 067 125 142 221 215 303 270 347 343 374
015 024 070 126 143 222 216 304 271 350 34y 374
016 026 071 130 1uy 223 217 305 272 351 345 374
017 030 072 131 145 225 220 306 273 351 346 375
020 031 073 133 146 226 221 307 274 352 347 375
021 033 074 134 147 227 222 310 275 353 350 375
022 034 075 136 150 230 223 311 276 353 351 375
023 036 076 137 151 232 224 312 277 354 352 376
024 037 077 141 152 233 225 313 300 355 3563 376
025 041 100 142 163 234 226 314 301 355 354 376
026 0u2 101 1u3 154 235 227 315 302 356 355 376
027 Ouk 102 145 1556 237 230 316 303 356 356 376
030 0u6 103 1u6 156 240 231 317 304 357 357 377
031 047 04 150 157 241 232 317 305 357 360 377
032 051 105 151 160 242 233 320 306 360 361 377
033 052 106 153 161 244 234 321 307 361 362 377

The approximation used is 128/256 decimal, or 0.400 oetal. This sine
value corresponds to a decimal value of 0.500, which is what would be I
expected for an angle of 30°. The error is minimal.

The accuracy of the sine value stored in the PROM, assuming that
the desired angle is represented exactly by the eight address bits, is
plus or minus one part in 512, or better than 0.2%. Assuming as the
worst case that the error in representing any given angle with eight
bits is additive with the maximum error in the sine table, the lookup
table still gives an accuracy better than 0.4%. This is more than
adequate for many applications encountered using eight-bit microcomputers.

SEC. 10.8 BYTE-SWAPPING

A Swap register is often a very convenient addition to an 8008
microcomputer. The Swap register permits the programmer to exchange,
or swap, the contents of the A and S (Swap) registers with one in-
struction at any desired place in the program.

A Swap register is connected to input/output port number 5 in
Figure 10.3.1. The content of this register is read during PCC-T3A
time of an INP 005 instruction. Meanwhile the previous value of the
A register has been saved in the DL register at PCC-T1 time. At the
end of the PCC-T3A enable pulse, this old value of the A register is
loaded into the S register.

may ¥ FEFF A PR

03% 054 107 154 162 245 235 322 310 361 363 377 i
035 055 110 155 163 2u6 236 323 311 362 364 377 DL7 =] s BB7 i»
036 057 111 157 164 247 237 324 312 362 365 377 o |
037 060 112 160 165 250 240 325 313 363 366 1000 DL6") e BB6 i
o40 062 113 162 166 252 241 326 314 363 367 1000 DLSw] 74%37% L BBS |
o4l 063 11u 163 167 253 2u2 327 315 364 370 1000 2298 oeraL Pe—282 ,
042 065 115 165 170 254 2u3 327 316 364 371 1000 DL4:s{ FLp-Flor iz BB
043 067 116 166 171 255 2u4+ 330 317 365 372 1000 oL3 T pe—-BB84
ous 070 117 167 172 256 2u5 331 320 365 373 1000 8 s BB3

—_—1 3
045 072 120 171 173 257 246 332 321 365 374 1000 et p———— ~
ous 073 121 172 174 261 247 333 322 366 375 1000 DL2 7] e BB2
o47 075 122 173 175 262 250 334 323 366 376 1000 DL1| «
050 076 123 175 176 263 251 334 324 367 377 1000 2ol pe BBl
051 100 124 176 177 264 252 335 325 367 400 1000 DL@ s . BBO
052 101 125 200 200 265 253 336 326 370 =23 peBBO

CA EN

YT 1} I

Fig. 10.2.7--Sine Table DN5S

Fig. 10.3.1--The Swap Register Comnected as I/0 Port #5

t
MR microcomputer MR microcomputer

esign

COMBINED INPUT/OUTPUTS 10-9

10-8 COMBINED INPUT/QUTPUTS
SEC. 10.3 BYTE-SWAPPING (cont'd)
(-
0
Za 4
5 =z
o H
o
o Wi > > | X x
aon x| « = - 4 <
aq X
ZWl o .]
xhb|loon 8 0
w2 it *r g
;8 ak 4 -
woe T
]
5‘3 [$) %3 x
[3 o < <
A
T g’ ! o
[= 3] [0 @
- o o x a <
iz e s |E < |z |= 2
\ " S B A
® »
o 1
5 <
'S W
')
P a 2 |> >
x 3 z < <
- [1
)
S5 & v
o al x x
< W > >
obl e « < < |«
mg =
Se SB e *a
® |a & a |8
H o~
§<.p 8=
=i ¥
2 gL
8 r 2
29 =) x
32 g §
ol @ Z &
4 o]
L9-3 | 2 5
W oo g< -1 - o 0 - [0 < 0 at
wzi°z1 01|+ (] - - - [- - =
Z ¢ w F4 o
<zl w2 Z
ol | = g = 2 8
olze | 4| & 2 i~
-
- e 4) @ o o
k= w e 34
aF i ol z < T
e Ix%| - " 2
wZ = o
w
3a H Q9
> = [©
O a a

Fig. 10.3.2--The Byte-Swapping Instruction (INP 005) Being Executed

SEC. 10.8 BYTE-SWAPPING (cont'd)

The chart in Figure 10.3.2 shows in detail how the original con-
tents of the A register (called 4X) and the original contents of the S
register (called AY) are exchanged with the INP 005 instructions.

The state transition diagram in Figure 10.3.3 shows in a more
simplified form the data transfers which take place during an INP 005

instruction, using the Swap register. The order in which the data trans-
fers take place is shown by the numbers in parentheses.

(n (2)

H—2 =0
DL S

Fig. 10.3.3--State Transition Diagram for Swap Register

SEC. 10.4 ADDING A UART

In many commumnications applications, data is transmitted asynchro-
nously. For example, a teletypewriter sends and receives characters
with pauses of variable length between. On the other hand, the micro-
processor is a highly synchronous device, employing a relatively complex
clocking scheme and requiring interfacing devices to be synchronized
with the CPU. And, in communications applications, it is often convenient
to use only one data line--one pair of wires. Data is transmitted serially,
with each data word marked off with START and STOP codes. The 8008/8080
microprocessors, again, are eight-bit parallel devices, processing data
made up of eight-bit words.

The Universal Asynchronous Receiver/Transmitter (UART) is an ex-
tremely useful adjunct to a microcomputer because it interfaces the mi-
croprocessor to the serial data world. Since the UART is both an input
device and an output device, it provides a specialized example of a com-
bined I/0 technique.

MR mlcrocorgputer

esign

mlcrocorgputer
esign

10-10 COMBINED INPUT/OUTPUTS

SEC. 10.4 ADDING A UART

The UART converts eight-bit microprocessor output words into data
by loading the parallel data into a shift register, adding START and
STOP codes at the beginning and end of each word. Then all the bits are
shifted onto the transmit line at regularly-spaced intervals. Each word
is totally self-contained, since it is marked off by its own START and
STOP bits, and therefore it is possible to insert a pause of any
desired length between words being transmitted. The UART on the other
end of the line watches for another START bit, which synchronizes its own
receiver clock for proper reception. The relation between two START bits
in a stream of data need not be synchronous, because of the variable-
length pause which can occur between words.

An example of the most common type of UART is shown in Figure 10.4.1.

There are actually two related devices, with the same pinouts, designed
for slightly different serial data characteristics: the 2502 and 2017.
The device shown is able to transmit 1.5 stop bits with 5-bit data codes.

This UART is very easily interfaced with microprocessors because
of its bus-structured design. Nearly all the output terminals are
three-state, and may be connected to the CPU input bus (NB bus) directly
or to a bi-directional data bus. (Definitions: Chapter 6.) The TR OUT
terminal (serial data output) does not, however, employ three-state
circuitry; it is the output to the transmission line, and may be con-
nected directly to the TTL-compatible serial data input of a peripheral
machine, such as a teletypewriter. The TR EMPTY (transmit register
empty) flag also does not employ three-state outputs, so that it can be
used to generate an interrupt in the microcomputer, or strobe more data
from a FIFO register, without first enabling the control section's out-
put circuitry at the SF INAB (status flag) terminal.

In the schematic of Figure 10.4.1, the three-state outputs from
the UART receiver (RD8 through RD1) are connected directly to the CPU
BB bus. So also are the three-state outputs from the control section of
the UART. These status flags are tested by the microprocessor to con-
trol the flow of serial data.

When an INP 003 instruction is executed by the microprocessor, the
IN3 signal goes low during T3A time, and the status flags from the UART's
control section are enabled onto the CPU data bus. The CPU places this
information into its (internal) A register, as it does during any input
instruction. The microcomputer tests this information and proceeds
through its functions accordingly.

The INP 004 instruction reads the received data from the UART into
the microprocessor data bus. It alsc resets the DATA Ready flag within
the UART. To do this, the DN4 strobe line is connected to both the READ
ENABLE and DATA READY RESET pins on the UART. This allows the microcom-
puter to receive an eight-bit byte of information and to acknowledge

MR

mlcrocorgputer
esign

COMBINED INPUT/QUTPUTS

10-11

SEC.

10. 4 ADDING A

UART (econt'd)

Note: when using the
UART in an 8080
microcomputer, the input
bite shown commnected to
the low-order address
bus, DL7-DLO, may be

+5v connected to the data
| bus, DB7-DB0--depending
on the I/0 instruction
RLT__33fms Vee mode being used. See
QL6 __321... UART Chapter 7.
DL5 _ 31 4
4 TRE COM 2017
L4 301,
QL3 291.¢,
D_L_l__ZZ.TRa MIT TER SERIAL DATA
DLO 2:2565 TRI SECTION 25 ouTPUT
SERIAL DATA O|TBR LOAD
gﬁsuug__&Q_IB-qk! _______________
CONTROL SECTION
DL 391pAR. SEL TR EMPTY |22
D-L3—3—2 3_8, wLi
DLI 36 :;sp BIT TBR EMPTY >22___EE§
DL 350 .. \w pata reapy pl2—BBT
DTI2 34 cRLOAo' PAR. ERROR 13— BB
DN3 164 ¢ enas FRAME ERR.
.F . 15 BB3
MR 2] OVERRUN
MR . - —-_ERROB__]
seriaLpata |RECEIVER SECTIRODI“!3 5 7
LN.EU_L_ZQ_RD IN RDT
SERIAL DATA 7 ane BZ
cLock 17h o ¢ ¢ — Roe P e
DATA READY — RD4
RESET | ro3 PO
L l
READ ENABLE :gz, i2 B
Vea Voo

Fig. 10.4.1--UART

S
-l2v

Connects to Microcomputer

mmrocorgputer

esign

> 4 B

. e Wt WY ¥ TR

10-12 COMBINED INPUT/QUTPUTS

SEC. 10.4 ADDING A UART (eont'd)

reception to the UART--readying the UART for the next byte--with one
simple input instruction. This design is an example of how a three-
state bus-structured input device may be combined with the pulse output
design discussed in Chapter 9.

The control word is loaded into the UART with an OUT 012 instruc-
tion. This control word defines the word length, parity, and length
of stop bit. When the CPU has determined that the transmit buffer is
empty (using an INP 003 instruction and testing bit 5), it may output
another word to the transmit buffer using an OUT 013 instruction.

In this design, one LSI integrated circuit, two input instructions,
and no further hardware are sufficient to provide an 8008-based micro-
computer with asynchronous data communications capabilities. Note that
this simple interface depends not only on the internal complexity of
the LSI chips involved--the COM2017 and the microprocessor--but on the
bus-structured input approach and the use of devices with three-state
outputs.

The circuit shown in Figure 10.4.1 could be used with an 8080 mi-
croprocessor as well as with an 8008. However, the microprocessor lines
which drive the UART would be changed: substitute BBO for DLO, BBl for
IL1, etc.

The major intent of this section is to show how easily the UART
may be commected to a microcomputer. For this reason we are not dupli-
cating information which is readily available in the manufacturer's
data sheet (SMS Microsystems Corp., 35 Marcus Blvd., Hauppauge, NY 11787).
See also the data sheets for the 1602 and 1402 (Western Digital Corp.,
19242 Red Hill Ave., Newport Beach, CA 92663); the TS 6011 (Texas
Instruments, PO Box 5012, Dallas, TX 75222); AY-S-1013 (General Instru-
ment Corp., 600 W. John St., Hicksville, NY 11802).

microcomputer
esign

L

ADDING 8008 INSTRUCTIONS 11-1

SEC. 11.1 ADDING INSTRUCTIONS TO THE 8008

A number of 8008 instructions are not used in normal programming.
With some external hardware, they may be used to perform new instruc-
tions. These include the undefined instructions and the self-transfer
instructions, as shown in Figure 11.1.1.

OCTAL CODE MNEMCNIC COMMENT
042 Unde fined. NO OPERATION.
052 " "

062 " "
070 1" 1"
071 At} 1
072 n "
300 LAA NO OPERATION.
311 LBB "
322 LCC "
333 10D "
344 LEE "
355 1HH "
366 LLL "

Fig. 11.1.1--Various 8008 NOP Instructions

These 8008 instructions have in common the fact that their execution
leaves all flags and registers unchanged--except for the program counters
(PCH and PCL registers), which increment one location as usual.

In addition, the 8008 has many instructions for which there are more
than one opeode (instruction code). Usually only one of these opcodes is
ever used for the designated function. Figure 11.1.2 shows these codes.

Tt should be added parenthetically that the 8080 chip designers have
already used the extra codes which were left over on the 8008, and are
shown in Figure 11.1.2. There are no redundant opcodes for the JMP,

CAL, or RET instructions in the 8080 instruction set. By reducing redun-
dancy, and by making input/output instructions into two-byte codes, room
has been made for a number of extra 8080 instructions. (See Chapter 3.)

mlcrocorgputer
esign

s e wrwy TERF ¥ TEIFY A B

-
[11-2 ADDING 8008 INSTRUCTIONS ADDING 8008 INSTRUCTIONS 11-3
SEC. 11.1 ADDING INSTRUCTIONS TO THE 8008 (cont'd) SEC. 11.2 OUTPUT ANY REGISTER
MVENT An interesting way to put the 8008's normally unused instructions {
; OCTAL CODE MNEMONIC COMYENT to work is to use them to output any index register with one instruction.
104 JMP USUAL CODE. When a self—tr\gnsfer in§tructi9n is executed--LAA, IBB, etc.--the con- '
1 114 JMP NOT NORMALLY USED. tents of that index register will appear at a specially designated out-
124 JMP " 1 " put port.
134 JMP " " "
i IMP 1" " " . The key to the Output—Any-RggLster thzon is to use a four- or five- n
154 IMP " 1 " bJ_.t corpparator IC to decode the instruction. Figure 11.2.1 shows a 93L2u
‘ 164 IMP " " " five-bit comparator connectgd to the output bus of an 8008 microprocessor.
| 174 P " " " Its ou ut at pin 14 goes high only during an instruction fetch cycle
‘ (when PCT is low) and only when the following equations are valid: D7 =
‘ 106 cAL USUAL CODE. D6 = 1. D5 =D2; D = D1; D3 = DO. The first equation implies that the
| 116 CAL NOT NORMALLY USED. instruction's octal code begins with a 8. The following series of three
126 CAL " " " equations means that the secc?nd gnd third digits of the instruction's
‘ 136 CAL " " " octal codg are th(f_ same. This will be seen to define the seven self-
) 146 CAL 1 " " transfer instructions, LAA through LLL (see Figure 11.1.1 above).]
| 1" 1" 1" k
‘ igg % " " " At PCI-T3 time of a self-transfer instruction, when the instruction 1
176 CAL " " " code appears on the data bus, the comparator output goes high. At the 3
end of T3A time the 74107 flip-flop is set, causing its complementary Py
007 RET USUAL CODE. output terminal to go low. At ST4 time the flip-flop is reset, and the il
017 RET NOT NORMALLY USED. SDT strobe goes high. This signal clocks a 74273 eight-bit latch, which -,
027 RET " " 1" latches up the data word on the output bus at PCC-T4 time. This word o '
037 RET " u " happens to be the contents of the index register referred to by the self- :
: 047 RET " " " transfer instruction. The reader is referred to the first line of the E '
i 057 RET " " " 8008 INTERNAL PROCESSOR OPERATTON chart (in the 8008 manual, and reprinted -
}‘ 067 RET 1" " " in Chapter 2). a
' 077 RET " " " . E
Note that the comparator outputs may go high when the proper bit
1 000 HLT OFTEN USED. combinations appear on the output bus at PCI-TI time, when the low-order .L:,
I 001 HLT NOT NORMALLY USED. memory address happens to r.na'tch up with the code for a self—h:*ansfer in- %
! 377 HLT OFTEN USED. struction. But the 74107 is clocked only at the end of T3A time--by m i
i which time this memory address will have gone away, the comparator out- ﬂ
: put will be low, and the output port will not be clocked. i -
T Figure 11.1.2--Additional Unused :Znstwctv,ons Important: when the eircuit shown in Figure 11.2.1 is being used, '
! the microcomputer should NOT use the 377 HALT instruction. Conslder
The basic technique for adding instructions to an 8008 microcom- what happens when a 377 instruction is executed. By extrapolation from
puter is to decode the execution of these normally unused instructions, gi;ebigg cﬁ;idf(f)grﬂ;fl Zeﬂ‘;e? iiiigginSfefoAlgsﬁgld‘@O?;éMi%g%%ht be
i : ; i C o n ion: .
and to use additional hardware to implement the desired operation. There is no such 8008 instruction, however; this is one of the three op-
codes for the HALT instruction (Figure 11.1.2). Nevertheless the 93L24 '
will decode 377 as a self-transfer instruction at PCT-T3 time, and the
74107 will be set at the end of PCI-T3A time. The HALT instruction will
stop the microprocessor at the end of PCI-T3 time, and the 8008 will
wait for an interrupt before proceeding. No T4 time occurs during the
HALT instruction, so the 74107 remains set. At T4 time of the very next
instruction executed, the flip-flop is reset and an extraneous value

| _
|

11 mlcrocoragg;tgerr‘

MR mlcrocorgggtgerr‘
|

11-4 ADDING 8008 INSTRUCTIONS

ADDING 8008 INSTRUCTIONS 11-5

SEC. 11.2 OUTPUT ANY REGISTER (eont'd)

T87 9} aa
TBE _ Tlgg
T87 10} a3
LONE o) o3
- E—] YV gé}éﬁﬁ
TB2 5 g2 COMPARE)
TBa il Asal®
Te1 afy, y
T83 i3 Az B JooQ

—]4° T3A 74107
TBO 3leo a<Bl2 /¢ 7

EN é K Q
PCT I ! .
574 l
187 18 19 SDT-7
Tee 17 16 -
TBS 14 15 SDT-5
TB4 i3] 74273 12 SDT-4
783 8 9 SOT-3
TB2 7 6 SDT-2
T84 4 5 SDT-1
T8O 3 2 SDT-0
c R
SDT 1 1
MR

Fig. 11.2.1--One Instruction Outputs Any Index Register to Spectal
Output Port

SEC. 11.2 OUTPUT ANY REGISTER (econt'd)

is strobed into the 74273 output port. Thus, either the 000 or 001 codes
should be used for HALT instructions.

Only one cutput port is provided with the Output Any Register option,
unlike normal 8008 output instructions, where the output word can be
steered to any one of up to 32 output ports with a single-byte instruction.

Note that though the 8080 has self-transfer instructions--opcodes 111,
122, 133, 144, 155, and 177--this techmique is difficult to apply. The 8080
has only one opcode for HALT, namely, 166, which would have to be trapped
out and distinguished from the others to avoid the problem mentioned above.

SEC. 11.3 ONE-BYTE PUSH~POP INSTRUCTIONS

When a Last-In, First-Out (LIFO) register is connected in place of
the 74273 latch, the Output-Any-Register Option allows the programmer to
push any index register with one single-byte instruction, and to pop
registers with another single-byte instruction.

A schematic for this circuit appears in Figure 11.3.1. (For a dis-
cussion of push-pop registers in gemeral, and the LIFO portion of this
eireuit in particular, see Chapter 12.) A one-byte self-transfer instruc-
tion pushes the contents of the appropriate index register into the LIFO,
and a single-byte INP 000 instruction pops the last-loaded register and
reads it back into the microprocessor.

This circuit is particularly useful in systems making extensive use
of the 8008's interrupt-handling capabilities. (See Chapter 17 for a dis-
cussion of saving and unsaving index registers and flags using push-pop
software and hardware.)

Figure 11.3.2 shows the opcodes for the new PUSH and POP instruc-
tions provided by the hardware in Figure 11.3.1.

NEW OLD

OCTAL CODE MNEMONIC COMMENT MNEMONIC
300 PUSH A PUSH A REGISTER LAA
311 PUSH B PUSH B REGISTER LBB
322 PUSH C PUSH C REGISTER LCC
333 PUSH D PUSH D REGISTER LDD
344 PUSH E PUSH E REGISTER LEE
355 PUSH H PUSH H REGISTER LHH
366 PUSH L PUSH L REGISTER LLL

101 POP POP LAST-LOADED
REGISTER INP 000

Fig. 11.3.2--One-Byte PUSH-POP Instructions

11 mucrocorgggltgelg

MR mlcrocorgggtge;
|

11-6 ATDDING 8008 INSTRUCTIONS
1
SEC. 11,8 ONE-BYTE PUSH-POP INSTRUCTIONS (cont'd)
T87 o] a4
TB6 4 P8
TBZ 10] A3
g al
LONE 6| 53
7
B i 93L24 T3A 740
785 A2 (5-BIT) <
OMPARE « q
TB2] ¢ :___
T84 2] a1 a>Blo—
781 4 574
B aeola
783 E
T80 1) acal?
EN

745189

14 is | Tz

DL3'2° 04 va
.DL.—Q élo D3 Y3
B'Ij 6 745189
el D2 Y2
DLO s o Y
A3 A2 Al A¢g CE WE
13 14 15
7
[
2
3
DN@
7408
l SDOT

Pig. 11.3.1--Hardware Provides 8008 with One-Byte PUSH and POP
Instructions

MR

mlcrocorgguter

sign

\

ADDING 8008 INSTRUCTIONS 11-7

SEC. 11.4 NUMBERED INSTRUCTIONS

The RET, CAL, and JMP instructions for the 8008 microprocessor
have in common the fact that the three middle bits--5, 4, and 3--may
be varied without changing the normal functioning of the instruction.
Thus there are eight codes for each of these instructions. A useful
technique is to decode these separate instructions as they are executed
and use the numbered instructions for special purposes.

NEW NEW NEW
MNEMONIC CODE MNEMONIC CODE MNEMONIC COLE

RET 007 JMP 104 CAL 106
RET1 017 JMPL 11y CAL1 116
RET2 027 JMP2 124 CAL2 126
RET3 037 JMP3 134 CAL3 136
RETH on7 JMPY 144 CALY 146
RETS 057 JMP5 154 CALS 156
RETS 067 JMP6 164 CAL6 166
RET7 077 JMP7 174 CAL7 176

Fig. 11.4.1--Mnemonies, Codes for Additional Numbered Instructions

The numbered return instructions may be used for resetting an
interrupt level, as described in Chapter 16. The numbered jump and
call instructions may be used for pushing, popping, or outputting, or
as tools in debugging programs and hardware (Chapter 24).

Figures 11.4.2 and 11.4.3 show circuits for decoding the execution
of the numbered JMP and CAL instructions.

MR/

mncrocorgputer

esign

-
11-8 ADDING 8008 INSTRUCTIONS
SEC., 11.4 NUMBERED INSTRUCTIONS (cont'd)
D7 =0
D6 =1
D5 =C
D4 = B
D3 = A
D2 =1 |gy 9 7415138 —
Dl =0 A4 =3
DO =0 L4 PP
Tes ’_'°'A3 29 E2
o ° 3 93L24 El
TB2 a2 (587
LONE 5[4, COMPARE)
T8I 2] ,, asals 85
<1 s
T8O 13 20 Az B TB4 2
B0 Acs— 183
EN
PCT !
Fig. 11.4.2--Decoding the 8008 Numbered Jump Instructions
D7 =0
D6 =1
D5 =C
D4 = B
D3 = A
Dz =1 74LS138 _
m=1 = 2 as 7 CALT
7 E3 7
Do =0 o 5 o CAL®
T] E2 € —
LONE 6} a3 o324 El 5 jo CALSD
T82 a2 (s-mir apl! CAL4G
LONE 5 82 COMPARE) s 12 C—AL3
™ " a a>efi— TBS 13__CAL2
fioe e 14 ¢ 2 CALI
T8O 3 40 A=8 TB4 B | —
3l a0 acalz_ TB3 A o 15 CAL
% EN
et I
Fig. 11.4.3--Decoding the 8008 Numbered Call Instructions

MR

mlcrocoraputer

esign

ADDING 8008 INSTRUCTIONS 11-9

SEC, 11.56 WAIT INSTRUCTION

Both the 8080 and the 8008 have a READY terminal which, when
brought low, causes the CPU to cease executing instructions. This
function is intended primarily to allow the CPU to operate with slow
memory or I/0 devices. When READY goes low before T2 time, the CPU
cycles in the T3 state and does not proceed further until the READY
line goes high once more.

With simple hardware additions, the microprocessor can execute
a simple WAIT instruction, causing it to enter the WAIT state. In
an 8008 computer, the instruction is only one byte long; with an 8080,
using the normal I/0 mode, it is two bytes long. Figure 11.5.1 (A)
shows a one-shot triggered by an 8008-mode INPUT 7 instruction; the
CPU enters a wait state for a period determined by R and C. (For
how to calculate the required one-shot period for an 8080, see Chapter
3.) In the circuit shown, the wait state is entered only when the
low-order output bit is high, as set up by a previous instruction.

Figure 11.5.1 (B) shows a similar circuit. Here, however, the
CPU cannot leave the wait state until a peripheral is ready. This
may be useful in interfacing to a floppy disk.

LONE
+5V
3
e |, S .
e |
DN 7474 RDY
Q
R

PERIPHERAL

READY (B)

Fig. 11.5.1--Circuits for Implementing One-Byte WAIT Instruction

mucrocmnputer
esign

EXPANDING 8008 CAPABILITIES 12-1

SEC. 12.1 EXPANDING THE CAPABILITIES OF THE 8008

The first eight-bit microprocessor to hit volume production,
the 8008 lacks some of the features introduced later with the 8080
CPU. This chapter contains several ideas for expanding the capabili-
ties of the 8008, and may be useful not only for educational purposes,
but to the designer considering design updates to an existing 8008 system.

SEC. 12.2 ONE-BYTE PUSH-POP (LIF0) REGISTER

12.2.1 LIFO and FIFO Registers A LIFO register is a temporary data

storage device, usually having a
capacity of at least several data words. It is organized as a number
of single-word registers, often referred to as a stack. As each word
is loaded into the LIFO, it pushes down the stack. When a word is read
out of the LIFO, the last word loaded in is popped out. Thus the names
Last~In, First-Out (LIFO) and push-pop. In operaticn, the LIFO can be
analogized to a spring-loaded cafeteria tray stand, where the last tray
laid down is the first picked up. Or the LIFO may be likened to an
office elevator at quitting time. When the elevator reaches the main
floor, the people who got on last are usually the first to get off.
(The analogy breaks down in the morning, because as everyone knows, it
is usually the first person who got on, standing at the back of the
elevator, who wants to get off on the second floor. The crushed toes
which result are the penalty for using the LIFO in a rendom-access
application.)

DATA IN DATA OUT DATA IN
i
LIFO FIFO
LAST-IN FIRST-IN
FIRST-0UT FIRST-0UT

DATA OUT
e

Fig. 12.2.1--Comparison of LIFO and FIFO Registers

X mncrocorgggltgelg

12-2 ' EXPANDING 8008 CAPABILITIES

EXPANDING 8008 CAPABILITIES 12-3

SEC. 128.2 ONE-BYTE PUSH-POP (LIFO) REGISTER (cont'd)

As a contrast, the FIFO (First-In, First-Out) register is also
shown in the drawing. The FIFO may be analogized to a queue of pecple
waiting at a counter: first come, first served. The name SILO register
is also used, by analogy to a sile on a farm, where the crop first stored
is first removed from the bottom.

Both kinds of registers are often handy in a computer. For ex-
ample, when returning from a subroutine in a progrem, the Return in-
struction refers automatically to the program location which ealled
that subroutine in the first place. The memory location of the last
eall instruction needs to be stored--stored last and unloaded first.
In practice, there is usually a stack with a capacity of many words of
data, so that subroutines may be nested many levels deep. Subroutine
A calls subroutine B, which calls subroutine C, etec.; then they return
to the main line program in inverse order. In a related application,
the contents of several data registers may need to be stored at the
beginning of a subroutine, then restored at the end. (For example,
during interrupts: see Chapter 17.) These examples call for a LIFO
register, where the data most recently stored is the first retrieved.

On the other hand, data coming from a peripheral device is fre-
quently handled on a first-come, first served basis and then a FIFO
register is desirable.

12.2.2 One-Byte LIFO Register A one-byte register may be considered

either a LITO or FIFO register, of
cowrse. In an 8008-based microcomputer, a single-byte register is
useful for temporary storage of the A register--for example, during
interrupts. Since this function seems more closely analogous to the
usual functions of the LIFO, the one-byte design in Figure 12.2.2 is
labeled as such. This design is for handling eight-bit bytes, as are
the other LIFO and FIFO designs in this chapter.

SEC. 12.2 ONE-BYTE PUSH-POP (LIF0) REGISTER (econt'd)
DL7 e s BBY
DL6 17 16 B
745374
DLS OCTAL = B
DL 4 3§ FLiP-FLOP L2 8B4

bl

WITH

3 STATE
OQUTPUT

o
r
Tm
@

¥
!

o}
-
~

o
=
~

Fig. 12.2.2--One-Chip, One-Byte LIFO Register

This single-chip storage register is loaded when an output in-
struction OUT 017, is executed. The information is retrieved using an
input instruction, INP 007. Unlike most multi-word LIFO and FIFO
registers, the data stored may be retrieved (read out) as many times
as desired without changing the information; only a new OUT 017 instruc-
tion changes the data. (If this one-byte register is both a LIFO and
a FIFO, it is also a one-byte RAM, which is addressed using I1/0 in-
structions rather than memory read/write instructions.)

The circuit shown in Figure 12.2.3 is functionally identical, but
shows the separate storage and retrieval functions more clearly. The
one-byte register consists merely of an eight-bit latch and an eight-
bit buffer with three-state outputs. The latch constitutes an output
port, connected directly to the buffers, an input port. If a second
byte of storage is needed, another 745374 chip could be connected in
a manner similar to the circuit in Figure 12.2.2, but using different
input and output instructions.

X mlcrocorgggtge'l;
|

mlcrocorgputer
esign

EXPANDING 8008 CAPABTLITIES]

12-4
SEC. 12,2 ONE-~BYTE PUSH-POP (LIFO) REGISTER (cont'd)
DL7 s 19 DTI?-7
DLG17 '« DTI7-6_
DL51« | 74273 s DTI7-5
0CTAL
DL43] rLip-FLor |12 DTI7-4
DL3 & s DTI7-3
DL2 ~ s DTI7-2
DL - s DTI7-]
DLO - 2 DTI7-0
CA R
b“""‘III ln b4
LONE

Fig. 12.2.3--4 One-Byte LIFO Using Separate Latches and Buffers

SEC. 12.3 SIXTEEN-BYTE LIFO REGISTER

If more than two locations of LIFO storage are needed, then a six-
teen-byte LITO register may be constructed using three chips and a
pair of gates (Figure 12.3.1). Two 16 x 4 RAM memory chips are used
for data storage, and a four-bit up/down counter (plus two logic gates)
are used to provide the last-in, first-out characteristic.

X mmrocorgggltgelg

EXPANDING 8008 CAPABILITIES 12-5

SEC. 12.8 SIXTEEN-BYTE LIFO REGISTER (eont'd)

745189

14 15 §)
D32l
LLZ‘O o3 745189
OL! o ., ve
ol DI Yi
. A3 A2 Al Ad CE WE
(72]] 13 |ia |is
DN7
—/q

o L B

Fig. 12.8.1--A Sizteen-Byte LIFO Register

When information is pushed (loaded) into the LIFO, or popped out
(retrieved), the data does not actually move within the RAM. Instead,
the pointer to the memory is stored in the 93L66 up/down counter, and
moves with each operation. When an OUT 017 instruction is executed,
the eight-bit data word is stored in the RAM, and then the RAM address
is incremented. Since the DT17 strobe pulse is inverted, the incre-
menting of the 93L66 does not occur until the end of the strobe. And
since the 745189 is faster than the 93166, the incrementing of the
counter does not affect the RAM address until after the WE (write enable)
signals has disabled the 745189 RAM chips. In this way a potential
race condition is avoided.

LI mlcrocorgggltgerr‘

12-6 EXPANDING 8008 CAPABILITIES

EXPANDING 8008 CAPABILITIES 12-7

SEC. 18.8 SIXTEEN-BYTE LIFO REGISTER (cont'd)

When a byte of data is being popped from the LIFO, the address
must be decremented before the data is read. This is accomplished by
strobing the 93166 count-down command (DN7) with a microcomputer main
timing signal--here, #1 of the 8008 clock. This occurs early enough
in the T3A phase to precede the actual reading of data by the CPU. If
this technique unduly restricts the CPU speed, a flip-flop may be used
to move the decrementing operation back to the beginning of 41 time
(Figure 12.3.2(a)). Even more speed may be obtained by using a one-
shot for this function (Figure 12.3.2(b)).

+5v

LONE Cx Ru/Cy
LONE J ol 100 nsec. B
DNY g [4107 74123
K q m ONE-SHOCT" &m
& 1X cr P R P
ﬂ— LQN_E_?
(a) {b)

Fig. 12.3.8--Timing Modifications to Sizteen-Byte LIFO for
Greater Speed

Note that the MR (master reset) pin of the up/down counter in
Figure 12.3.1 is connected to the microcomputer master reset signal.
This resets the counter to 0000 when power is first applied. Of
course the circuit would still function if the initial counter output
level were any random value. The microcomputer doesn't see the counter
output address; the important thing is that the counter moves up and
down through the stack as it receives the appropriate instructions.
However, making the counter output addresses consistent from power-on
to power-on, and machine to machine, facilitates debugging of defective
chips.

An added feature of this circuit is that the LIFO address can be
preset to a given level in the sixteen-level stack by using an OUT 027
instruction, whose four low-order bits load the up/down counter. If
this function is unneeded, the counter's PL (parallel load) and parallel
data (P3 through P0) can be connected to LONE (logic one: +5 volts
through a 1 K ohm resistor). On the other hand, if the parallel load
feature ©s included, it may be used to replace the MR signal by in-
cluding a few instructions in the microcomputer's initialization

SEC. 12.8 SIXTEEN-BYTE LIFO REGISTER (cont'd)

sequence, which load the counters to 0000 (or any other value).

In Chapter 11 above, this sizteen-byte LIFO register is modified
to permit the programmer to PUSH and POP the 8008's seven index regis-
ters with one-byte instructions.

SEC. 12.4 A 38-BYTE FIFO REGISTER

FIFO registers are frequently used to buffer data coming into the
microcomputer from peripheral devices. An example is given in Chapter 21.

The FIFO is also useful in internal CPU operations, for instance,
to store intermediate results of variable-length lists. The circuit
in Figure 12.4.1 shows an AMD 2812 32 x 8 FIFO with its inputs connected
as a microcamputer output port (OUT 016) and its three-state outputs
connected to the microprocessor input bus. An OUT 016 instruction
stores data, and an INP 006 instruction reads data from the FIFO.

This FIFO in this circuit may be cleared with a DT37 strobe. The
FIFC can thus be initialized to the empty state with an OUT 037 instruc-
tion, at any point in the program. The OR (output ready) signal goes
low when the FIFC is cleared, either through execution of an OUT 037
instruction, or when all the data stored in the FIFD has been read into
the microcomputer. If the register is full, the IR (input ready) signal
goes to a logic one. These conditions are read by the microcomputer
using an INP 005 instruction. When an 8008 microprocesdor is used, the
INP 005 instruction can be followed by an instruction like J7S (jump
true sign), which tests the high-order input bit, the FIFO input ready
signal, and may branch to a sequence which reads the FIFO data into the
microcomputer.

Note also that the 2812 has a half-full flag bit which outputs on
pin 19 (not shown above). This terminal goes high when the FIFO con-
tains more than 15 words. It could also be connected through a three-
state buffer and used as one bit of the INP 005 input port.

Care must be taken, when designing with fast microprocessors,
that data loaded into the FIFO has had time to ripple through the 32
internal registers to the output, before the FIFO is read. More infor-
mation on the operation of the 2812 FIFO is included in Chapter 21 below.

11 mmrocorggtsxltgel['

mncrocoraputer
esign

12-8 ’ EXPANDING 8008 CAPABILITIES

EXPANDING 8008 CAPABILITIES 12-9

SEC. 12.4 A 32-BYTE FIFO REGISTER (cont'd)

IR PD vVgg OR
DL7 20} o? >'5 NB7
DL6 2 o7 os s NB6
DL5 e} . as NBS
— 2812 asp= NB4
DL3 2 ba 2;:2 o3 >|o NB3
DL2 27 . 02 >9 NB2
DL | 2} . o >e NB!
D——LL ! ol Qo u NB
17
SL
L SD
PL MR QE

DTi6 Jie j4 "

DN6

Fig. 12.4.1--A 32-Byte FIFO Register for Internal CPU Operations

SEC. 12.5 OTHER 8008 IMPROVEMENTS

This book contains a number of other methods for expanding 8008
capabilities, which are organized topically in other chapters of this
bock. They may be used singly, and in many cases in combination, to
make the most of the 8008's capabilities. Most of the ideas presented
involve the addition of only one or several integrated circuits to
the basic 8008 microcomputer, plus, in many cases, some added instruc-
tions in the microcomputer's software. The purpose is twofold:
first, to show how these extra functions can be added to a practical
8008 microcomputer; and second, for educational reasons, to demonstrate
how basic microcomputer elements work.

Some expansion ideas are the following: expanding the number of
input ports (Chapter 8); expanding output ports (Chapter 9); added
instructions (Chapter 11); and interrupt handling (Chapters 16 and 17).
Other sections of the book are devoted to simplifying the basic 8008
microcomputer--which is another way of getting the most out of a
CPU.

microcomputer
MR P

esign

X mlcrocorgggltgerr‘

RANDOM ACCESS MEMORY 13-1

SEC. 13.1 NEED FOR MEMORY IN MICROCOMPUTERS

Naturally the microprocessor is the heart of any microprocessor system.
But memory is equally essential, and, in many microcomputers, represents
more of the system cost than the microprocessor itself. A microcomputer
needs digital storage elements external to the microprocessor for two
reasons:

(1) Programming--Because the microprocessor is a general-purpose
computing device, it must be programmed to perform
the particular functions needed in the system in which the
microcomputer is used. The CPU derives its instructions from
remory, and includes an internal program counter which keeps
track of (references) the memory location from which instruc-
tions are being read.

(2) Temporary data storage--Because the microprocessor itself has
relatively little internal data storage
capacity, most microcomputers need additional termporary data
storage, usually provided by RAM. The CPU includes internal
registers which reference the memory location for writing data
into memory (in the case of RAM) and reading data from
memory (ROM or RAM).

The following section details the way in which microprocessors
use memory, both RAM and ROM. later sections concentrate on RAM, and
Chapter 14 focuses on ROM.

SEC. 13.2 MEMORY REFERENCING

The Program Counter (PC) register within the CPU contains the
address of the next instruction to be fetched and executed. The address
of memory into which data can be written (or from which data can be read)
is typically stored in the H and L registers in an 8080--though the BC
and IE register pairs may also be used. (Only the H and L registers are
used for this purpose in an 8008.) During any instruction which references
memory as a source to read from or write into, the appropriate memory
address appears on the microcomputer's address lines, so that the selected
location can be activated for the upcoming data transfer. The 8080 has
16 address terminals on its 40-pin package for this purpose, while the
8008 requires external DH and DL registers (Ch. 5) to address 14 lines.
The ways in which memory is referenced are summarized below.

1) PROGRAM COUNTER (16 bits, 8080; 14 bits, 8008)
Address for READING instructions from memory .
2) H AND L REGISTERS (or B and C, Dand E in 8080)
a) Address for READING data from memory.
b) Address for WRITING data into memory .

Fig. 13.2.1--Memory Addressing

LI mucrocorgggltge':

13-2 RANDOM ACCESS MEMORY

SEC. 13.2 MEMORY REFERENCING (cont'd)

An 8008 instruction such as ADM (add memory) first reads a byte
from memory, at the location specified by the H and L registers; then
the CPU adds this value to the contents of the A register. The 8080
instruction ADD M is identical in substance.

1 IMr Load Memory from register r.

2 M Load Memory Immediate.

3 LrM load register r from Memory.

Y ADM Add Memory to the A register.

5 ACM Add (with Carry) Memory to the A register.
6 SuM Subtract Memory from the A register.

7 SBM Subtract (with Borrow) Memory from the A register.
8 NDM AND Memory with A register.

9 XRM EXCLUSIVE OR Memory with A register.

10 ORM INCLUSIVE OR Memory with A register.
11 CPM Compare Memory with A register.

Figure 13.2.2--The 11 8008 Instructions Which Reference Memory
Using the H and L Registers as an Address

The 8080 includes all of the above instructions--however, note
that the mnemonics usually used differ from the 8008 mnemonics. In
addition, the 8080 includes a number of instructions which refer to
memory in other ways. For a graphic presentation of these 8080 instruc-
tions—-including double-precision transfer instructions; indirect
transfers; and direct load and store instructions--see the chart in
Chapter 3 (Fig. 3.3.3) above.

SEC. 18.3 MEMORY ADDRESS CONVENTIONS

Within the 8008, memory is referenced by the fourteen bits of the
internal program counter (with regard to fetching instructions) or the
fourteen bits of the internal H and L registers (with regard to reading
and writing data). These fourteen bits address up to 21%, or 16 x 1024,
or 16 K bytes of memory.

In the 8080, the 16 address lines reference 216, or 64 K bytes.
These address lines may flexibly be loaded from various CPU registers
as well as the H and L. (Again, see Chapter 3.)

RANDOM ACCESS MEMORY 13-3

SEC. 13.3 MEMORY ADDRESS CONVENTIONS {eont'd)

The six high-order memory bits (DHS through DHO) address 64 (decimal)
pages of memory, where a page is a group of 256 bytes addressed by the
eight low-order memory (DL) bits. The addresses are often written in
octal notation to correspond to the eight-bit architecture of the micro-
computer; thus, each page begins with location 000g and runs to 377
(for 256 decimal bytes). 8

?he full memory address is, in this book, transcribed in split oetal
notation, where there are six octal digits. The right-hand triplet cor-
responds to the DL register and the left-hand triplet corresponds to the
DH register. Thus a kilobyte RAM array (Figure 13.5.5) whose first lo-
cation is QOOOOO runs through location 003377 in split octal notation.
This notation clearly indicates that a 1 kilobyte RAM consists of four
pages (000, 001, 002, 003).

F}gure 13.3.1 shows the correspondence between the states of the four-
teen binary address bits, and the split octal notation.for that memory
address. The asterisks appear above a sixth high order octal digit which
is often seen in 8008 literature, and is used to address PROM programming
stations if included in the system. The 8080 uses all 16 bits.

of{7| o DHS {DH4 | DH3 | DH2 | DHL | DHO | | {DL7 | DL6 | DL5 | DL4 | DL3 | DL2 [DL1 | DLO

Figure 13.3.1--Split Octal Notation

SEC. 13.4 RAM-PAGE OPTION

13.4.1 How It Works The preceding sections set the stage for the
introduction of a valuable design technique
called the RAM-PAGE OPTION. This technique involves both hardware and
software changes, and both eliminates hardware, and cuts down on
program size and execution time for an 8008 microcomputer. RAM-PAGE
also frees up the use of one of the index registers internal to the CPU
(usually the D register), which is useful in handling interrupts. The
limitation of the design is that it can be used only in systems with
a single page (256 bytes) of RAM, or less.

T mmrocorggg;cgerr‘

4 MRS

mlcrocorgputer
esign

13-4 RANDOM ACCESS MEMORY

RANDCOM ACCESS MEMORY

13-5

SEC. 13.4 RAM-PAGE OPTION (cont'd)

As discussed previously, instructions which read from memory may
refer either to ROM or to RAM. Write instructions, however, are normally
used only with RAM, since by its very nature ROM (read-only memory)
cannot be written into by the microcamputer. Since, with the RAM-PAGE
option, there is only one page of RAM, the microcomputer may be designed
to reference that one page autamatically whenever a memory write instruc-
tion is executed. 1In other words, the page number is ignored during

memory write cycles.

The 8008 instructions which cause a memory write cycle are LMA,
IMB, IMC, IMD, LME, IML, and LMH. When these instructions are used in
a microcomputer equipped with the RAM-PAGE option, the programmer need
not set up the H register to point to the RAM address.

Figure 13.4.3 shows two sample 8008 programs written for systems
with and without this option. The program written without uses two
more bytes of program storage and takes 50% more time to execute.

The amount of savings attainable with RAM-PAGE varies greatly with
the application and the style of program used. There is no doubt that
many low cost, high production-volume microcomputers are being designed
with only one page of RAM. As long as there is no intention of expanding
the amount of RAM in the future, one should always opt for the RAM-PAGE
approach. This is especially true since this option requires no additional

hardware.

(However, note that other special purpose options desecribed in
Chapter 11 may conflict with the RAM-PAGE option.)

The RAM-PAGE option is most attrac-
tive in systems which have a need
for interrupts. When an interrupt occurs, one has only to save the L
register before being able to store the remaining registers in RAM. With-
out RAM-PAGE it is necessary to save both H and L registers before the
remaining registers can be stored in RAM. In many current designs the in-
terrupt routine moves the H register to the D register and the L register
to the E register, then sets the H and L to point toward RAM, and stores
the other registers in RAM. With the RAM-PAGE option only the L regis-
ter need be moved to the E register before the saving of other registers
in RAM can begin. This frees up the use of the D register for some other
purpose. This extra register makes the programmer's job much easier and
can cut the instruction count significantly. See Chapter 17 for more
information on how the RAM-PAGE Option is used with interrupt programs.

13.4.2 Another Ram-Page Advantage

In 8080 systems, a page or more in RAM is usually reserved for the
program stack. The 8080 PUSH and POP instructions facilitate interrupts.

SEC. 13.4

RAM PAGE OPTION (cont'd)

OBJECT OF PROGRAM: MOVE THE FIRST 1008 BYTES FROM ROM [PAGE 40] TO RAM [PAGE 77.]
8 8

m
z |88 | §
N B s
= O H I <€, 319
e
5 = | 3851548
2 2 2
& =
I
Dl—' : é o O N [o0]
z S = N12S8 1 3
EE £ w I+ me~ 2
=l et
~ OB Eﬂ 2]
= R % WO I~~~
é o [',j.
= %)
O}
2 . A
o omE
=k NN | Ao =
.
[2p-» < 1
@) H 1
REETN
- ZLL__’ 8 S
e =8K 2
adBz 5. | &
5 g <=z 0 <
ofSoko” | &
8 E‘E‘EE‘C‘HE S
E%g?%%m |
S o ngﬁ '
EEIRHR
mm m o,
_ 2 188 £ ¢
5 g o o —
Eg %%H%»—]N
B E 3 HARM
wn
TN -
a . |
HAER BT E
“15x|5 | 255288 | ¢
A
Bl 884
N O} I
N 3 E oomooool\u)h
% =4 %] I
gl .. 4
& %%% NNAHNAA™ (r:‘i

Figure 13.4.3--RAM-PAGE Option Cuts Program Time

? » and requires only about two-thirds
PAGE option, the LAM and LMA instructions refer

ithout changing the H register.

PAGE option program is two bytes shorter
With the RAM-

ccution time.

to two different pages in memory w

The RAM-

the e

mlcrocmgputer

MR esign

MR

mICI'OCOlH

puter
esign

13-6 RANDOM ACCESS MEMORY

SEC, 13.4 RAM-PAGE OPTION (cont'd)

13.4.3 RAM-PAGE Hardware Design Usually single 256 x 8 (or dual
256 x 4) bit RAM chips are used
for designs needing only one page (256 bytes) of RAM. The more modern
designs usually use a pair of 256 x 4 bi-directional bus—type RAMS
connected directly to the CPU bus. For example, see Figure 13.4.1.

DL7 DLY
DL6 DL6
DLS DLS
DL4 DL4
DL3 DL3
DL2 DL2
DL | DLI
OL? DLD

WE CE

Q
PCW T
CRAM

T3A ST3wW
RAMSEL

Figure 13.4.1--One Page of RAM Added Direetly to CPU Bus

The RAMSEL (RAM select) signal in Figure 13.4.1 should go to logic
one only when the DH register is selecting RAM, and CCl is logic zero.

The mierocomputer design example in Chapter 26 shows how the RAM-
PAGE option is implemented in hardware. See also paragraph 13.6.4.
SEC. 13.5 RANDOM ACCESS MEMORIES

13.5.1 General There are many RAM ICs available today. Of these,
there are two basic types: (1) static and (2) dynamic.

mmrocorgputger
esign

RANDOM ACCESS MEMORY 13-7

SEC. 13.5 RANDOM ACCESS MEMORIES (cont'd)

The static RAM holds the data which has been stored in it as long as
power is being applied. Normally, the data in a static RAM is stored in
memory cells similar to flip-flops. Some of these RAMs will hold data
when only a fraction of the normal voltage is being applied (e.g.,
Advanced Micro Devices 8102).

In the dynamic RAM, information is usually held by stored charge on
the capacitance of each memory cell. The charge on this capacitor leaks
off after awhile so that it is necessary to refresh the information stored
periodically.

13.5.2 RAM For Small Microcomputers Many small microprocessor systems
require only a few locations of
RAM. Some are so small as to require none. (See the MM1 in Chapter 25.)

One of the smallest 8-bit RAM arrays consists of two 16 x 4 bipolar
RAM chips and associated read-write logic. Figure 13.5.1 shows a simple

Ter Woa vapl_887
TB6 10 D3 Y3 :9 BB 6
TBS |> . Q b2 v2 :1 BBS
Te4 Y Y >"’_BB:
DL3 13 b
DL2 14
7481
DL ! L] : 89
DLO a_—
CE WE
CRAM I z 3
ST3IW
=3 LY Py VI
Te2 12 D3 Y3 >9__B.E
BB1
18! L] D2 Y2 >1——___
BBO
T“—Do—b ot v p——
s sly
oL2 14
rU———Y : 748189
DLo | A
- A
CE WE
CRAM : Yt

Figure 13.5.1--Sixteen Bytes of RAM with Two 16 x 4 RAM Chips

X mlcrocorggg}gerl;

13-8 RANDOM ACCESS MEMORY

RANDCM ACCESS MEMORY 13-9

SEC. 13.5 RANDOM ACCESS MEMORIES (cont'd)

circuit which uses these chips. 16 x 4 bipolar RAM chips are easily cb-
tained from a number of manufacturers, but have the drawback of inverting
stored data. Inverters may be added to the inputs or the progrem can com-
persate by inverting data. With the 8008, an X¥RI 377B instruction will
complement (reinvert) the contents of the A register.

The 74S189 is a three-state device; the 31101 and 7489 are open-
collector types, which require pull-up resistors on the output bus
(not shown).

SEC, 13.6 THE 256 x RAM

A number of 256 x 4 RAMs are available. Most of these chips use
the 5-volt N-channel technology. These memories are not only fast
enough for the 8008, but are available in high-speed versions compatible
with the 8080.

The fact that RAM may be added to the microcomputer with only two
RAM chips and a few gates often makes these memory ICs very attractive
for small 8-bit microprocessor systems.

There are three basic types of 256 x 4 RAM available. They may be
generally categorized by the number of pins in their IC packages.

13.6.1 22 pins The 22-pin versions have separate input and output
pins for data. TFigure 13.6.1 shows the schematic of the
basic 256 x 4 RAM.

The 2101 chip manufactured by Intel has one chip enable (TE), and
although there is no separate output enable, the chip enable pin will
float (three-state) the outputs when the chip is not selected. The chip
schematic _is the same as shown in Figure 13.6.1 except for the lack of
CE2, and OE. The 2101 is usually less attractive for microprocessor
designs with a small amount of RAM than are the 16-pin or 18-pin versions.
However, a pin-compatible CMOS version, the Intel 5101, is now
available, and is very attractive for battery-backed memory systems.

SEC. 13.6 THE 256 x 4 RAM (cont’'d)

A4
A3 5:32 MEMORY —Vee
A2 | D'%%CégER ARRAY L Vss
Al ROW 32 ROWS
AQ SELECT 32 COLUMNS
DI4 D04
I3 INPUT OLUMN —
DAT, INPUT/OUTPUT N DoO3
ATA >
DI2 CONTROL CIRCUITS D02
DII WRITE N Dol
. ENABLE ﬂ
NE
—
A7
3:32
A6 DECODER
AS TREE
4 COLUMN
SELECT
ez [o
s OUTPUT ENABLE
OE

Figure 13.6.1--Schematic of 256 x 4 Random Access Memory Chip.
The Chip May be Packaged in 22, 18, and 16-pin
Configurations.

X mlcrocoraggltgerl;

1 mlcrocorgggltgerl;

13-10 RANDOM ACCESS MEMORY

RANDOM ACCESS MEMORY 13-11

SEC. 13.6 THE 256 x 4 RAM (cont'd)

For systems with a larger amount of RAM, the 2102 (1024 x 1) chip
is.mor’e attractive, because of its smaller package (16 pins) and lower
price.

13.6.2 18 Pins 'The 18-pin versions of the 256 x 4 RAM are now

available from many suppliers. They are pin-for-pin
compatible, following the design shown in Figure 13.6.1. The 18-pin
version is just like the 22-pin version, except that DI4 and DO4 are
connected internally in the IC package, as are the other pairs (DI3,
DO3; DI2, DO2; DI1, DO1). This creates a 4-bit bidirectiocnal bus
structure, as compared to the 22-pin version, which may be connected to
two seperate busses.

13.6.3 16 Pins The 16-pin versions of the 256 x 4 RAM are probably

the most attractive designs for 8008 and 8080 designs
requ1r1ng only a small amount of RAM. Some designers prefer the 18-pin
version for 8080 designs, but consideration should be given to the 16-pin
conflguratlon before making a decision. There are currently two types
in the 16-pin version (Signetics and Intel). The Signetics 2606 chip
was the first 256 x 4 RAM. The Intel version is not pin compatible with
it. The major advantage to the Signetics 2606 and the Intel 2112-1 is
their faster speed. The circuit of Figure 13.6.2 may be used with the 2606
and 2112-1 and 8008 microprocessor, even though the chip enable pulse on
writing is only 500 nanoseconds.

The slower 2112 specification requires a 750-nancsecond pulse, which
means that more complicated circuitry is needed to drive these RAM chips.
Figure 13.6.3 shows a design for driving the 2112 RAM.

The Intel 18-pin version, the 2111, requires that READ ENABIE be
connected to the OE pin (see Figure 13.6.4).

SEC. 13.6 THE 256 x ¢ RAM (cont'd)

13.6.4 Circutts Suitable for RAM-PAGE Option The circuits shown in
Figures 13.6.2 through
13.6.4 illustrate the differences in timing and connection for the dif-
ferent 256 x 4 RAM varieties. It should be noted that all three circuits
are configured for the RAM-PAGE option discussed earlier in this chapter.

RAM memory is addressed in the READ mode, in these circuits, only if
the high-order memory address bit (DH5) is logic one. This means that any
memory reference to the upper 8K of memory will be decoded as referring to
this one page of RAM. The location within the page is selected, as usual,
by the eight low-order address bits, defined by the DL register.

When any instruction writes into memory, the two 256 by 4 RAM chips
will qlways be addressed, regardless of the states of the DH register
bits. Thus these designs are suitable for microcomputers using only one
page of RAM. The control signals shown in this section are for the 8008.

|6 PIN MEDIUM SPEED

Dﬁ BB'JS BIDIRECTIONAL BUS RAMS C|8°UBIBTUS
(TWO 256 x4 CHIPS)

WRITEENABLE CHIP ENABLE

- WE CE
ce2 BCW I
cci =

Y

ST3 OR

ST3wW

’Ahﬂ)

Figure 13.6.2--Two 256 z 4 Medium-Speed RAMs for an 8008
Microcomputer with the RAM-PAGE Option

I mlcrocmgggltge;

MR mmroconaggtgeﬁ
I

13-12 ’ RANDOM ACCESS MEMORY RANDOM ACCESS MEMORY 13-13

SEC. 13.6 THE 256 x 4 RAM (cont'd) ; SEC. 13.6 THE 256 x 4 RAM (cont'd)

{ Of the circuits shown in Figures 13.6.2, 13.6.3, and 13.6.4, the first
BIDIRECTIONAL BUS RAM 5 is the simplest and would seem to be the most attractive. Whether it is
oL 8 BIT 2 CHIPS 2112 RAMS 8 BIT ‘ really suitable depends in part on the 256 x 4 RAM's clock specifications.
REGISTER | AppRress Bus 16 PIN IC BUS | Figure 13.6.6 shows the timing diagram for the circuit of Figure 13.6.2.
WRITE ENABLE CHIP ENABLE
_ — 5— CCl and CC2 bits loaded from bus.
sT2 cce oW WE CE
- —
D S
§T3 | ST2 LJ
*] o —
R CE | .
PCW —> eTcpw
ST3 L
@2 1 1 1 ML g

Figure 13.6.3--A Longer Chip-Enable Pulse Developed for

Writing into Slover 256 z 4 RAMS , syne Lo L 1L
. (sY) k— Teye —

Figure 13.6.5--Timing Diagram Relating RAM Write Delay to CPU
Cycle Time for Circuit in Figure 13.6.2

oL BIDIRECTIONAL BUS RAM
8 BIT 2 CHIPS 21l RAMS
REGISTER| AppRress Bus 18 PIN IC

OUTPUT ENABLE
\/ CHIP ENABLE
sT2 cc2 5Cw
.
< T3 Ne sY A m
Qp— q AND

The symbol Tepw is used here to designate the minimum time for which
the RAM must be enabled to write properly. The CPU clock circuit is as-
sumed to be of the symmetrical variety (as discussed in Chapter 5). It
may be seen that the Tepw pulse is one-eighth of the chip's cycle time,
Teye. For a standard 8008 microcomputer, where Teye is 4.0 microseconds,
Tepw would come to 500 nanoseconds.

(7]

DHS —
PCW T3A L AnDo-READ ENABLE
cci |

Figure 13.6.4--The Intel 18-Pin RAM Needs Output Enable Comnection]

I-X mlcrocorgputer

microcomputer
esign 'Qp

esign

(

13-11 ' RANDOM ACCESS MEMORY

RANDOM ACCESS MEMORY 13-15

SEC. 13.6 THE 256 x 4 RAM (cont'd)

13.6.56 266 x 4 Circuit Without RAM-PAGE Option When it is desired to
add a page of RAM to a
microcomputer which does not use the RAM-PAGE option, the circuit in
Figure 13.6.6 can be used. The signal labeled RAM ENABLE may derive from
one of the eight outputs of a decoder, such as the 3205/741S138. The
inputs to the decoder would come from the DH register. The T3A enable
signal is combined, in this circuit, with the other RAM select logic.
The control signals are for an 8008 microcomputer system.

8 BIT 18 PIN MEDIUM SPEED
DL BUS BIDIRECTIONAL BUS RAMS
(TWO 256 x4 CHIPS)

WRITE ENABLE CHIP ENABLE

cc — WE YOE CE, | CE;
D R G

8 BIT
PU BUS

Figure 13.6.6--RAM Select Logic for Systems Requiring More than
One Page of RAM

13.6.6 Warning Since the bidirectional bus RAMs are right on the CPU
bus (BB), care must be taken in the circuit design that
memory is disabled by more than just the lack of the correct address in the
DH and DL registers. For example, the second cycle of an I/0 instruction
loads the DH and DL resisters with information which may look like a RAM
address. The RAM may be disabled in these cases by using the cycle control
bits (CC2, OC1). This has been done in the examples given in the last
section. The other major problem which may arise is that the RAM might
be unintenticnally enabled during an interrupt cycle. If memory is used
as the source of interrupt instructions (as in most examples in this book)
no problems will occur.

SEC. 13.7 THE 1024 x 1 STATIC RAM

18.7.1 The 2102 1K RAM The 2102 static RAM has gained much popularity

among designers of microprocessor systems and
of other machines requiring large configurations of medium-speed memory.
The 2102 is available from many suppliers. Power supplies for the 2102
are convenient: +5 volts and ground. The 5-volt N-channel technology
used in the fabrication of this chip has improved considerably; while
still slower than the 17-volt N-chamnel process used for higher-speed
RAMs, the 2102 is not only adequate for 8008-based microcomputers, but
in the 2102 A version, compatible with the 8080,

A one-kilobyte (1024 x 8) RAM array using 2102 chips is shown in Fig-
ure 13.7.1. The outputs are three-state and may therefore be connected
to the memory data input bus (MT bus) or directly to the CPU bus (BB bus).

18.7.2 Access Time and Address Bit Conmmections In working with the 2102

and other RAM chips with
more than 256 locations,‘the designer should be aware of the considerations
which affect access time.

For example, if the address bits have been stable for several micro-
seconds or more, and the chip enable (CE) pin is brought low, the access
time is effectively Tee, which is usually much faster than the chip's
rated cycle time.

In an 8008-based microcomputer--to review what has been presented
earlier in this chapter and in Chapters 2 and 5--the eight-bit low-or—
der memory address comes out on the CPU bus at T1 time. The high~order
bits are present on the bus at T2 time. The main timing circuitry de-
velops strobe signals called ST1 and ST2, which occur slightly before
the end of Tl and T2 times (respectively). These strcbes are used to
activate external eight-bit latches, called the DL and IH registers,
which latch up the memory addresses. The delay in developing the strobes
ensures that the information has had time to settle on the CPU data bus
before it is latched up in the registers.

Thus the eight low-order address bits are available at ST1 time, and
the high-order bits are available at ST2 time. Memory accessing itself
usually takes place during state 3--during T3A time for memory read cycles,
and ST3W for write cycles. This means that the low-order address bits have
had plenty of time to travel from the DL register and settle down reliably
into the low-order memory address ports. Therefore memory access time is
effectively determined by the chip select time and by the settling time
of the high-order bits.

In an 8080 microcomputer, all 16 address bits become valid at the
same time. For 8080 memory speed requirements, see Chapter 3.

MR mlcrocorgputer

esign

mlcrocoraputer
esign

BrRs : f.

iog

—— E
L

13-16

RANDOM ACCESS MEMORY

SEC. 13.7

Figure 13.7.1--A One~Kilobyte RAM Using Eight 2102 RAM

THE 1024 x 1 STATIC RAM (cont'd)

NBO

NB1

NB2

NB3

NB4

NBS

NB6

NB7

13

—] [
: ITTTTTTTTT
—] 1
ERRRRRERR
— [
2 TTTTTTTTTT
— r
: TTTTTTTTT
— r
TTTTTTTTT]
— r
; FTTTTTTTTT
— 1
5 ERERRRERE
— i

Chips

mlcrocmnputer

esign

——

B

RANDOM ACCESS MEMORY

13-17

SEC. 13.7

DL
CC-DH

THE 1024 x 1 STATIC RAM (cont'd)

st U

ST2
T3A

—-—F---—-

Lacc

access time '«
access time

Figure 13.7.2--8008 Memory Access Times

In the diagram shown in Figure 13.7.2, the IH register is loaded on

the falling edge ST2 (normally defined as SY times #2).

It is obvious

that the high-order access time Haee, is the most critical.

WE —of 1/0

Din | CONTROL |

Ag

. COLUMN
7 DECODER

Ag

As

A e

As —3 & 32x32

a, —5 § : > CELL

A, — %8 ARRAY

A, — ©

B

CS

O

Doyt

Figure 13.7.3--Block Diagram and Logic Symbol for 2102 1K RAM

mlcrocorgputer

esign

13-18 RANDOM ACCESS MEMORY

SEC. 13.7 THE 1024 x 1 STATIC RAM (cont'd)

Tor most memories and most 8008 systems, the Hace time is long
enough for reliable operation. However, by using ¢l rather than 62 to
develop the ST strobe, the designer increases Hace almost 100%. Or,
ST2A may be used: see Figures 13.7.5 and 13.7.6.

Most RAM chips have some addresses which are more quickly accessed
than other addresses. For example, see the block diagram of a 2102 RAM
in Figure 13.7.3. The access time for the column decoder section is
shorter than that for the row decoder. This means that the high-order
(DH) address bits should always be connected to the column decoder ter-
minals, leaving the remaining column decoder terminals (the slower ones
if this is known) and the row decoder terminals for the low-order address
bits.

Figure 13.7.4 shows the results of access time experiments on a
typical 2102 RAM chip.

ADDRESS TO OUTPUT DELAY ADDRESS DECODER

ADDRESS BIT (nanoseconds) AFFECTED
A9 400 COLUMN
A8 415 COLUMN
A7 415 COLUMN
AbB 425 QOLUMN
AS 415 COLUMN
Ay 535 ROW
A3 535 ROW
A2 505 ROW
Al 515 ROW
AD 525 ROW

Figure 13.7.4--Access Times for Different Address Bits of a
Typical 2102 RAM Chip

If the chip were connected in an 8008 system with bits A9 and A8
connected to DH1 and DHO (as shown in Figure 13.7.1), the address-to-
output delay would be 415 nanoseconds (worst case between A8 and A9).
This delay would, if reliably repeated in production quantities, allow
use of the 2102 in an 8008 system operating at standard 8008 speed.
The designer could do without having to specify the premium 2102-1,
guaranteed for a maximum address-to-output delay of 500 nanoseconds.

MR mmrocorgputer

esign

RANDOM ACCESS MEMORY 13-18

[

SEC. 13.7 THE 1024 x 1 STATIC RAM (cont'd)
TB7 cc2
o .£€2
TB6 ccl
&C1
7475 P———
T8S LATCH DHS
DHS
31 B4 DH4
! . , DHA
S
al—sT22
TB3 [6 DH3
R . DH3
572 TB2 DH2
DH2
7475 P——
TBI LATCH DH I
o DH1
T80 DHO
|, DHB

Fig. 13.7.5--Generating the ST24 Strobe for Slow Memory Chips

paset J L JL M1 T1 Tl M 111 1M -

prase 2 L [| 1 M 11 ! 1

I Ik I

syne L I] [] I 1 [| [L
s2 S D S — | | I
s! 1 I I S
sp I SS—

STATES | % { }

]
4
o

Tﬁ

Fig., 13.7.6--How the ST2A Strobe Fits into the 8008's Main Timing

mmrocorgputer
esign

13-20 RANDOM ACCESS MEMORY

SEC. 18.7 THE 1024 x 1 STATIC RAM (cont'd)

Though manufacturers of 2102 RAMs may not be anxious to select devices
based on their A9 and A8 access times, it is useful to the microcomputer
designer to know about the practical margin of up to 100 ns between the
chip's specified speed, and the speed needed in an 8008 system.

The above timing considerations relate to the way memory is
addressed in 8008 systems. The 8008 outputs a low-order address first,
then the high-order address a full clock cycle later. 1In an 8080
system, all 16 address bits become valid simultaneously, usually
about the time ¢2 is ending within T1 time. During T2 time, the CPU
checks to see whether the memory requests a wait cycle; and at T3,
the memory data transfers occur. Factors influencing memory access
time in an 8080 system are discussed in Chapter 3 above.

SEC. 13.8 THE 40396 x 1 DYNAMIC RAM

A number of 4K RAMs have been designed to date. It is not yet clear
which designs are destined to become industry standards. The only thing
that seems certain is that the single-transistor cell has been accepted
as the most efficient design approach.

The key to the mass production of large memories using one~transistor
cells is the use of on-chip differential amplifiers. The information read
is compared with a voltage half-way between logic one and zero. In some
designs, the actual value of the reference voltage is subject to the same
process variables as the cell voltage levels. This means that process
variations tend to cancel out. Ancther interesting design concept is to
make the reference voltage depend on Vee. The threshold voltage of the
chip may be varied by changing the power supply voltage, thus testing the
safety margins of the cells' voltage levels. The manufacturer can then
test chips to pass given internal noise margin specifications.

The first single-transistor-cell 4K RAM designs to appear on the
market were the Texas Instruments 4030 and the Mostek 4096. Both have
already established a place in the 4K RAM market.

The major difference between the 4030 and 4096 is the number of pins
on the package. Figure 13.8.1 shows the approximate relative size of the
22-pin and 16-pin packages. The 22-pin package terminals are on 400-mil
dual-in-line centers, while on the 16-pin package the pin rows are 300
mils apart. The 22-pin package is about 1.1 inches long, while the 16-pin
version is about 800 mils long. (Approximate dimensions are given because
of variations in packaging style.)

I-X mmrocorgputer

esign

e — mmre—— - e—

RANDOM ACCESS MEMORY 13-21

SEC. 13.8 THE 4096 x 1 DYNAMIC RAM (cont'd)

0.4"
|
0.3"
*
" 4030
4096| |o0.8"
v v

Fig. 13.8.1--Relative Siaze of 22- and 16-Pin Packages (Approx. 2 to 1)

4 K dynamic RAM designs usually use a six-bit multiplexer to switch
the colum address bits from the computer address bus to a memory refresh
bus. (The refresh bus is usually connected to the outputs of a six-bit
binary counter.) The Mostek designers decided that, since a 6 x 2-bit
multiplexer is required for the refresh circuit anyway, why not use a
6 x 3-bit device and multiplex the twelve bit addresses onto the same
six-bit bus. This design philosophy reduces the connections to the out-
side world, and also cuts in half the number of address drivers required.

The Mostek design also provides for TTL-compatible logic levels on
all of the input and output terminals of the 4096. The 22-pin designs
require a 12-volt swing on the chip enable pin. Still another advantage
of the 16-pin design is that data is stored and read back in true logic
form, while the data read from the 22-pin version is inverted from the
data written. This last is particularly bothersome in small memory sys-
tems, which might otherwise be designed without any input or output buf-
fering at all.

m|croconc]putger
esign

13-22 ' RANDOM ACCESS MEMORY

SEC. 13.8 THE 4096 & 1 DYNAMIC RAM (cont'd)

MOSTEK 4086 TT 4030

Pins on package 16 22
Chip enable voltage TTL 0, +12
Address line drivers 6 12
Input to output data true inverting
Data inverters needed none 8
Board area less about 50% more
Refresh circuitry needed . . . about the same .

Other manufacturers, Fairchilq, Intel, MIL,

second sources Eifg;;gmc ag?;h Zargy

Fig. 13.8.2--Comparison Between 16- and 22-Pin 4 K RAMs

Texas Instruments produces the 40503 an 18-pin 4K RAM, and
a 4060--which is like the 4030, except with Vbb specs of -5 volts.
Mostek has gone with Vbb = -5 V, and Intel second-sources this 16-pin
4K RAM version.

It is possible to read convincing gla.ims that both the 16-pin
4K RAM, and the 22-pin 4K RAM, are the industry standard, each in
exclusion of the other. The market in question includes large
computer mainframes, the expectation being that the UK RAM will
finish off core memory. However, acceptance of 4K RAMs has been
slower than initially expected--partly because of the lack of
agreement on an industry standard device. Already the focgs_has
shifted to the 16K RAM, being delivered in prototype quantities as
this book went to press.

Note that TI offers an 18-pin 4K RAM package. But because the
16K RAMs now being delivered are in 16-pin packages, the 18-pin design
seems unlikely to gain wide acceptance.

RANDOM ACCESS MEMORY 13-23

MR m|crocoragusltgell1'

SEC. 13.9 TRANSPARENT DYNAMIC RAM REFRESH

Dynamic RAM arrays may be refreshed in a microcomputer without
causing the CPU to halt, wait, or otherwise pause. A transparent
refresh circuit works by inserting memory-refreshing cycles into
gaps in CPU timing without disturbing the flow of processor instructions.

With an 8008, the key is to use the CPU's bidirectional data bus
during T3B time. This is that porticn of the T3 state immediately
following T3A time; or, in other words, the second half of T3 time.

Since the ST3 strobe occurs during T3B time, and this strobe (or
a derivation of this strobe) is used when writing into memory during
PCW cycles, memory cannot be refreshed at PCW-T3B time. Thus a new
signal is defined, E3B, which is equal to T3B - BCW.

A practical RAM refresh circuit is implemented by scanning the low-
order address bits while the chip is disabled, but in the WRITE mode.
This scanning may be accamplished by driving a three-state binary
counter onto the BB bus, and latching the DL register during E3B time.
Between each E3B refresh cycle, the three-state counter is incremented.

Since the CPU has already completed its use of the DL register
by E3B time, there will be no conflict between program execution and
RAM refresgh.

Figure 13.9.1 shows the memory refresh address counter. Other
circuitry necessary includes a strobe and some gating to load the
DL register at E3B time; gating to continue the refresh during the
STOPPED state, if necessary; and specialized refresh driving circuitry
suited to the design of the dynamic RAM chips being employed.

In an 8080 computer, transparency may not be complete, depending
on the speed of the processor and the refresh time required by the
memory. A convenient gap in processor timing occurs during the Tu
state of an ML (instruction fetch) machine cycle. The refresh
circuit should request a hold from the 8080 during the Ml cycle;
the 8080 acknowledges this request, floating its address and control
busses, allowing the refresh controller to address memory and
perform the desired refresh cycling. Since only internal data trans-
fers take place during T4 and TS5 time, the CPU will continue through
these cycles. If refresh is accomplished quickly, then the processor
can be allowed to return to normal operation without skipping a beat.
Otherwise a machine cycle will be taken up by the refresh circuitry.

The designer should study the hold timing chart in the 8080
data sheet. See also the 471 data sheet, Sec. 1.9.

mmrocoraputer
esign

13-24

RANDOM ACCESS MEMORY

SEC. 13.9

TRANSPARENT DYNAMIC RAM REFRESH (cont'd)

|

TC

BB7
—24 ok, o3 p—-"-r-—

BB6
+—d oe> o p————

TE Q }—-BBS

B4
E3B 14h ¢ Qg >___B__
DM8554
R S CEP CET
2 i3 fio |o
MR l 47
LONE
7
Te BB3
24 OE, Q3 D————
BB2
o o€ Q@ p——
BB!
L Q p—
E3B

|4>c Qﬁ>___'lﬁ_

DM8554
R S CEP CET
12 |13 jio |9
w |V
LONE.

Fig. 13.9.1--Memory Refresh Address Counter

READ~ONLY MEMORY 14-1

mICI'OCOI'H

puter

esign

SEC. 14,1 ROMS AND OTHER MEMORIES

While core memories are being replaced by solid state memories in more
and more data storage applications, it is easy to forget a prime advantage
of these magnetic devices. That is, core can both be read from and written
into quickly at speeds compatible with data processing needs, and can also
retain information in the stored magnetism of the individual core elements
when the system power supply is turned off.

With semiconductor memories, as indicated in the previous chapter, the
designer chooses between RAM and ROM. Random access memory (RAM) has only
one of the capabilities of core memory--fast reading and writing--but not
the other, non-powered storage. The read-only memory (ROM) retains its in-
formation even when power is not applied, but is not easily changed (written
into) during normal computer operations. There is little doubt that RAN
memories--random access nonvolatile devices--will eventually become avail-
able. However, practical microcomputer designs at present depend on ROM
and RAM.

A typical microcamputer system contains a block of ROM where in-
structions and data are stored permanently, and another block of memory ,
made up of RAM, which is used for temporary storage. Because these two
types of memory are separate, rather than intermingled, the instructions
found in microprocessors are somewhat different from those used in com-
puters based on core memory. A very specific example would be an in-
struction like Store Forward 77, which might be found in a core-based
minicomputer. This instruction causes a digital word to be addressed
at a location which is 77 (octal) locations forward with reference to
the current program counter location. In a microcamputer, since there
are two different types of memory--cne of which cannot be written into--
this kind of relative memory addressing is not practical. In the 8008,
for example, memory is always referenced through address pointers
(H and L) and instructions like LMA are found in the instruction set.

Though a small microcomputer can conceivably do without any RAM at all,
it must have at least a small amount of ROM--at least when general-purpose
microprocessors like the 8008 and 8080 are used. Without ROM, the micro-
processor could not be programmed at all. This chapter presents same prac-
tical ROM designs, starting with the very small.

mmrocorgputer
esign

142

READ-ONLY MEMORY

SEC.

14.1 ROMS AND OTHER MEMORIES (econt'd)

TYPE OF MEMORY

CORE

ROM

F/ROM

RePROM

E/PROM

EAROM

DESCRIPTION

Magnetic core memory. .
Non-volatile: retains data without power.
Fach bit or word alterable.

Semiconductor random access memory.
Volatile: needs power to retain data.
Each bit or word alterable.

Mask-programmed read-only memory.
Non-volatile: retains data permanently.
Programmed at IC factory.

Not alterable.

Field-programmable read-only memory.

Nen-volatile.)

May be programmed after packaging.
Once any given bit is altered from its
original state, cannot be re-altered.

Reprogrammable ROM (light-erasable).

Nen-volatile. i

May be programmed after packaging.

Once any given bit is altered from its
original state, cannot be re-altered

by the PROM programmer.]

All of the bits may be erased simultaneously
to the original logic zero state by exposing
the chip to W light.

Electronically erasable version of RePROM.
Electrically alterable ROM.
Non-volatile.

Bits individually alterable.

Random access non-volatile memory.
Core replacement.

Fig. 14.1.1--Types of Memory

MICroco

puter
esign

READ-ONLY MEMORY 14-3

SEC. 14,2 DIODE PROGRAMMABLE ROMS (DiROM)

A simple ROM array can be constructed using TTL decoder circuits
and diodes. The program can be changed easily merely by removing and
adding diodes. The circuit shown in Figure 14.2.1 provides sixteen
bytes of DIROM.

One sixteen-pin DIP socket is dedicated to each memory location.
The eight pins on cne side of the socket are all connected to one of the
output lines of the 74154 decoder. The eight pins on the other side of
the socket are connected to the eight separate data bus (BB) lines of
the microcomputer. When using an 8008 or 8080, the BB lines should be
provided with pullup resistors in the range of 10K to 22 K chms which
define the logic high state on the BB bus. The zero state is defined
by the presence of a diode at the selected output address of the deccder,
opposite the BB bit in question. If location 16g were read from the

circuit shown in Fig. 14.2.1, the result would be a binary 01111111 on
the BB bus.

Though handy in breadboarding and prototyping, this design is hard-
ly cost-effective in production, of course. Ancther limitation has to
do with the logic LOW input voltage requirements of the microprocessor.
For example, the 8008 is specified to recognize a voltage of Vee - 4.2
volts, or 0.8 volts, as the logic low voltage. Germanium diodes would
have to be used for assurance that the 0.8-volt limit was not being ex-
ceeded, In practice silicon diodes are adequate for breadboards to be
tested at room temperature. However, this design is recommended only
for prototyping, in low-noise environments.

SEC. 14.3 FIELD-PROGRAMMABLE ROMS (F/ROMS)

14.3.1 F/ROMS The field-programmable ROM can be programmed

electrically after the IC is packaged. Most F/ROMs
incorporate a matrix of tiny fuses which may be blown out selectively to
produce the desired bit pattern of ones and zeros. Most F/ROMs initially
contain all zeros, and programming permanently stores ones in the
locations where fuses have been blown. The voltages required to program
the F/ROM differ from type to type.

For eight-bit microprocessors, F/ROMs with an eight-bit output
Structure are most convenient. 32 x 8 F/ROMs are often used for
Program storage, and especially for system characterization. That is,
a line of similar machines may contain identical circuitry, with
system definition provided by a large ROM or PROM. Those relatively
few key variables which allow the implementation of special options--
system characteriaation--are stored in the F/ROM, where they can
easily be changed in the plant or in the field.

mmrocoraputer
esign

READ-ONLY MEMORY 14-5

Tty READ-ONLY MEMORY
SEC. 14.2 DIODE PROGRAMMABLE ROMS (DiROM)
+5v
Tz4

L3 20 LOC XX 17
pL2 2| 4 e
DLI 22 s
DL 23 a
13

oL4 '8/ 2
CE_'S .
10

Tase | g ,

o7 6

-8 5

05 4

o2 3

03 2

02 |

-, 0

Lz

BB7 BB6 BBS BB4 BB3 BB2 BBI BB®

Fig. 14.2.1--16 Byte Diode-Programmable ROM

SEC. 14.8 FIELD-PROGRAMMABLE ROMS (F/ROMS) f{cont'd)

14.3.1 F/ROM Programmers A F/ROM programmer circuit is very useful

when a microcomputer must be reprogrammed
in the field. A complete design should both program the desired bit lo-
cations, and then verify the F/ROM contents. The design discussed here
is a microcomputer peripheral. That is, it may be placed in the cabinet
housing the microcomputer. The F/ROM to be programmed is inserted into
a socket on the programmer. The programmer uses the microcomputer to
select the F/ROM locations to be programmed and verified, and is thus
much more convenient to use than a bit-by-bit or byte-by-byte stand-alone
progremmer.

The programmer is more easily designed if programming may be accom-
plished mainly with voltages which are within TTL levels. The programmer
circuitry may be composed mostly of TTL devices; the chance of circuit
failure is decreased, and the verifying circuitry is simplified. F/ROMs
which come from the factory as all logic zeros usually require a voltage
larger than Vee to be applied to output terminals during programming. But
easier to design with are those F/ROMs which start out as all zeros, and
require the programmed output to be held near ground during programming.

Figure 14.3.1 shows the circuit diagram for.a F/ROM programmer de-
signed for use with the TI 748288 32 x 8 F/ROM. In the steps below, a
sample programming sequence is given which describes the operation of
the circuit.. The notation used is for an 8008 microprocessor.

D) The F/ROM locatien to be programmed is read to determine
its present state. The proper location must be addressed,
the chip's three-state outputs must be enabled, and chip Vee
must be set to its normal TTL level of about +5 volts. First,
the A register is loaded: the five low-order bits (A4 through
AQ) contain the F/ROM location. A5 is low to enable the F/ROM.
A6 1s low. A7 is low to set the Vee to +5 volts. An Output
35 instruction is executed, which strobes the 74273 eight-bit
latch. The 7416 inverting open-collector buffers at Q7 pull
current through the 5.6-V zener and a series diode, setting
the voltage at the base of the NPN power darlington stage at
about 6.3 volts. This value is dropped through two diode
drops and powers the F/ROM.

(2) The microcomputer executes an Imput 5 instruction, which acti-
vates an array of 74126 three-state buffers and places the
F/ROM word for the address previously selected on the micro-
processor input bus. The contents of the F/ROM may be com-
pared with the desired contents and if equal the programming
of this word may be skipped.

MR

mmrocorgputer

esign

X mmrocoraggltgerrI

-0 -
14-6 READ-ONLY MEMCRY READ-ONLY MEMORY 14-7
SEC. 14.3 FIELD-PROGRAMMABLE ROMS (F/ROMS) (cont'd) SEC. 14.3 FIELD-PROGRAMMABLE ROMS (F/ROMS) (cont'd)
f i DT 35-7
_E 3K b 0 Vo = +5 V Vee = +12.5 V
22ut 3 a DT 35-6
I e 1222 +5V 1 Vee OFF Vee OFF
J_ \(| AMP NPN
0 ENABLE F/ROM
DT 35-5
1 DISABLE F/ROM
NB7
NB6
DESCRIPTION
NBS
NB4 DT 35-4 HIGH-ORDER F/ROM ADDRESS
NB3 DT 35-3 F/ROM ADDRESS BIT
NB2
o1 DT 35-2 F/ROM ADDRESS BIT
NB 1
NBD DT 35-1 F/ROM ADDRESS BIT
DT 35-0 LOW-ORDER F/ROM ADDRESS
Fig, 14.3.2--F/ROM Programmer OUTPUT 35 Bit Assignments

Fig. 14.3.1--F/ROM Programmer for the 745288

_J

MR mncrocoraputer

L mlcrocorgputer
esign

esign

14-8 ' READ-ONLY MEMORY

READ-ONLY MEMORY 14-9

SEC. 14.3 FIELD-FROGRAMMABLE ROMS (F/ROMS) (cont'd)

(3 The F/ROM may now be programmed, cne bit at a time. The

bit to be programmed is addressed by setting up its address
in the three low-order bits of the A register then perform-
ing an Output 34 instruction. A3 is set to LOW to program
the addressed bit to zero. The selected output of the 9334/
74259 addressable latch remains high until another Output 34
instruction is performed The selected output bit is pulled
down near ground by the 7416 inverting open-collector buffer.
More than one latch output can be high at any one time, but
care must be taken not to overload the power supply or over-
heat the F/ROM.

) The F/ROM Vee is now increased to +12.5V so as to swamp an
internal protective zener diode and provide enough current
to blow the fuse for the bit to be programmed. Up to 750 MA
is required. This is done by setting the five low-order bits
of the accumulator to the correct F/ROM location (as in step
1), and executing an Output 356 instruction. This time, how-
ever, the chip should be disabled: A5 should be high. AS
should be low. A7 should be high, which allows the 1 K chm
resistor to pull up to +14 v, charging the 0.01 microfarad
capacitor. The NPN darlington stage ramps Vee up to about
12.5 volts.

(5) Within 10 microseconds to 1 millisecond after Vee has reached
12,5 volts, the F/ROM should be enabled. Another Output 35
instruction is executed, the settings remaining the same ex-
cept that AS should be low.

(6) One millisecond later, A5 is toggled once again; another Out-
put 35 instruction is performed; and the F/ROM is disabled.
The microcomputer may develop this time delay by using an
interval timer Chapter 18) or by executing a software loop
calculated to take the required time.

7 Within 10 microseconds to 1 millisecond later after the F/ROM
is disabled, Vee should bé returned to +5 volts by running
another Output 35 instruction, with the high order bit set low.

(8) Within 10 microseconds to 1 millisecond after Vee returns to
+5 volts, the F/ROM is once again enabled by toggling bit 5 of
the accumulator and running an Output 35 instruction. Then an
Input & instruction is executed in order to test the program-
med bit.

SEC. 14.3 FIELD PROGRAMMABLE ROMS (F/ROMS) (cont'd)

(9 Before programming another bit, the progrem should wait a
certain period of time to keep the F/ROM from burning up.
Vee should not remain at +12.5 volts for more than 10% of
the total programming cycle. In order to further ccol the
chip, Vee should be removed altogether between bit-program-
ming times. This is done by performing an Output 35 instruc-
tion with bit 6 high, which clamps Vee near zero.

(10) If step 8 above reveals that the bit did not program, steps
4 through 8 may be repeated for that bit, allowing the pro-
per delay described in step 9 to avoid over-heating. If it
once again fails to program, steps 4 to 8 may be repeated
once again, this time applying +12.5 volts for 50 to 75 milli-
seconds. The +12.5-volt 10% duty cycle still must not be ex-
ceeded--that is, the corresponding wait time between program-
ming bits must also be increased.

v Once programming is accamplished for the bit originally se-
lected, another bit may be programmed, using steps 1 through
10. Changing the bit to be programmed (step 3) requires two
Output 34 instructions. The first such instruction addresses
the old bit number, but the accumulator is first set so that
A3 (the 9334 D input) is low. This turns off the latch for
the old bit. Then the accumulator points to the new bit ad-
dress, setting the latch data input high, and performs another
Output 34. Now the new bit address is ready, and the program-
ming procedure may be resumed, starting with step U4.

Note that, when the microcomputer is first turned on, a master reset
pulse will cause the addressable latch to output all zeros. The glght—
bit latch points to location zero, the F/ROM is enabled, and Vec is +5
volts.

A chart showing output bit assignments for the F/ROM programmer ap-
pears in Figure 14.3.2.

SEC. 14.4 REPROGRAMMABLE PROMS

The reprogrammable PROM has achieved wide popularity. A typical ex-
ample is the 1702A, a 2 K RePROM in a 256 x 8 configuration. This ROM is
very useful in the breadboarding stages of eight-bit microcomputer develop-
ment. In the low-volume applications, the 1702A is popular even though
F/ROMs like the 7u4S471 may be less expensive and take up less PC board
area. One advantage of the 1702A is the availability of the 1302 ROM, a

ES

o Sere BdEit RS

L I-I mucrocoraggltge'g

MR mlcrocorgggtgeg
I

I
i
'

R
i
By

(

14-10

READ-ONLY MEMORY

SEC. 14.4

REPROGRAMMABLE PROMS

mask-programmable chip which is a direct plug-in replacement for the
1702A, and may be substituted when a design is finalized and high-vol-
ume production begins.

The 1702A is electrically programmable using a programmer of medium
complexity, requiring a relatively high-voltage povwer supply. For this
reason, programming of these chips is usually accomplished in the lab, or

at centralized facilities.

Suitable RePROM programmers are available

from several sources, and may be purchased as accessories to microcomputer
prototyping equipment sold by the microprocessor manufacturers.

The 1702A is erased to an all-zero state with an ultraviolet light

source.

SEC. 14.5

COMPARISON OF ROM TYPES

The intended application will determine which type of ROM is most
suitable. Figure 14.5.1 illustrates some of the many factors that in-

fluence the decision.

Naturally the choice is most difficult in low-

volume microcamputer production, when the cost of a mask-programmed ROM
is not clearly Jjustified.

Symbol

Name

Number of
locations for
which ROM is
practical

Efficiency,
bits per
package size

Extra
costs

Power

supplies

Cost of
programmer

DiROM

Diode~
Programmable
Read~Only
Memory

Small

Spare
diodes

Nothing

F/ROM

Field-
Programmable
Read-Only
Memory

Small-
medium

Medium

Programmer

+5 V to run;
+12 V or more
to program

Inexpensive

RePROM

Re-
Programmable
Read-Only
Memory

Small-
medium

Medium

Programmer,
W eraser

+5V, -9 V;
+48 V to
program

Samewhat
costly

ROM

Mask-
Programmed
Read-Only
Memory

Small-
large

Medium-
high

Mask
charge

+5V

Inapplieable

Fig. 14.5.1--Some Comsiderations When Choosing Type of ROM to Be Used

MR

mlcrocoraputer

esign

— r—— = ———————— ~—

——— —

READ-ONLY MEMORY 14-11

SEC. 14.6 THE ROMIN OPTION

14.6.1 Flewible Memory Referencing There are two basic ways in which

to load one of the 8008's inter-
nal index registers from memory. The first is to use the L»I instruc-
tions. These instructions are good mainly for handling constants
stored in ROM as part of the program, and do not constitute a very
flexible method for loading memory. The second way 1s to use the LrM
instructions. These load the register » with the contents of the loca-
tion in memory addressed by the H and L registers. This method is more
flexible, but may still be somewhat cumbersome because the H and L
registers must constantly be manipulated.

The improved instruction set designed into the 8080 microprocessor
allows the A register to be loaded from memory locations which are
addressed either by the B and C registers, or by the D and E registers,
in a manner similar to the use of the H and L registers. Although these
added instructions can be used only to load the A register, the added
flexibility is a great advantage when moving a block of data. One
pair of registers (e.g. D and E) points to where data is being picked
up, and the other pair of registers (e.g. H and L) points toward the
RAM location where the data is being placed.

With the 8008 this flexibility is not automatically available.
Several options are available, however, to help make up for this
deficiency. The RAM-PAGE option described in Chapter 13 is often help-
ful in small systems, since that option eliminates having to manipu-
late the H register when addressing RAM. But RAM-PAGE is no help in
systems requiring more than cne page of RAM.

Another useful design idea for increasing memory-addressing
flexibility in an 8008 system is the ROMIN option. Essentially, ROM
is treated as an input port, and a conditional input approach allows
the A register to address the memory.

14.6.2 Implementing the ROMIN Option With the ROMIW option, a sys-

tem may reference memory in
either of two ways. The first is through the normal method: using
the LrM or LMr instructions in conjunction with the H and L registers.
The second is by using input (INP) instructions. While 8008 systems
are usually designed so that memory may be referenced only during PCI
(instruction fetch) and PCR (memory read) cycles, systems with the
ROMIV option also permit memory to be read during PCC (I/0 command)
cycles.

MR mlcrocornputer

esign

READ-ONLY MEMORY 14-13

14-12 READ-ONLY MEMORY
SEC., 14.6 THE ROMIN OPTION (cont'd)
CuEmoRY TIMING pow 1 Tmemory TIMING . poy e 7
| cc2 04 by I} oce2 !
1 CCl [7400 I 1 CcCl i
B ! :
1
’ PCW : ’ PCW :
1 ST3 @—4 74) CRAM I 1 §T3 |
] | LSO |
1o 5 I
Faoi B :
| o N :
|
: T3A !
L 2* MIN L = 1
| cci Jraco Lo ccl %
[} ! | !
| MIN__ Y 1t T3A }
I DHS_|7400 | DHS '
: 0
A Vo |
| §T3 %% gsT13 | 1 ST3 :
L I
'L - - — - ————— = o] b mmccecnrcme o - e o oo - -

Fig. 14.6.1--Original MIKE 4 Memory Timing; ROMIN Option
Modi fieation

The memory timing circuitry for the MIKE 4 (see Chapter 26) has
been reprinted in Figure 14.6.1. For comparison, the circuit has been
modified for the ROMIN option. Note how easily ROMIN may be implemented.
Only one wiring change has been made.

In the original circuit, DHSM (IHS modified) is generated by NANDing
TH5 with MIN. MIN is a timing signal which is active (i.e., high)
during PCI-T3A and PCR-T3A times. DHSM, in turn, is used to enable .
ROM. (See Chapter 26 for elaboration.) Thus ROM may be enabled during
PCI cycles (ROM as source of program instructions) or PCR cycles (ROM
as source of data read from memory).

With the ROMIN option, the THEM signal which enables ROM is cre-
ated using T3A, rather than MIN. T3A is active not only during PCI and
PCR cycles, but also during PCC cycles. (As explained in Chapter S,
the T3A signal is disabled during POW cycles.) This change permits
ROM to be read during input instructions (whence ROMIN).

SEC. 14.6 THE ROMIN OPTION (cont'd)

It turns out that INP 000, INP 001, INP 002, and INP 003 will
read ROM using the above circuit, because of the bit combinations of
DHS, DH4, and IH3 which may occur. If the resultant limitation in
the use of input instructions is overly stringent, the designer might
expand the input port array with the conditional input concept (Chapter 8).

A memory map is shown in Figure 14.6.2. Note that the chart shows
that the four input instructions reference four pages in ROM.

PAGE PACE PAGE PAGE
NUMBER USAGE NUMBER USAGE NUMBER USAGE NUMBER USAGE

077 RAM 057 RAM 037 ROM #3 017 NO ROM

076 056 036 (OPT.) 016 HERE

075 055 035 015

074 054 034 01lu

073 053 033 013

072 052 032 , 012

071 051 031 011

070 050 030 v 010 v

067 ou7 027 ROM #2 007 ROM #0 INP 3
066 ous 026 (OPT.) 006

065 045 025 005 INP 2
064 ouL 024 00U

063 ou3 023 003 INP 1
062 ou2 022 002

061 o4l 021 001 INP 0
060 v ou0 v 020 v 000 v

Fig. 14.6.2--Memory Map for MIKE 4 with ROMIN Option

14.6.8 Programming with ROMIN The ROMIN option permits an input in-
struction to address memory. The
high-order memory address (DHS through DHO) is defined by the code for
the input instruction itself, which (in binary form) is 01 00M MM1 (where
MM defines which one of the eight input instructions is being executed).
Since the IHO bit is always logic one, only odd-numbered pages of
memory may be referenced by a ROMIN input instruction. The low-order
memory address bits are simply set up in the A register before execut-
ing the input instruction. This is possible because, as with all I/0
instructians, the A register is transferred to the DL register during
PCC~T1 time.

mlcrocoraputer

MR esign

mlcrocorgputer
esign

14-14 READ-ONLY MEMORY

DIRECT MEMORY ACCESS 15-1

SEC. 14.6 THE ROMIN OPTION (cont'd)

PURPOSE OF PROGRAM: LOAD CONTENTS OF MEMORY AT LOCATION 003125
INTO A REGISTER

METHOD #1 METHOD #2 (ROMIN)
LHT 003 LAT 125
LLI 125 INP 001
A
(5 bytes) (3 bytes)

Fig. 14.6.3--Simple ROMIN Program Comparison

SEC, 15.1 DIRECT MEMORY ACCESS

Regardless of how fast a microprocessor or minicomputer may be,
there is some high-speed peripheral which requires data at a rate which
is too fast for the CPU, or which takes up too much of the CPU's time.
Direct memory access (DMA) can effectively increase the speed of the
computer in handling blocks of data, and is therefore very useful in
microcomputer systems where a fast peripheral puts a strain on the capa-
bilities of the microprocessor.

A camputer with DMA can write data into memory, or read fram it,
without separate input or output instructions for each byte. Tor example,
a peripheral may be connected to DMA hardware, with the DMA circuitry
under control of the CPU. A typical instruction to the DMA controller
might be "read in 32 bytes from the first sector of the floppy disc,
and place them in memory, starting at location 007000." After the micro-
processor gives this command to the DMA controller, it continues to
execute its normal flow of instructions. The DMA system provides a flag
(input bit) which the CPU may interrogate periodically to find out
whether the job has been campleted. Another alternative is to have the
DMA controller create an interrupt when its job is done.

It is not the purpose of this chapter to describe all of the
various IMA techniques which the designer may develop. Instead, the ways
of obtaining direct access to memory in 8008 and 8080 microcomputers
are described.

SEC. 15.2 DMA WITH THE 8080

The address bits on the 8080 chip use three-state output circuitry.
The DMA controller is connected to the HOLD terminal of the 8080, as
shown in Figure 15.2.1. When the HOLD line is brought high, the CPU will
acknowledge with a logic one on the HLDA output. The CPU address and
data bus will be floating in the high-Z state by the end of the next &2
pulse after HLDA goes high. Once the 8080 address lines are floating,
the address lines coming from the DMA controller may be enabled. This
circuit allows the IMA system to gain access to both the memory address
bus and the memory input and output data.

The 471 data sheet, near the end of this boock, includes basic
information on the 8080 hold function (Sec. 1.9).

microcomputer
MR esign

M mlcrocorgggltgerl;

15-2

DIRECT MEMORY ACCESS

SEC. 15.2

DMA WITH THE 8080 (eont'd)

LONE P37 A5 A5
Al4 >
LONE PNE& Al4 :II:
—
] All
Al3 _alo,
' D —he-
D Al2 N ,._.A_7_.
L
8080 A
49 All ——A-g-’
e
‘ D AlO A4
AS _Lz.
.——-——-D———. ! i
DEN D A8 _ _AL.
T417 HOLD HLD.
)
DMA p7]DgDS [D4{D3|D2|DI [OF
REQUEST 54
85
8 T AT AlS
D Q — M—.
L—PC LONE AG. Al3 ol
: Fiiwe
[L LR
‘ D DEN | Ao |
A9)
0z 5w as
EN
j “'D"— %—-— ROM/RAM
8 AS
HLOAT ™ As_,|
pC LONE T
R ——ii]
il - T
| b o
DEN|[OEgOlA AP, Ap

Fig. 15.2.1--DMA Address System for 8080

INTERRUPTS

_J

MR

mICI'OCOI'H

puter
esign

SEC. 16.1 NEED FOR INTERRUPTS

The 8080 and 8008 microprocessors contain an input terminal which
may be used by external circuitry to interrupt the program currently
being executed. The need ususally arises in a system where certain
high-priority events occur, demanding the immediate attention of the
CPU. The interrupt feature is also useful when the software burden
of checking for many low-priority events becomes awkward or too time-
consuming. For example, when a slow-speed peripheral device--such as
a keyboard--must be handled without interrupts, the mainline program
must leave its principal task periodically to go and check to see
whether there is new data from the keyboard. This may place unwelcome
constraints on the system's software.

In an 8080 microcomputer, the CPU indicates its recognition of an
interrupt request by causing the INTA machine status bit to go high
during the next instruction fetch cycle. In other words, DBO goes
high at STB time. However, the CPU will not recognize interrupts
unless an EI (enable interrupt) instruction has previously been
executed. (For further details, see the 471 data sheet near the end
of this book, Sec. 1.8.)

When the INTERRUPT terminal of the 8008 is brought to logic one,
the 8008 recognizes the interrupt at the next instruction fetch (PCI)
cycle by outputting S2, S1, SO = 110, at what would otherwise have
been T1 time. This alternate Tl time is called T1I. Whereas normally
the program counter (PC) is incremented automatically after the T1
state, in preparation for the fetching of the next instruction to be
executed, during the T1I state the program counter is not incremented.
This permits the CPU to remember where it was in the mainline program
when interrupted. The following PCI cycle is used to insert the inter-
rupt instruction that causes the CPU to jump to the interrupt routine.

In both cases, 8008 and 8080, it is left to external hardware to jam
the interrupt instruction onto the CPU data bus at the proper time.

SEC, 16.2 INITTAL INTERRUPT

The 8008 uses the interrupt function to escape the initial STOPPED
(halted) state which occurs automatically when power is first applied.
Sixteen clock periods after this state begins, the 8008 instruction
register; the A, B, C, D, E, H and L registers; and the PC register
are all cleared to zero. An initial interrupt is required to escape
the STOPPED state. The most common approach is to use a master reset
pulse to deliver an interrupt to the CPU, and to jam in an initial
instruction which calls an initialization subroutine in the software.
This program proceeds to clear RAM and output latches as needed.

mlcrocorgputger
esign

16-2 INTERRUPTS

SEC. 16.2 INITIAL INTERRUPT (cont'd)

In the 8080, an interrupt is not used to initialize the CPU.
Instead, the RESET input is used; this terminal clears only the 8080
PC register. All other internal registers must be initialized through
software. (See the 471 data sheet near the end of the book, Sec. 1.7.)

SEC. 16.83 HOW THE INTERRUPT IS USED

The program which the microcomputer enters through the initial inter-
rupt, which contains the instructions normally executed by the microcom-
puter in carrying out its principal functions, is called the mainline pro-
gram., When an interrupt occurs, the microprocessor finishes its current
instruction;, and then allows an extra instruction to be inserted (jammed
in). This extra instruction is usually a RESTART instruction which ealls
a subroutine in memory; that is, the CPU jumps from its location in the
mainline program to the location where the subroutine is stored. The in-
terrupt subroutine is said to service the interrupt which caused that sub-
routine to be called. Tor example: typing a key on a keyboard may cause
an interrupt, which calls an interrupt subroutine for processing keyboard
characters. The interrupt subroutine servieces the keyboard by inputting
the character typed, and storing it into a list of typed characters in RAM.
Then the subroutine returns to the mainline program. Depending on the de-
sign of the system, either the mainline program, or ancther interrupt rou-
tine, picks up the characters stored in RAM for further processing later
on.

The use of the microprocessor's interrupt capability is an important
element in the overall design of the system. Whether interrupts are used
at all, or one interrupt level is used, or a number of interrupt levels
are used, depends on the application for which the microcomputer is
intended. An example of the choices involved is illustrated by the two
approaches for adding a keyboard input to a microcomputer which are dis-
cussed in this bock. In Chapter 21, the microprocessor periodically checks

INTERRUPTS 16-3

MR mlcrocorgputer

esign

SEC. 16,8 HOW THE INTERRUPT IS USED (cont'd)

for new keyboard data, and a FIFO provides some temporary keyboard data
storage. This approach avoids some of the camplications of dealing with
interrupts. In Chapter 26, the MIKE 4 microcamputer has a similar
keyboard input, but each new keyboard character interrupts the microcan-
puter. Chapter 17 gives several design examples for interrupt systems,
concentrating on the means of saving status during interrupts. Note

in these examples that the system design frequently involves tradeoffs
between software complexity and added hardware. The interrupt feature is
often an important element in the design.

SEC, 16.4 SYNCHRONIZING INTERRUPT REQUESTS (8008)

The 8008's interrupt line is strcbed into two different parts of
the CPU's internal circuitry. The interrupt strobe takes place on the
falling edge of #1. If the interrupt signal changes state shortly
before that time, one section of the CPU might recognize the request,
and another part not. For this reason 8008 1ntempts must be synchron-
ized with external circuitry to ¢2, or to the rising edge of 41.

The 8080 contains its own intermal interrupt synchronization.

SEC. 16.5 SIMPLE INTERRUPTS

One example of a simple interrupt system is a microcomputer where
an m‘ter*rupt is recognized only when the CPU is in the STOPPED state.
This is suitable when the interrupt request need not be serviced immedi-
ately when the demand arises. Even in very complex systems, of course,
an mtempt will not be serviced immediately, if a higher priority
interrupt is already being processed.

If the main line program can be interrupted only at certain points
dum_ng its execution, the problems associated with having to save internal
microprocessor status during execution of the interrupt, are minimized.
(See Chapter 17 on saving status.)

In Figure 16.5.1, part (2), a flip-flop is connected between
an interrupt source and the interrupt terminal of the CPU. An
interrupt request will be passed on to the CPU only when the CPU
halts before the request was received. In an 8008 system, the
HALT condition is decoded in the state decoder circuitry (Ch. 5) as
a string of pulses, produced by #2 or #1; these pulses will permit
the request to be passed on very shortly after it occurs. In an
8080 system, the signal HLTA (halt acknowledge) could be combined
with PH2T to produce a similar pulse train for use in this circuit.

X mlcrocorgggtgeg
|

ki
?
p
|
i
i
k

‘ s - ™) —
: 16-L INTERRUPTS INTERRUPTS 16-5
SEC. 16.5 SIMPLE INTERRUPTS (cont'd) SEC. 16.6 INTRODUCTION TO PRIORITY INTERRUPT SYSTEMS (cont'd)
DEVICE INTERRUPT CPU INTERRUPT y ‘
REQUEST INTERRUPT | REQUE o
DEVICE >- SYNCHRONIZE QUEST INPUTy, ¢py & m ;
=
NORMAL CONNECTION == - " i
(n w Lok 2
o g IlE 5 <'3 = L) | E > I
INTERRUPT BeY ruptal (8255
S REQUEST INT Sead |3t sy 5 E 0N
DEVICE > D Q > CPU >Sws wlsS&® ouuwlwl o ‘
STOP | @ cWz O wEole| X ;
pC wzgd STk x Q i
. | nTERRUPT @ SsEE® - : k
REQUEST Q z= e
| 1___RESET STiI_GPU o= Z
< TIMING > ﬁ 4
OPTIONAL CONNECTION Logic 3l o]
(2) “ -
[%) a Z .
o S0n 9 o
. . . . o ©ww e 2 §
Fig. 16.5.1--Flip-Flop Prevents Interrupt from Being Serviced J 2 [[roao o 1
, . A - xZO 194
Until a HALT Instruction is Executed ro<soIS»MuUus0o ot
w i & o3 EEko5 ;
The CPU acknowledges that it has been interrupted with an INTERRUPT E g g - 'u—) '2 a :
REQUEST RESET signal. The TNTA signal is used with the 8080; in an 8008, - sZz= Z o
BT1T is used. T g J
Note that in an 8008 system, the STOP strobe is related to 62 of ’ A r Y.
the 8008 clock, avoiding the interrupt race problem mentioned above. - ﬁ ‘g 3 1‘
") o g
SEC. 16.6 INTRODUCTION TO PRIORITY INTERRUPT SYSTEMS E [o Z ﬁ
- = R
nla - Qaq o (o] e
wls ¢pw SoNW S P 4
‘ . o o rlewk- Tws k- Sk Y A
: A microcamputer which is able to recognize interrupts from more —af & 5 (2] rS g 172} dx g
than one source is called a multiple interrupt system. A system with "|,‘_J 8 8 E 8 x o E - ._“-'_ o 5
two or more interrupt sources generally requires a method for assigning Z Xy Zx 5 E o 2 -
priorities as to which interrupt request should be acted upon first. b -2z = = 2 X
A priority interrupt syetem arranges multiple interrupts in a hierarchy ' % g L
so that each interrupt has a certain level of importance. w © 2
[72) 4
. - =
3 Each interrupt is assigned to a given priority level, and when a . 5 m = ©
i program is being executed as the result of a particular interrupt, 33 w g -
i the microcomputer is said to be on that interrupt level. | c a >
w
z| ¥ v 8
Fig. 16.6.1--Block Diagram of Priority Interrupt System
- J

microcomputer microcomputer
MR ragﬂgn MR rggsgn

16-6 INTERRUPTS

SEC. 16.6 INTRODUCTION TO PRIORITY INTERRUPT SYSTEMS (cont'd)

In the examples given in this chapter, interrupt level number 0
has the highest priority; levels with larger numbers have successively
lower priorities. If the microcomputer is executing a program on in-
terrupt level 2, a new interrupt on levels 1 or 0 should be recognized--
the program should jump to the higher-priority interrupt (returning to
interrupt level 2 later on). A level 2 interrupt cannct, however, be
interrupted by level 3 or 4 interrupts, or by any other lower-priority
requests. The system is designed so that a new interrupt on the same
level as that already being executed will not be recognized.

The basic parts of a priority interrupt system are shown in Figure
16.6.1. Each element is described below.

SEC. 16.7 INTERRUPT REQUEST REGISTER

The original source of an interrupt may be an interval timer, a
simple pushbutton switch, or a peripheral device. The interrupt request
signals are fed into an Interrupt Request Register, an array of latches--
one for each interrupt input. The purpose of this register is to store
interrupt requests temporarily, since the microprocessor may not be
able to service any given interrupt request immediately. Each interrupt
latch is reset when the CPU finishes servicing that particular interrupt
level.

A design for an Interrupt Request Register is shown in Figure 16.7.1.
The register is made up of D flip-flops, one for each interrupt level.
Though the drawing shows only two such latches, eight are required for a
full eight-level priority interrupt system (four 7474 packages). Each
flip-flop may be set on the rising edge of an interrupt request pulse
(labeled REQ 0, REQ 1, etc.). Each is reset by an active-low RET signal
which indicates that the microprocessor is retwrning from that interrupt
level, having finished executing the designated subroutine. Note that MR
also sets Flip-flop #0; this is the only one so connected; see Sec. 16.12.

tone I Lone =%
REQ | >Z4 REQ O >:4
RERA 1 RERA O
20 D . ap—

RET | i
ASYNCHRONOUS INTERRUPT

REQUEST REGISTERS
(EDGE TRIGGERED)

ET O

Fig. 16.7.1--Edge-Triggered Interrupt Request Register

INTERRUPTS 16-7

VR mlcrocorgggltgerrl

SEC. 16.7 INTERRUPT REQUEST REGISTER (cont'd)

An asynchronous Interrupt Request Register triggered by negative
pulses is shown in Figure 16.7.2. Again, only two latches are shown;
more are required for a full-scale priority interrupt system. An
eight-level system requires eight flip-flops (two 74279 packages). Note
that half of the flip-flops in the 74279 package have a second reset
terminal, which may be connected to a master reset signal, thereby
reducing the number of instructions required at power-on to initialize
the system. Note also that flip-flop #0 is set by MR, not reset, to
provide the initialization interrupt.

ASYNCHRONOUS INTERRUPT
REQUEST REGISTER
(NEGATIVE PULSE TRIGGERED)

Pig. 16.7.2--Negative-Pulse Interrupt Request Register

SEC. 16.8 INTERRUPT REQUEST SYNCHRONIZATION REGISTER

The flip-flops within the Interrupt Request Register may be set
at any random time. To prevent race conditions from occurring in the
rest of the priority interrupt circuitry, an Interrupt Request Synchro-
nization Register is required.

The least camplicated kind of synchronization register is a strobed
latch with sufficient bit capacity for the number of interrupt levels
being handled. An eight-bit example is the 74273 in Figure 16.17.1
below.

SEC. 16.9 PRIORITY ENCODERS

A system with two or more interrupt sources generally requires
a method for assigning priorities as to which interrupt request should
be acted upon first. Since the heart of a priority interrupt system
is a priority encoder, this device is introduced here. The easiest

I mmrocorngg;cg'{.

16-8 INTERRUPTS

INTERRUPTS 16-9

SEC. 16.9 PRIORITY ENCODERS (cont'd)

way to understand the function of a priority encoder is to see how it
may be connected so as to reverse the action of an ordinary deecoder.
Figure 16.9.1 shows a 74138/3205 three-to-eight decoder with its out-
puts connected to the inputs of a 74148/9318 priority encoder.

74LSI38 9318/74148

ENABLE 6 ¢ 7 10 1ISENABLE

INPUT o OUTPUT

—30

—3%s

v
6 -

DECODE 7 ENCODE

ADDRESS ADDRESS
|

Fig. 16.8.1--Priority Encoder Reverses the Action of Decoder

When the 74138 is enabled, one and only one of its eight output
terminals is low. The 9318 detects this condition, and outputs the
same three-bit address that appeared at the 74138 inputs. The 9318
ENABLE OUTPUT terminal will be active (high) when the 74138 ENABLE
INPUT terminal is a logic one. And, when none of the 74148's input
lines is active (low), the ENABLE OUTPUT terminal will be disabled (low).

The manufacturers usually show the 74148/9318 with both its inputs
and its outputs as active low. The notation in Figure 16.9.1 shows
active~low inputs and active-high outputs.. As a consequence, the usual
input nunbering is reversed: 7 for 0, 6 for 1, ete. Though both nota-
tions are correct, the one used here is more convenient for the circuits
shown in this chapter. The proper pin numbers are given to avoid,
confusion.

A priority encoder does more than simply reverse the functions of
a decoder. A priority encoder is usually connected to circuitry that
permits more than one of the encoder's inputs to be active simultaneously--
unlike the circuit of Figure 16.9.1 (where only one 74138 decoder out-
put can go low at once). Thus, the 74148/9318 assigns a priority among

SEC. 16.9 PRIORITY ENCODERS (cont'd)

the possible input codes. The output address will correspond to the
h?ghest-pr{lor?'ty active input. The lower-numbered inputs have the
highest priority. If for example the input line labeled 0 is brought
low, the output address will be 000 regardless of the state of the
other input lines. Figure 16.9.2 illustrates this feature by using the
symbol X to denote "don't care" input conditions.

INPUTS OUTPUTS COMMENTS
78 58 % 3 7 I 0 C B A EO
11 1 1 1 1 1 1 1 1 1 0| NO INPUT ACTIVE
c 1 1 1 1 1 1 1 1 1 1 1| LOWEST PRIORITY
X 0 1 1 1 1 1 1 1 1 © 1
X X 0 1 1 1 1 1 1 0 1 1
X X X 0 1 1 1 1 1 0 o 1
X X X X 0 1 1 1 o 1 1 1
X X X X X 0 1 1 0 1 0 1
X X X X X X 0 1 0 0 1 1
X X X X X X X o0 0 0 0 1] HIGHEST PRIORITY

Fig. 16.9.2--Truth Table for Priority Encoder
SEC. 16.10 PRIORITY REGISTERS

_ Another useful element in priority interrupt schemes is the pri-
ority register. As contrasted to the priority encoder, the priority
register does not encode its inputs (produce a binary code representing
the number of the highest priority active input). Instead, it merely
gates %ts.inputs according to their priority, allowing only the high-
est-priority active input signal to pass through to its outputs. An
example is the 74278, as shown in Figure 16.10.1.

microcomputer

MR esign

mmrocorgputer
esign

. INTERRUPTS 16-11 L
16-10 INTERRUPTS B X b
! SEC. 16.11 INTERRUPTS BEING SERVICED REGISTER '
SEC. 16.10 PRIORITY REGISTERS (cont'd) ‘
N - (=]
t .
SYNCHRO § o Pl SYNCHRO ¥ o [BLA ' 0 of ~ & e m
W
RERA 7 LEVY e & < o 58
—rd 04 va REra3 | va LEV3 < Lo
74278 74278 P g “
RERA 6 o3 ‘3 LEVE RERA 2 o3 vs LEV2 CoE © D—Dn ES
= Q
RERA 8 3 g;
b2 vz LEV 5 RERA | b2 e LEVI akx
o ;m
RERA 4 LEV4 RERA gg
————ed D Yi 1.2 DI . LEVY . A . o5
Im
PLA N
(1) - ©
J7 Po lg Ig %
of I
o
Fig. 16.10.1--Eight-Bit Prioritized Interrupt Request Synchroniza-
tion Register A o
- - e o oF p—I o #
0f the cascaded-pair's eight outputs (LEV7 through LEV#), no more MY B S "
than one may be active at a time: the highest-priority output whose 2 o
corresponding input is activated. In other words, if the highest-priority - of W &
input signal (DI on the 74278 to the right of the diagram) is high, it is lf o i
passed through unaffected. The second-highest-priority output (¥2 on the - ozw ©
right-hand 74278) is true if its input signal (D2) is true and Y1 is false. : l; & w y
Since the registers are cascaded, the left-hand 74278 outputs are inactive Y S wd -y
unless the other 74278 enables the chip with a high PIA signal. o ke g
= S > J
w ° x oy
PRIORITY INPUT FROM LAST STAGE PO _ ° - d.° °.b EQ 4
HIGHEST PRIORITY Y1 =D1.PO o Cw *
Y2 = D2 . YT | == 3
v3=D3 .2 - e
LOWEST PRIORITY Y4 = D4 . Y3 E e
PRIORITY OUTPUT TO NEXT STAGE Pl = ¥ § S| e e e e s - o =
. o . _ gl F | E gl % g & B
Fig. 16.10.2--Priority Register Logic Equations v . R o - o o v ° 'Zg
LI Q 4 - x
. : : : »f g
The 74278 also incorporates a latching function. The input data £ g
values are latched up by the SYNCHRO signal, and thus the circuit in © > 9
Figure 16.10.1 constitutes a Prioritized Interrupt Request Synchroniza- 0 =a
tion Register. 1 3
X E o
&3
=g
o o w © a < ﬂ l{'zJ
s
© o - " o~ - st
pr g
e . . ~ _ °
o = g & &

Fig. 16.11.1--Interrupts Being Serviced Register

microcomputer
MR esign

16-12 INTERRUPTS

SEC. 16.11 INTERRUPTS BEING SERVICED REGISTER (cont'd)

As stated above, at any given time several interrupt levels may
be in process of being serviced. For example, the microcomputer might
have begun servicing interrupt level 7, when an interrupt request on
level U was received. The system must remember that both levels 4 and
7 are active, so that when the highest-priority interrupt subroutine
is completed, the CPU can return to and finish all the lower-level
interrupts. It is not adequate to truncate the system by combining the
functions of the Interrupts Being Serviced Register and the Interrupt
Request Register, because this would prevent the system from distinguish-
ing readily between new interrupt requests and interrupts already in
progress. The result would be lost time and errcneous results.

In its simplest form, the Interrupts Being Serviced Register is
made up of an array of flip-flops, similar to the Interrupt Request
Register discussed in Sec. 16.7 above.

Figure 16.11.1 (center) shows such a register in the form of two
74279 packages (eight latches). These latches are loaded as follows.
The three inputs at the left of the schematic--RP2, RP1, and RPO--derive
from a 9318 priority encoder (not shown), which in turn is connected to
an Interrupt Request Synchronization Register (Sec. 16.8). Thus RP2
through RPO represent a three-bit binary code for the highest-priority
interrupt request received. When the microprocessor begins to service
a new high-priority interrupt level, it creates the JAM signal (described
later), here used to strobe the Interrupts Being Serviced Register.

The outputs of the Interrupts Being Serviced Register are in turm
priority-encoded by a 9318, as shown to the right in Figure 16.11.1.
Only four ICs are required by this circuit.

SEC. 16.12 PRIORITY COMPARATOR

The Priority Comparator continuously compares the interrupt level
being serviced, with the interrupt requests which have been received.
Whenever an interrupt request is received which is higher in priority than
that currently being serviced, the system sends an interrupt request
signal directly to the microprocessor.

An ordinary digital comparator may be used for this function. See
for example the 93L24s at work in Figure 16.16.1 (center) and Figure
16.17.1 (center).

Note that when the microcomputer is first turned on, it should
recognize an interrupt on level zero so as to carry out its initializa-
tion scheme. Thus the Priority Comparator should, at power-on, receive
an interrupt request on level zero. Also, the priority interrupt sys-
‘tem must not think it is already on interrupt level zero, or no interrupt

e LT e T

mlcrocornputer

MR esign

INTERRUPTS 16-13

SEC. 16.12 PRIORITY COMPARATOR (cont'd)

pulse would be transmitted to the CPU.

_ Thus, the ON@ flip-flop in the interrupt level being serviced
register (Sec. 16.11) must be reset by the master reset signal. Also,
the master reset signal must generate an interrupt request to (.e., set)
the zero-level flip-flop in the interrupt request register (Sec. 16.7).

SEC. 16.13 INTERRUPT JAM LOGIC

o When the Priority Comparator strobes the CPU's INTERRUPT terminal
with an interrupt request, the microprocessor responds with an interrupt
acknowledgement §igna§L—-—ﬁT7§ for the 8080, STII for the 8008. The ?
priority system jams im an instruction which causes the CPU to jump to
an 1ptempt_submutme. In microcomputers based on the 8080 or 8008,
the instruction is usually a RST (RESTART) instruction.

) Two such schemes are shown in the three- and eight-level priority
interrupt systems below (Figure 16.16.1 and 16.17.1). The instruction
jamneq in is a RESTART N instruction, where N is the interrupt level

that is just beginning to be serviced. This instruction causes the

CPU to jump to location 0000NO in split octal notation, where a suit-
able interrupt subroutine is stored. The circuitry shown is for the 8008.

SEC., 16.14 NUMBERED RETURN INSTRUCTIONS

When a given interrupt subroutine is complete, the interrupt sys-
tem logic must recognize this fact and clear out the appropriate latches
in the registers which keep track of that interrupt level. Since sub-
routines generally end with RETURN instructions, a suitable technique
1s to decode the execution of RETURN instructions by the microprocessor,
assigning unique numbered RETURN instructions to each interrupt level.
That is, the very last instruction executed on interrupt level 3 is a
BET3 instruction. This instruction is decoded using a technique de-
scribed in Chapter 11 above.

The RET7 signal is used to reset the level 7 latches in both the
Interrupt Request Register, and the Interrupts Being Serviced Register.
resets the latches for interrupt level 6; and so forth.

.. The RET¢ instruction is the last instruction in the power-on

initializaticn subroutine, which takes place on interrupt level @. The
normal RETURN instruction--which is the same as RET@--should be avoided
until initialization is complete. Since interrupt level 0 is normally
used only for initialization, an interrupt request for level 0 will not

e R g _Sed S
2

Y
T B e e

mlcrocorgputer
esign

G R o B

INTERRUPTS 16-15

16-14 INTERRUPTS

¢ SEC. 16.15 AN ADDRESSABLE LATCH AS AN INTERRUPT REGISTER (eont'd)

SEC. 16.14 NUMBERED RETURN INSTRUCTIONS (eont'd)
ocour afterwards. After this point, the RET or RET? instruction may N
be utilized freely for normal subroutine returns. Note that this part Y
of the interrupt system camnot be used with the 8080 microprocessor, e
which does not have numbered return instructions. e ' e
745138 S " o &
= 244 RIR 6 r— 2 RET? AR 58
6'—7 B4 s ° yZ
A3 E2 oy o co
3 4 * —D 38
83 El T >
182 " 93L24 x>
—_—e a2 (5-BIT &
LONE s COMPARE) *
et B2 (r T ;r l:‘c-’ g
181 2] 4 PR (1 e :T o :’T o .,T vT o5
LONE 4] g " I8S 7 T
T80 3 40 Az B ______TB“ 2 ,- Io 'n - o ~ - - l
LONE 1 9 P E: 183 . gl 15 15 ,3 '5 ,5 lé z
EN
FCT i !
RETURN INSTRUCTION RECOGNITION NUMBERED RETURN INSTRUCTION DECODER .
'J, "ln "J, ~l ool 2l] e g
I~ 1o o I¢ |m o - ™ ~‘
SEC. 16.16 AN ADDRESSABLE LATCH AS AN INTERRUPT REGISTER e d ° ° ° o o o o 1
* & o .
o @ 3
Figure 16.15.1 shows an Interrupts Being Serviced Register which P b £ g
combines several of the functions discussed above. The register itself 5Q “I
is a 9334 eight-bit addressable latch. It is addressed from either of Eg B
two sources, as selected by a 74158 multiplexer. Any one bit within w < < e o EE 4
the 9334 may be get by the priority-encoded interrupt request address, . o . ~ - =0 ;::‘:'
RP2 through RPO. This can occur only when the IRP (interrupt request - o
present) signal is high (see this signal in Figures 16.16.1 and 16.17.1). [
A 9334 latch bit may be reset by the execution of the appropriate
numbered RETURN instruction, whose address appears on three lines of the ’
microcomputer output bus, TBS through TB3. This in turn can happen only . o :
when the RIR (return instruction recognized) signal is high (Figure 16.14.1.) - b =
Ld
> jd 5 °

The outputs from the Interrupts Being Serviced Register are priority-
encoded by a 9318. This circuit accomplishes a respectable portion of
the functions of a priority interrupt system with only three ICs.

74158

[}
!
MULTIPLEXER

A0
0

RPS 14
re
183 13
Ralk
sy

52

TB4 0

Fig. 16.15.1--Interrupts Being Serviced Register: Multiplexer
Setg and Resets Addressable Latch

mlcrocoraputer

esign

16-16

SEC.

16.18

INTERRUPTS

THREE-LEVEL PRIORITY INTERRUPT SYSTEM

INTERRUPTS 16-17

NUMBERED RETURN 7 RETT
INSTRUCTION DECODER 3 ET
RETURN INSTRUCTION RECOGNITION iR
| | S RET 6
) T8 8 7400 2 Pt
TB ¥ 9 A
: T84 3 74139/2 S RETS
7 b RETS
= :‘ 93L24 !
pLR s.@IT ,
6§83 COMPARE m3 2 o D‘—R-E-I:
T8 2 i1daz
LoNE s ls,
T8 | 12 A|
LONE 4]8 e REQ 6 REQ 5 REG 4
T8 0 1354, azslld RIR 2 I3 3 it Ji2
LONE __ 318g acafl)4 RERA 6 s)13 Rera s s]° RERA 4
EN
) 279 279 279
— e q Q
PCI R R R
RETS j RETS Y" RET 4
INT___ SJ4,
INTERRUPT 7]84
REQUEST PRESENT +8v
1JAM 10 A3 A>8 15
L 6] 1K
RERA 4 |2 Pl 10 LEV4 1]a o3L24 INT
LRAS 120, Yi 47”” 2 5.7 5
Leve sfe
RERA 5 13 9 LEVS 2 COMPARE 279
RERAE 2 8 LEV 6 LEVS 4 B L
03 v3
s e ON 8 13 Ao T
D4 Y & et LEVE 3]eq
e PO EN

Fig. 16.16.1--3-Level Priority Interrupt System

B

279

r @

PRIORITY COMPAR.

SUPPRESS MEMORY

ENABLE

279

LEV E NB 5
JAM

125
LEV S NB 4
JAM

125
LEV4 NB 3

SEC, 16.16 THREE-LEVEL PRIORITY INTERRUPT SYSTEM (cont'd)

The circuit for a three-level priority interrupt system is shown
in Figure 16.16.1. This design uses many of the elements discussed in
the previous sections of this chapter.

A 93L24 five-bit comparator is connected so as to recognize num-
bered RETURN instructions. The number of the RETURN instruction is
decoded using one side of a 74139 dual decoder; only four such instruc-
tions are employed: RET7, RET6, RET5, and RET4. The three interrupt
request inputs take the form of negative-pulse signals fed to the SET
terminals of three 74279 set-reset flip-flops, whose outputs are marked
RERA6, RERAS, and RERA4. These make up an asynchronous Interrupt
Request Register.

The outputs from these flip-flops are connected to a_ 74278 prior-
ity register, where they are both synchronized by #2 and 5Y, and prior-
itized. The outputs of this register go, in turn, to the Priority
Comparator and three NAND gates which feed the ON flip-flops in the
lower left-hand corner of the diagram. The second 93L24 comparator
checks to see whether the requested interrupt is of a higher priority
than any interrupt level already on. If it is, then the INT flip-flop
is set, which requests an interrupt of the 8008 CPU. When the CPU
acknowledges the interrupt, with an STII strobe, the IJAM flip-flop is
set. This prepares the JAM gate to jam the appropriate RESTART (RST)
instruction onto the input bus (NB7 through NBO) at the next T3A time.
In order to suppress the output of the Priority Comparator during the
interrupt and jam sequence, the INT and IJAM signals are fed into the
93L24's two high-order bits (A4 and A3). This prevents the occurrence
of multiple interrupts during the interrupt sequence.

Three 74125 three-state buffers are used to enable the LEV (inter-
rupt level) bits into the RST jam instruction. The diodes provide the
remaining constant bits of the RST instruction. (Recall that the octal
code for the RST instruction is #V5, where N is the level number: Chap-
ter 11.)

The ST3 strobe resets the IJAM flip-flop and terminates the inter—
rupt sequence.

SEC, 16,17 FULL EIGHT-LEVEL PRIORITY INTERRUPT SYSTEM

The schematic for a full eight-level priority interrupt system for
the 8008 is shown in Figure 16.17.1. The circuit can readily be modified
for the 8080.

The eight-bit Interrupt Request Register consists of D flip-flops.
This register provides rising-edge clock inputs (REQO-REQ7), useful in
avoiding problems related to pulse width and multiple interrupts.

mlcrocorgputer
esign

16-18

INTERRUPTS

INTERRUPTS 16-19

SEC. 16.17

5Y - 42,

FULL EIGHT-LEVEL PRIORITY INTERRUPT SYSTEM (eont'd)

The highest-priority intermupt request, level 0, is assigned to the
master reset function. The register a

1so_allows for negative-pulse-

triggered interrupt request signals (RRO-RR7) » for added flexibility.

The output of the priority encoder must be stabilized before it
can be considered valid for subsequent processing. For this reason,
a 74273 Interrupt Request Synchronization Register is used. This octal
latch is strobed from ST7, or, if the CPU has hit a HALT instruction,
from the repetitive STOP pulse train. In either case, the signals
reaching the priority encoder can change only at a time which is related
to PHASE TWO of the CPU clock: 37T = SY - #2 » T1; STOP = STOPPED -

The remainder of the eight-bit priority interrupt system is similar

to the three-bit example above.

One difference is that a 74S241 octal

bus driver is used to jam the RST instruction onto the CPU input bus.

SEC. 16,18 DAISY-CHAIN INTERRUPT SYSTEM

Another way of configuring a priority interrupt system is to em-
ploy a daisy-chain structure. The block diagram for a four-level daisy-
chain interrupt system is shown in Figure 16.17.1.

LEVEL 3

DAISY |——>3m

DAISY DAISY DAISY F——3m CPU
LEVEL 2 LEVEL | le=e— LEVEL O LOGIC

Fig. 16.18.1--Daisy-Chain Interrupt Structure

Each member of the chain can block interrupt requests caming from
a lower-priority member of the chain.

block interrupt-acknowledge signals returning from the CPU, so that
lower-priority daisy levels will not think that theip interrupt requests

At the same time, each level can

ot sl T

i A e BAE

1]
SEC. 16.17 FULL EIGHT-LEVEL PRIORITY INTERRUPT SYSTEM (cont'd)
RETO)
= 8 3 4 e LINT.REQ. TEST
RE'17—--—-I) ? PRESENT CPOINT
MASTER |MR REQO 7
RESET [Rreqt) I : | 5 ;
03 8
RR_._Eg: |£ of— 3 | 74273 A .
EDGE- s, | | 14 s RP2
TRIGGERED Reqd P~ P° | 7 7 el
INTERRUPT === R 6
SOURCES ~ REQS | : i8 . 9 rpo
REQ 6 18
Reas J
REQ7 LTS [TATAS) one]! |
RRO —
RRl) STlg INTERRUPT
RRZ_) REQUEST
NEGATIVE EET | PR;J&?{')E;
PULSE —/ 8, INTERRUPT E
INTERRUPT RR7 7 REQUEST
SOURCES 3 (INTERRUPT SYNC
— REQUEST REGISTER
RRE REGISTER
RR7.
RETO- 8 WT_Sjaa
RET 7 lRESET 7184 +5
IJAM 10]A3 a< el
RPz__J(SEE IFI'?;JRE PON2 ;™ 10K
el 3205, 2-74279, ﬂlo ponz ii]a, 9324 e INTL oo
RPO 9318 PON RP2 s5]B, bro
— PONI 12]a,
M RP _alB, R
INTEEING |~ £ B0 —EDIJ INTERRUPT
SERVICED RFO 318 REQUEST
REGISTER l LATCH
31 STROBE
TEST 4 a7
POINT frer. PRIORITY A1 745241 DEnse
meT COMPARATOR PONZ 6 9 s
cpPU PONI_ 8 12
B (SEE FIGURE ocTAL NB4
BUS,8 | 16.14.1) 8 RETO- ___ cra N
| 3205 reT? 2D ENOIY oRiver P——nes
93124, am LONE 13 N
i S
BCI ’27: $ 5 Yo
3
NUMBERED TJAM L7} D—ns0
RETURN R Ojo— 19
INSTRUCTION .
DECODER ST3
INTERRUPT -
RECOGNIZE T3A
LATCH

RESTART INSTRUCTION
JAM PORT

Fig. 16.17.1--An Eight-Level Priority Interrupt System

1T mucrocoraputer

esign

have reached the CPU, and will keep trying. Since daisy level 0 is
closest to the CPU logic, it is the highest-priority interrupt level.

This kind of structure is used for interrupts in the Fairchild F-8 micro-
processor chip set.

A diagram for one stage of such a system appears in Figure 16.18.2,.

The interrupt-acknowledge signal need not necessarily be daisy-
chained. It could be a number on the bus cambined with a strobe signal.
Such variations are left to the imagination of the designer.

MR

mlcrocorgputer
esign

[

16-20 INTERRUPTS

SEC. 16.18 DAISY-CHAIN INTERRUPT SYSTEM (cont'd)

w
N
gu-‘ WI’S "
ale 2oy |ola
gﬁ 2x, |22
5 © =[Z
- g = [
a; 5 x |F|»n
Zla <=8
N B pkE >
O\ =1 g"-
®
_,\ o
5 2 —
\Q
=
R o
\& S
pocd [«]
8, e
o w
R k2 0
\m = >
a T w (]
o\ I‘EE a
/ v—; 2
\ \\‘ Z P x
\ - b= w
\\\ Em I
N Su (]
x
og 5
| w
> o
®
«
a
T
. 1]
28
W
ol
x| v 8
u.>_ w
e 3
g
wo 2
ol X|w
wa Olo
T <2
Hu o o |69
ol o 21<
23 Bk [EZ
@ L4 2|0
wlkE w|2 (ST
Elx Elo
\ Zz Z|F

Fig. 16.18.2 --One Stage of Daisy Chain Interrupt System

_J

I mlcrocornputer

esign

SAVING STATUS DURING INTERRUPTS 17-1

SEC. 17.1 SAVING STATUS

In many microcomputers, the CPU must be able to service an inter-
rupt at any random point during the execution of the mainline program.
The CPU's internal registers and flag bits might have any of the
possible combinations of values at the time when the interrupt instruc-
tion is received. The content of the registers and flags, taken together
at any particular time, is called the machine status, or simply status.
If the mainline program is to proceed normally when the interrupt sub-
routine ends, the interrupt subroutine must save status as it begins,
and restore status before returning control to the mainline program.

The 8080 makes status saving relatively easy. (See Chapter 23,
Sec. 23.11, for a practical example.) However, the 8008's structure
and instruction set require a number of special considerations. This
chapter is devoted to the software and hardware necessary to enable
the 8008 to save status during interrupts.

The 8008 has a number of registers on the chip. These include the
PC register stack, the seven index registers, and the four flags--all
discussed in the following sections.

17.2 THE PROGRAM COUNTER STACK

There are eight PC (program counter) registers in the 8008's in-
ternal PC register stack. When a subroutine is called by the mi-
croprocessor's program, the program counter goes up one level in the
stack. This stack will overflow if subroutines are nested too many
times. It must be remembered, therefore, that a subroutine interrupt
uses at least one level in the stack, and if the software includes too
many nested subroutines, the PC register stack may overflow.

Given that overflow is avoided, no special care need be taken to
save the status of the PC register during an interrupt, since the PC
stack pointer logic does the saving and restoring automatically. The
RST (restart) instruction jammed in by the interrupt pushes the program
counter by pointing up one level in the PC stack, thus saving the main
line program location in the register below. The interrupt subroutine
ends with an RET (return) instruction, which pops the PC register by
pointing down one level in the stack to where the main line program
location was stored.

mlcrocorgputer
esign

17-2 ' SAVING STATUS DURING INTERRUPTS

SAVING STATUS DURING INTERRUPTS 17-3

SEC, 17.3 INDEX REGISTERS

The seven general-purpose index registers of the 8008, the A, B, C,
D, E, H, and L registers, may be in use by the main line program when an
interrupt occurs. The interrupt subroutine either must leave the contents
of any given register unchanged, or must save the register, use it, then
wnsave or restore the register before returning to the main line program.
If only a few registers are to be used during the interrupt subroutine,
then only those registers need be saved and unsaved. The configuration
of hardware and software that will be necessary to save status during
interrupts depends therefore on the complexity of the interrupt subroutine.
If a register is not used in the main line program it is, of course, not
necessary to save it in the interrupt subroutine.

SEC, 17.4 FLAGS (CONDITION FLIP-FLOPS)

The 8008 has four internal flip-flops which store flag bits set
during the execution of arithmetic and logic instructions. These four
flags are C (earry), P (parity), Z (zero), and S (sign). The 8008 manual
describes how these flags are set and tested by various instructions.

The parity of a word in the 8008 is based on the eight-bit result of
an arithmetic or logic instruction. (This point is not described fully
in current editions of the 8008 manual.) Even though the carry flag may
be affected by the same instruction, the carry bit is not used in cal-
culating the value of the parity bit. If the number of logical cnes in the
eight-bit result is even, then the parity is even, and the parity flag will
be set to a one (logic true). If the number of ones is odd, the parity
flag will be reset to zero. If the eight-bit result is all zeros, ie,
there are zero ones, this is considered even parity, and the parity flag
will be set.

Of the sixteen combinations of four bits, only ten flag combinations
are really possible due to the logical constraints on the flags. For ex~-
ample, if the zero flag is set, the parity must be even, and therefore
the parity flag must also be set. If the sign flag is set, the zero flag
carmot be set. Figure 17.4.1 shows all combinations of the four 8008
flags, both possible and impossible.

SEC. 17.4 FLAGS (CONDITION FLIP-FLOPS) (eont'd)

CPZS DESCRIPTION OF WORDS¥® NO. OF WORDS*
0000 Half the positive numbers except for 63

Zero; no carry
0001 Half the negative numbers; no carry 64
0010 Impossible: if zero flag is set, the

parity flag must also be set 0
0011 Impossible: <if mero flag is set, the

parity flag must also be set 0
0100 Half the positive numbers; no carry)
0101 Half the negative nurbers; no carry Bl
0110 Zero; no carry 1
01111l Impossible: <if sign flag is set, aero

flag cannot be set 0
1000 Half the positive numbers except zero;

with carry 63
1001 Half the negative numbers, with carry B4
1010 Impossible: 1if zero flag is set, the

parity flag must also be set 0
1011 Impossible: if zero flag is set, the

parity flag must also be set 0
1100 Half the positive numbers, with carry 64
1101 Half the negative numbers, with carry 64
1110 Zeroy with carry 1
1111 Impossible: if sign flag is set, zero

flag cannot be set . 0

¥A word is defined here as a unique combination of eight bits in the

accumulator plus the carry bit. There are 512 possible words. The
right-hand colum shows the number of words which correspond to each
carmbination of flags, and the middle colum describes those words.

Fig. 17.4.1--The Sixteen Combinations of Flags, Ineluding Six
Combinations Which are not Possible

MR mncrocoqggltgeg

(MR mmrocorgputer

esign

17-4 ' SAVING STATUS DURING INTERRUPTS

SEC. 17.5 STATUS-SAVING TECHNIQUES

There are two basic methods for saving status during interrupts: the
fipst uses software, and the second uses hardware. Often the two techniques
are combined to produce the most efficient design for the application.

The major disadvantage to the software approach is that the extra
instructions take time to execute--time which in some systems just may
not be available. The drawback of the hardware technique is the extra
cost that the additional parts add to a system. In either case, the
designs described in the following sections should aid the engineer in
developing an efficient system to meet his needs. In keeping with the
aim of this boock, to be a practical guide, the latter sections of this
chapter give solutions to speeific design problems.

SEC. 17.6 SOFTWARE TECHNIQUES

17.6.1 General Constraints Without any additional hardware, it is not
possible to save all of the registers and
flags with the 8008 instruction set. The theoretical limit for systems
using 256 bytes of RAM (the RAM-PAGE option discussed in Chapter 13) is
to save all four flags and six out of the seven index registers with
software alone. With more than a page (256 bytes) of RAM in the system,
only five out of the seven registers may be saved with software alone.

The most efficient method of saving more than one index register
requires setting up the address registers (H and L, or just L with the
RAM-PAGE option) and storing each register through a sequence of LMr and
INL instructions. Since the INL instruction modifies the flags, it is
necessary to save flags before this sequence of instructions can be used.
But in order to save the flags, the program must use at least the A
register, in order to determine the status of the flags, and it must
use at least the L register if the results are to be stored in RAM.

This series of constraints implies that a status-saving program re-
quires three parts.

17.6.2 Three-Part Program Part one must save the H and L registers

and load them with an address in RAM where
the A register is to be stored. Part one usually ends with an LMA in-
struction, which saves the A register in RAM.

SAVING STATUS DURING INTERRUPTS 17-5

microcomputer
MR ragmgn

SEC. 17.6 SOFTWARE TECHNIQUES (cont'd.)

Part two determines the status of those flags to be saved. Flags
not used by the main line program need not be saved. Near the end of
part two, the A register contains all of the information required to
restore the flags later on. Part two ends with INL and IMA instructions,
whlch store the status of the flags in RAM to be retrieved later. The
INL instruction can be used here, for the first time, because the flag
status has already been determined, and the fact that the INL instruction
may change the flags no longer matters.

. Part three saves all of the other registers used by both the main
line program and the interrupt subroutine. Naturally, if the main line
program never uses the C register, for example, the interrupt subroutine
need not save it. On the other hand, if the interrupt subroutine does
not use the C register, it would not be necessary to save it even if
the main line program did use it. Again, the INL instruction can now be
used since part two already saved the flag conditions.

Note: 1in the examples given in this chapter, all arabic numerals

are in octal unless otherwise specified.

17.6.3 Saving Status, Part One An example of part one is shown in
Figure 17.6.1:

LDH SAVE H REGISTER IN D REGISTER.

LEL SAVE L REGISTER IN E REGISTER.

IHT 040 POINT TO RAM LOCATION.

1LI 370 . .USED FOR SAVING A REGISTER.
Figure 17.6.1--Save Status with Software, Part One
In Figure 17.6.1, it is assumed that the main line program does not
use the D and E registers, but does use the H and L. The D and E registers

are thergfore used to save the H and L registers, so that they may be
loaded with an address in RAM where the A register may be saved.

X mmrocorgggltgerl;

17-6 SAVING STATUS DURING INTERRUPTS

4 SAVING STATUS DURING INTERRUPTS 17-7

SEC. 17.6 SOFTWARE TECHNIQUES (eont'd) SEC. 17.6 SOFTWARE TECHNIQUES (cont'd)

17.6.4 Saving Status, Part Two An example of part two appears in
g Figure 17.6.2: FPe ALL FLAGS 00 01 O 05 06 10 1L 1t 15 16
SAV LAT 000 ASSUME ZERO FLAG IS SET.
CARRY C 0 0 0 0 0 1 1 1 1 1
JTZ SAVC IF TRUE, GET CARRY BIT.
PARTTY P 0 0 1 1 1 0 0 1 1 1
LAT 060 ASSUME SIGN BIT IS ZERO (POSITIVE WORD).
ZERO Z 0 0 0 0 1 0 0 0 0 1
JFS SAVC IF TRUE, GET CARRY BIT.
SIGN S 0 1 0 1 0 0 1 0 1 0
LAT 300 SIGN BIT WAS SET.
SAV IAT 000 000 000 000 000 000 40O 400 40O 400 4OO
SAVC RAR GET CARRY BIT.
JTZ SAVC 000 000 000 000 000 400 40O 40O 40O Y400
JTP SAVW JUMP IF PARITY IS EVEN.
LAT 060 060 060 060 060 460 u60 u4B0 U460
XRI 001 SET PARITY ODD.
JIrS SAVC 060 060 060 060 460 460 U460 460
SAVW INL POINT TOWARDS NEXT RAM BYTE.
LAT 300 300 300 700 700
LMA SAVE FLAG WORD. \
SAVC RAR 030 140 030 140 000 230 340 230 3u0 200

Figure 17.6.2--Save Status with Software, Part Tw
gur ave Status with Software, Part Two JTP SAW 030 140 030 140 000 230 340 230 3u0 200

XRI 001 031 141 l l 231 34l l l l
\

In this example of part two, the status of all four flags is packed
into one eight-bit word and stored into memory. This word is arranged in

a way that allows the r'estorati.on'of flags with a simple two-instruction SAWW INL 031 141 030 140 000 231 341 230 340 200
D ey deeription of Do Tlags =02 sered oo rerto wh om0 w0 o 23 3 2 30 o0
the left of the f::Lgure. The ten possible combin&tttions of flags appear -
gD Tt I oot Lo, i b o I e o e WA L 0% 1 %0 W0 o 2 2 %0 209
each of the ten cambinations, instruction by instruction. ADA 062 302 060 300 000 L2 702 46O 700 400
notat?oﬁ :Jgiﬁ-gé%i;ygwﬁizsbﬂsﬂo? ﬁg;?ztlign}:l%}ugi i;,st}ieaera’igii]aalits CARRY c 0 0 0 0 0 1 1 1 1 1
vhich ke up the contents of the register, plis the camy bit jaues o ¢ 0 0 1 1 1 o o 1 1 1
reflects the pontents of e b resieter (Rlis cary f1ag) fter e | =0 2 0 0 0 0 10 o 0 oo
- SIGN S 0 1 0 1 0 0 1 0 1 0

' ALL FLAGS 00 01 Oy ©5 06 10 11 1% 15 16

' 3 Fig. 17.6.3--Saving Flags with Software Illustrated for
f) ALl Ten Possible Flag Combinations

microcomputer ;f ' microcomputer
MR rHesngn MR esign R

17-8 SAVING STATUS DURING INTERRUPTS

SEC. 17.6 SOFTWARE TECHNIQUES (cont'd)

The program has finished saving flags at the point where the dotted
line appears, after the LMA instruction. Note that the content of the
A register at this point is different for each of the ten flag combinations.
This value is stored in memory. At this point comes part three of the
status-saving program, which saves further registers; then comes the main
body of the interrupt subroutine.

17.6.5 Saving Status, Part Three An example of part three of the
status-saving procedure is shown
in Figure 17.6.4,

INL POINT TOWARDS NEXT RAM LOCATION.

IMB SAVE THE B REGISTER.

INL POINT TOWARDS NEXT RAM LOCATION.

MC SAVE THE C REGISTER.

INL MOVE THE RAM POINTER AGAIN.

IMD SAVE THE H REGISTER (FROM PART ONE).
INL MOVE THE RAM POINTER AGAIN.

IME SAVE THE L REGISTER (FROM PART ONE).

Figure 17.6.4--Saving Status with Software, Part Three

In Figure 17.6.4, note that the H and L registers are'saved in-
directly by saving the D and E registers. The H and L registers were
loaded into the D and E registers previously, in part one.

A number of locations of RAM must be set aside to save registgrs
and flags. The following registers are being used in this generalized
example (Figure 17.6.5):

SAVING STATUS DURING INTERRUPTS 17-9

I mlcrocornggltgeg

SEC. 17.6 SOFTWARE TECHNIQUES (cont'd)

PAGE BYTE DESCRIPTION

040 370 SAVE A REGISTER
040 371 SAVE FLAGS

040 372 SAVE B REGISTER
040 373 SAVE C REGISTER
040 374 SAVE H REGISTER
040 375 SAVE L REGISTER

Fig. 17.6.5--RAM Locations Used in Saving Registers and Flags

17.6.6 Interrupt Subroutine After part three of the status saving
procedure described above has taken place,
the main line program status has been saved in RAM. The next part of the
interrupt subroutine performs the functions for which the interrupt was
intended by the designer. If, for example, the interrupt was caused by
a key having been pressed on a Teletype, then the Teletype data might be
shifted in, and the resultant character stored in a RAM buffer for sub-
sequent processing by the main line program.

In any case, once the main body of the interrupt subroutine has been
executed, it is necessary to restore the status saved in the three
parts of the status-saving routine described above.

The restore program is also broken up into three parts. Since the
last things saved are the first things restored, the three parts of the
restore program are numbered inversely, three, two, one.

17.6.7 Unsaving Status, Part Three The first part of the program to

restore status is part three. It
unsaves the L, H, C, and B registers. Notice that this is the reverse
of the order in which they were saved in Section 17.6.5 above.

A generalized example of unsaving status, part three, is given in
Figure 17.6.6.

X mmrocoqggltgeg

17-10 SAVING STATUS DURING INTERRUPTS

SAVING STATUS DURING INTERRUPTS 17-11

SEC. 17.6 SOFTWARE TECHNIQUES (comt'd)

IHI 040 POINT TO THE LOCATION WHERE . .

LLI 375 . . L REGISTER WAS SAVED.

LEM LOAD E REGISTER WITH SAVED L.

DCL POINT TO H REGISTER SAVE LOCATION.
LM LOAD D REGISTER WITH SAVED H.

DCL POINT TO C REGISTER SAVE LOCATION.
iFey! RESTORE C REGISTER.

DCL PO<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>