MONITOR ROUTINES

SCELBI COMPUTER CONSULTING., INC.
1322 REAR - BOSTON POST ROAD
MILFORD, CT. 06468

'8 0 0 8" MONITOR ROUTINES

-

AUTHOR: ROBERT FINDLEY

© COPYRIGHT 1975
SCELBI COMPUTER CONSULTING, INC.
1322 REAR - BOSTON POST ROAD
MILFORD, CT. 06460

= ALL RIGHTS RESERVED -

IMPORTANT NOTICE

OTHER THAN USING THE PROGRAM DETAILED HEREIN ON THE PURCHASER'S
INDIVIDUAL COMPUTER SYSTEM. NO PART OF THIS PUBLICATION MAY BE RE-
PRODUCED» TRANSMITTED, STORED IN A RETRIEVAL SYSTEM, OR OTHERWISE
DUPLICATED IN ANY FORM OR BY ANY MEANS ELECTRONIC, MECHANICAL.
PHOTOCOPYING» RECORDING, OR OTHERWISEs WITHOUT THE PRIOR EXPRESS
WRITTEN CONSENT OF THE COPYRIGHT OWNER.

THE INFORMATION IN THIS MANUAL HAS BEEN CAREFULLY REVIEWED AND IS
BELIEVED TO BE ENTIRELY RELIABLE. HOWEVER, NO RESPONSIBILITY IS
ASSUMED FOR INACCURACIES OR FOR ~THE SUCCESS OR FAILURE OF VARIOUS
APPLICATIONS TO WHICH THE INFORMATION CONTAINED HEREIN MIGHT BE
APPLIED.

ERRATA FOR THE

'8008' MUONITOR ROUTIWES

00PS!! IN GENERATING THE LISTING USED FUR THIS MaNUAn, Al INSTRULTIUN
WAS LEFT OUT OF THE "INSPCL"™ SUBRUUTIWE, UN PAGLS 16 ANL 49, WnlCh SETS
THE INPUT BUFFER POINTER TO PAGE 000. THIS ERRUR MAY BE CURRLUTED WlTd-
QUT RE-ASSEMBLING THE LISTING IN THE BACK OF THE BUun BY SIMPLY naVinG
THE OPERATOR INPUT ROUTINE, DESCRIBED ON PAGE 5, SET ThE VALUE UF REGLIS-
TER H TO ZERO BEFORE RETURNING TO THE CALLING PRUGRAM. THIS WILL WNOT
AFFECT THE OPERATION OF THE OTHER ROUTINE (CDIN) WnlICd ALSU CALLS TnL
OPERATOR INPUT ROUTINE, SINCE THEY BOTH INPUT CHARACTERS TU THE IWPUT
BUFFER WHICH IS LOCATED ON PAGE 000.

IF THE PROGRAM IS TO BE RE-ASSEMBLED, TO BE ORIGINED ON A DIFFERENT PAGE
OR TO MAKE REVISIONS TO THE PROGRAM, THE "INSPCL'" SUBROUTINE SHOULD IN-
CLUDE AN "LHI 000" INSTRUCTION AS THE SECOND INSTRUCTION OF THE SUBROU-
TINE. THE REVISED LISTING SHOULD APPEAR AS FOLLOWS:

INSPCL, LLI 340
LHI 000
LPIN, CAL RCV

INTRODUCTION

THE MONITOR PROGRAM 1S A PROGRAM WHICH ENABLES THE COMPUTER OPERA-
TOR TO UTILIZE A COMPUTER SYSTEM WITH GREATER EFFICIENCY AND EFFECTIVE-
NESS, BY TAKING ADVANTAGE OF THE INHERENT POWER OF THE COMPUTER. BAS-
ICALLY, THE MONITOR PROGRAM ALLOWS THE OPERATOR TO CONTROL THE COMPUTER
BY DIRECTING IT TO EXECUTE PROGRAMS STORED IN MEMORY, OPERATE PERIPHER~-
AL DEVICES FOR STORING AND RETRIEVING PROGRAMS AND DATA, AND EXAMINE
AND/OR MODIFY MEMORY LOCATIONS, EITHER ONE AT A TIME OR IN BLOCKS. THE
PROGRAMMER WILL FIND ITS ABILITY TO INTERRUPT A PROGRAM BEING DEBUGGED
AT VARIOUS POINTS AND EXAMINE THE CONTENTS OF MEMORY LOCATIONS AND *“CPU
REGISTERS AND STATUS FLAGS*" AT THAT POINT IN THE PROGRAM IS A FUNCTION
THAT IS AS POWVERFUL A DEBUGGING TOOL AS A GOOD OSCILLOSCOPE 1S FOR THE
HARDWARE TROUBLESHOOTER.

THERE ARE SEVERAL FACTORS WHICH DETERMINE THE ABILITY TO OPERATE A
COMPUTER SYSTEM ' EFFECTIVELY .' ONE OF THESE FACTORS 1S TO BE ABLE TO
CONTROL ITS OPERATION FROM A SINGLE LOCATION. THE MOST COMMON METHOD IS
TO CONTROL THE COMPUTER FROM ITS °'FRONT PANEL'. THIS IS NORMALLY A MYR-
IAD OF SWITCHES AND LAMPS WHICH ENABLE THE OPEHATOR TO LOAD AND EXAMINE
MEMORY LOCATIONS, EXECUTE PROGRAMS STORED IN MEMORY AND, IN SOME OF THE
MORE SOPHISTICATED FRONT PANELS, PERFORM SEVERAL PROGRAM DEBUGGING FUNC-
TIONS. USING THE FRONT PANEL TO OPERATE THE COMPUTER IS AN EXCELLENT
WAY TU INTRODUCE THE BEGINNER TO THE BASICS OF THE COMPUTER'S OPERATION.,
BECAUSE IT GIVES HIM FIRST-HAND EXPERIENCE IN THE CONCEPTS OF LOADING
MEMORY WITH A PROGRAM» STEPPING THROUGH THE PROGRAM AND SEEING HOW THE
COMPUTER PROGRESSES FROM ONE INSTRUCTION TO ANOTHER. THAT'S FINE, FOR
THE BEGINNER! BUT ONCE THE °'THRILL' OF WATCHING THE COMPUTER STEP THRO~-
UGH ONE OR TWO PROGRAMS 1S GONE (ESPECIALLY SINCE THEY HAD TO BE LOADED
SEVERAL TIMES TO GET THEM IN CORRECTLY)» EVEN THE BEGINNER FINDS OPER-
ATING THROUGH THE FRONT PANEL SLOW, CUMBERSOME AND OFTEN ANNOYING.

AN ALTERNATIVE METHOD 1S TO HAVE THE COMPUTER AID IN THESE BASIC
FUNCTIONS BY PROGRAMMING IT TO UTILIZE A MORE CONVENIENT °'CONTROL' DE-
VICE, NAMELY A KEYBOARD AND DISPLAY DEVICE. THE KEYBOARD ENTRY 1§ BY
FAR A FASTER AND MORE ACCURATE MEANS OF ENTERING MEMORY ADDRESSES AND
DATA THAN THAT OF TOGGLING THEM IN THROUGH THE FRONT PANEL SWITCHES.

AND DISPLAYING THE INFORMATION AS OCTAL DIGITS ON AN ALPHANUMERIC DIS-
PLAY, WHETHER IT BE A TTY PRINTER OR VIDEO DISPLAY, 1S MUCH EASIER TO
READ THAN DECODING THE BINARY PRESENTATION OF MEMORY ADDRESS AND CON-
TENTS ON THE FRONT PANEL INDICATORS. MAKING USE OF THESE DEVICES IMPRO-
VES THE SYSTEM FROM THE "HUMAN ENGINEERING' STANDPOINT. SINCE THEY GIVE
THE OPERATOR A FORM OF COMMUNICATION WITH THE COMPUTER THAT IS MORE CON-
VENTIONAL THAN FLIPPING SWITCHES AND WATCHING LIGHTS. THIS BRINGS UP
THE SECOND FACTOR IN OPERATING AN EFFECTIVE COMPUTER SYSTEM. THAT FACTOR
IS USING A COMPUTER PROGRAM TO PERFORM AS MANY OF THE TASKS 'AS POSSIBLE
WHICH THE COMPUTER IS CAPABLE OF PERFORMING FASTER AND MORE ACCURATELY
THAN THE OPERATOR COULD EVER DREAM OF PERFORMING.

SINCE THE PROGRAM WILL BE OCCUPYING SPACE IN MEMORY., IT 1S NECESS~-
ARY TO EVALUATE THE TYPE OF FUNCTIONS IT IS TO PERFORM AND CHOOSE THE
ONES WHICH WILL BE OF GREATEST IMPORTANCE TO THE OPERATORe FIRST» THE
FUNCTIONS OF THE FRONT PANEL SHOULD BE REPLACED. ONE OF THESE FUNCTIONS
IS THE EXAMINATION AND MODIFICATION OF MEMORY CONTENTS, FOR LOADING AND
REVISING PROGRAMS AND DATA IN MEMORY. AN EXPANSION OF THIS WILL ALSO BE
PROGRAMMED, THAT OF DISPLAYING A LARGE BLOCK OF MEMORY AT ONE TIME.
THIS 1S QUITE VALUABLE FOR CHECKING THAT A PROGRAM HAS BEEN LOADED COR-
RECTLY AND, IN DEBUGGING», TO EXAMINE LARGE DATA STORAGE AREAS.

THE NEXT FUNCTION THAT WOULD GENERALLY FOLLOW WOULD BE TO DIRECT
THE OPERATION OF A STORAGE DEVICE TO STORE AND RETRIEVE THE CONTENTS OF
A BLOCK OF MEMORY FOR SAVING PROGRAMS OR DATA. THIS WILL SAVE A LOT OF
TIME IN THAT A LARGE PROGRAM WOULD NOT HAVE TO BE ENTERED THROUGH THE
KEYBOARD EVERY TIME IT IS DESIRED TO USE IT. INSTEAD, IT CAN BE READ
FROM THE BULK STORAGE DEVICE DIRECTLY INTO MEMORY TAKING ADVANTAGE OF
ITS SPEED AND ACCURACY., AS OPPOSED TO KEYBOARD ENTRY. THIS PORTION OF
THE PROGRAM WILL HAVE TO BE CUSTOMIZED TO THE USER'S SPECIFIC STORAGE
DEVICE, AS WILL BE DESCRIBED LATER.)

NOW THAT THE ABILITY TO ENTER», MODIFY AND STORE A PROGRAM HAS BEEN
ESTABLISHED, THE NEXT LOGICAL PROGRESSION WOULD BE TO ENABLE THE OPERA-
TOR TO START EXECUTION OF A PROGRAM FROM THE KEYBOARD. AT THIS POINT. A
REQUIREMENT FOR DEBUGGING PROGRAMS MUST BE CONSIDERED.

IN THE PROCESS OF DEBUGGING A PROGRAM, IT MAY BE DESIRED TO SET THE
INITIAL VALUES OF SPECIFIC CPU REGISTERS BEFORE JUMPING TO THE START OF
A ROUTINE BEING WORKED ON. THIS CAN BE ACCOMPLISHED BY USING A SEPARATE
FUNCTION TO SET UP THE VALUES TO BE PLACED IN THE CPU REGISTERS AT THE
TIME THE PROGRAM 1S ENTERED, VIA THE 'GO TO' FUNCTION.

AS A COMPLIMENTARY FUNCTION OF GO TO, THE MONITOR SHOULD BE ABLE TO
SET A '"BREAKPOINT.' A BREAKPOINT IS A POINT IN A PROGRAM AT WHICH THE
PROGRAMMER DESIRES TO STOP EXECUTION AND CHECK THE PROGRESS OF THE PRO-
GRAMS OPERATION. THE BREAKPOINT FUNCTION REPLACES THE INSTRUCTION AT
THE POINT IN QUESTION WITH A JUMP TO THE BREAKPOINT ROUTINE. WHEN THE
BREAKPOINT 1S REACHED, THE COMPUTER RETURNS CONTROL TO THE MONITOR WHERE
THE BREAKPOINT ROUTINE WILL SAVE THE CONTENTS OF THE CPU REGISTERS AND
THE STATUS FLAGS IN A TABLE IN MEMORY WHICH THE PROGRAMMER MAY REFER TO
IN CHECKING THE OPERATION OF THE PROGRAM.

THESE FUNCTIONS ARE A GOOD BASE FOR SETTING UP A MONITOR PROGRAM.
SINCE THEY PROVIDE THE OPERATOR WITH AN ASSORTMENT OF FUNCTIONS WHICH
ARE COMMON TO THE OPERATION OF ANY COMPUTER SYSTEM. FROM THIS BASE, THE
MONITOR CAN BE EXPANDED TO INCLUDE OPERATIONS OF SPECIFIC APPLICATION TO
ONES OWN SET UP. SEVERAL POSSIBILITIES ARE PRESENTED AS PART OF THIS
MONITOR PROGRAM. THESE FUNCTIONS INCLUDE FILLING A BLOCK OF MEMORY WITH
A SPECIFIC DATA VALUE. SEARCHING MEMORY FOR A DATA PATTERN AND SHIFTING
BLOCKS OF DATA FROM ONE SECTION OF MEMORY TO ANOTHER.

THE PURPOSE OF THE MANUAL IS TO PRESENT THE READER WITH A MONITOR
PROGRAM WHICH CAN BE USED AS IS, OR MODIFIED OR EXPANDED TO CREATE A
REAL "OPERATING SYSTEM" FOR ONE'S OWN COMPUTER SYSTEM. THE MONITOR PRO-
GRAM CAN BE AN INVALUABLE ASSET TO ANY COMPUTER SYSTEM. ITS ABILITY TO
PERFORM MANY OF THE REQUIRED 'CONVENIENCE' FUNCTIONS NEEDED TO CONTROL A
COMPUTER SYSTEM ALONG WITH THE POWER IT AFFORDS THE PROGRAMMER IN DEBUG-
GING PROGRAMS MAKES IT A 'MUST' FOR THE SERIOUS COMPUTER OWNER.

THE BASIC FUNCTIONS AND CAPABILITIES OF A "MONITOR" PROGRAM

GENERALLY» A MONITOR PROGRAM CONSISTS OF A VARIETY OF COMMANDS WHICH
ENABLE THE COMPUTER OPERATOR TO CONTRUOL THE OPERATION OF THE COMPUTER
AND ITS RELATED PERIPHERAL DEVICESe. THIS 1S ACHIEVED BY ENTERING COM-
MANDS ON A KEYBOARD DEVICE WHICH DITRECT THE COMPUTER TO DISPLAY AND/OR
MODIFY THE CONTENTS OF MEMORY LOCATIONS, PERFORM DATA STORAGE AND RE-
TRIEVAL ON AVAILABLE °*BULK' STORAGE PERIPHERALS AND EXECUTE OTHER PRO-
GRAMS WHICH ARE STORED IN THE COMPUTER'S MEMORY. THE MEMORY ADDRESS., OR
ADDRESSES, AFFECTED BY THE COMMAND IS GENERALLY SPECIFIED IN THE COMMAND
INPUT. THE NUMBER OF DIFFERENT COMMANDS ONE SETS UP IN A MONITOR PRO-
GRAM WILL DEPEND ON THE AMOUNT OF MEMORY DESIRED TO DEDICATE TO THE
MONITOR PROGRAM, SINCE IT MUST RESIDE IN MEMORY, AND ON THE NUMBER OF
PERIPHERALS IT IS DESIRED TO CONTROL W!TH THE MONITOR.

THE SPECIFIC 1/0 (INPUT/OUTPUT) DEVICES USED TO OPERATE THE MONITOR
PROGRAM WILL NATURALLY VARY FROM ONE SYSTEM TO ANOTHER. FOR THIS REASON
THE 170 PORTION OF THE MONITOR IS SET UP TO CALL 'USER PROVIDED' 1/0
DRIVER ROUTINES TO PERFORM THE ACTUAL INPUTTING ARD OUTPUTTING OF COM-
MANDS AND DATA IN RESPONSE TO THE COMMANDS. THE REQUIREMENTS OF THE 1/0
DRIVERS WILL BE DESCRIBED IN THE NEXT SECTYONe. THIS APPROACH ENABLES
THE READER TO "CUSTOMIZE" THE MONITOR PROGRAM TO THE SPECIFIC DEVICES A~
VAILABLE ON ONE®'S COMPUTER SYSTEM WITHOUT CHANGING THE INSTRUCTIONS OF
THE MONITOR PROGRAM PRESENTED HEREIN. ’]

THE MONITOR PROGRAM PRESENTED IN THIS MANUAL IS CAPABLE OF PERFORM-
ING THE FUNCTIONS MENTIONED WHILE OPERATING IN AN ‘8008' BASED MINICOM-
PUTER SYSTEM WITH AT LEAST 1.5K BYTES OF MEMORY. IF A SHOURTER VERSION
IS DESIRED, THE FUNCTIONS DEEMED LESS VALUABLE 'TO THE USER CAN BE DE-
LETED. EACH FUNCTION AND ITS ASSOCIATED ROUTINE(S) 1S EXPLAINED IN DE-
TAIL TO ENABLE THE READER TO UNDERSTAND THE OPERATION OF THE PROGRAM.
MANY OF THE ROUTINES DESCRIBED MAY BE APPLICABLE TO OTHER TYPES OF FUNC-
TIONS WHICH ONE MAY DESIRE TO INCLUDE IN ONE'S MONITOR PROGRAM. OR,»
THEY MAY BE UTILIZED IN DEVELOPING OTHER PROGRAMS. AS EACH ROUTINE IS
PRESENTED A DETAILED, HIGHLY COMMENTED LISTING IS PROVIDED. A COMPLETE
ASSEMBLED LISTING OF THE MONITOR PROGRAM IS THEN PRESENTED, TO WHICH THE
READER MAY ADD THE CUSTOM 1/0 DRIVER ROUTINES AND IMPLEMENT THE MONITOR
PROGRAM ON AN '8008' BASED 8YSTEM. (READERS THAT DESIRE TO IMPLEMENT
THIS PROGRAM ON OTHER TYPES OF SYSTEMS SHOULD FIND THE INFORMATION CON-
TAINED IN THIS MANUAL OF CONSIDERABLE VALUE. FOR EXAMPLE, IMPLEMENTING
SUCH A PROGRAM ON AN '8080°' BASED SYSTEM WOULD REQUIRE THE MERE TRANS~-
LATION OF THE SOURCE LISTIRG TO THE EQUIVALENT 'S8080°' INSTRUCTIONS.)

1/0 C(INPUT/0UTPUT) CONSIDERATIONS FOR THE MONITOR PROGRAM

BEFORE DISCUSSING THE ACTUAL ROUTINES WHICH MAKE UP THE MONITOR
PROGRAM, IT 135 NECESSARY TO MENTION SEVERAL POINTS ABOUT THE CHARACTER
SET USED AND_DESCR!BE THE REHU;REHENTS FOR THE_¥_/0 PROGRAMMING.

THE CHARACTER CODE USED BY THE MONITOR PROGRAM FOR ENTERING COM-
MANDS AND OUTPUTTING CHARACTERS TO THE DISPLAY DEVICE IS ASSUMED TO BE
“"ASCII™ ENCODED CHARACTERS. THE "ASCII" CHARACTER SET CONSIST OF A 7-
BiT CODE WHICH IS CAPABLE UF DEFINING UP TO 128 CHARACTERS." THE MON-
ITOR PROGRAM DESCRIBED HEREIN UTILIZES A SUBSET OF THIS CODE CONSISTING
OF 31 DIFFERENT CHARACTERS - 15 "UPPER CASE"” LETTERS OF THE ALPHABET,

THE NUMERALS 0 - 9, AND SEVERAL SYMBOLS AND PUNCTUATION MARKS. OFTEN.,
WHEN COMMUNICATING WITH AN ASCII ENCODED 1/0 DEVICE, AN 8'TH BIT IS ADD-
ED TO THE SEVEN BIT ASCII1 CODE. TH!S 8°'TH BIT I8 OFTEN REFERRED TO AS
THE "PARITY" BIT BECAUSE IT CAN BE USED"TO SERVE AS AN ERROR DETECTING
BIT. MANY 1/0 DEVICES ARE DESIGNED TO OPERATE WITH EIGHT BITS OF INFOR-
MATION, REGARDLESS OF WHETHER OR NOT "PARITY" ERROR CHECKING METHODS
ARE BEING UTILIZED. THE MONITOR PROGRAM DESCRIBED HEREIN ASSUMES THAT
THE "PARITY" POSITYON 1S ALWAYS IN A LOGIC ONE STATE. THE "ASCII" CHAR-
ACTER CODES USED BY THE MONITOR ARE PRESENTED BELOW ALONG WITH THE CODES
FOR OTHER "“ASCII" CHARACTERS GENERALLY PROVIDED BY "ASCII"™ ENCODED DE-
VICES. FOR I/0 DEVICES WHICH DO NOT OPERATE WITH THE “ASCII"™ CHARACTER
SET» YHE PROBLEM OF CODE CONVERSION IS EASILY TAKEN CARE OF BY PROGRAM-
MING THE I/0 DRIVER TO MAKE THE NECESSARY CONVERSION BETWEEN THE ASCII
CODE DEFINED HERE TO THE CODE UTILIZED BY THE DEVICE. i

CHARACTERS BINARY 0CTAL CHARACTERS BINARY 0CTAL
SYMBOLIZED CODE REP SYMEOLIZED CODE REP
A 11 000 001 301 10 100 001 241

B 11 000 010 302 " 10 100 010 242

c 11 000 011 303 # 10 100 011 243

D 11 000 100 304 $ 10 100 100 244

E 11 000 101 305 y 4 10 100 101 245

F 11 000 110 306 & 10 100 110 246

G 11 000 111 307 . 10 100 111 247

H 11 001 oO0O 310 4 10 101 o000 250

I 11 001 o001 311) 10 101 001 251

J 11 001 010 312 * 10 101 010 252

K 11 001 011 313 + 10 101 011 253

L 11 001 100 314 ¥ 10 101 100 254

M 11 00! 101 315 = 10 101 101 255

N 11 001 110 316 . 10 101 110 256

0 11 001 111 317 / 10 101 111 257

P 11 010 00O 320 0 10 110 000 260

Q 11 010 001 321 1 10 110 001 261

R 11 010 010 3az2 2 10 110 010 262

S 11 010 011 323 3 10 110 011 263

T 11 010 100 324 4 10 110 100 264

U 11 010 101 325 5 10 110 101 265

v 11 010 110 326 6 10 110 110 266

w 11 010 111 327 T 10 110 111 267

X 11 011 000 330 8 10 111 000 270

¥ 11 011 o001 331 9 10 111 001 271

Z 11 011 010 332 : 10 111 o010 272

L 11 011 011 333 H 10 111 011 273

\ 11 011 100 334 < 10 111 100 274

] 11 011 101 335 = 10 111 101 275

t 11 011 110 336 > 10 111 110 276

- 11 o011 111 337 2 10 111 111 2717
SPACE 11 100 000 240 e 11 000 00O 300
CTRL D 10 000 100 204 CTRL N 10 0C1 110 216
CTRL I 10 001 001 211 CTRL S 10 010 011 223
LINE FEED 10 001 010 212 CTRL T 10 010 100 224
CTRL L 10 001 100 214 CTRL U 10 010 101 225
CAR-RET 10 001 101 215 RUB OUT 11 111 111 377

74 CHARACTER ASCII1 SUBSET

THE 1/0 PORTION OF THE MONITOR PROGRAM HAS BEEN CAREFULLY STRUC-
TURED TO REMAIN SEPARATE FROM THE ACTUAL OPERATING ROUTINES OF THE MON-
ITOR PROGRAM. THIS ALLOWS THE USER TO INCORPORATE WHATEVER I/0 DRIVER
ROUTINES MAY BE REQUIRED FOR THE SPECIFIC DEVICES AVAILABLE WITHOUT DIS-
TURBING THE LOGIC OF THE OPERATING PROGRAM. THE USER MUST SIMPLY FOLLOW
THE RULES TO BE PRESENTED NEXT WHEN FORMING THE 1/0 ROUTINES TO GUARAN-
TEE THAT THE 1/0 DRIVER WILL PROVIDE THE NECESSARY FUNCTION WHILE MAIN-
TAINING THE INTEGRETY OF THE OPERATING PROGRAM. IF, FOR EXAMPLE, THE
PRINTER DEVICE TO BE USED IN ONE'S SYSTEM REQUIRES BAULDOT CODE., RATHER
THAN ASC11, THE PRINTER OUTPUT ROUTINE MUST MAKE THE CONVERSION FROM THE
ASCII CODE SENT BY THE PROGRAM TO THE EQUIVALENT BAUDOT CODE EXPECTED BY
THE PRINTER.

THERE ARE FOUR SEPARATE 1/0 DRIVER ROUTINES REQUIRED BY THE MONITOR
PROGRAM AS PRESENTED. THESE ROUTINES SHOULD BE PREPARED AS SUBROUTINES
WHICH VILL BE CALLED BY THE OPERATING PROGRAM. TW0 OF THE ROUTINES ARE
USED TO COMMUNICATE BETWEEN COMPUTER AND OPERATOR FOR ENTERING COMMANDS
AND DATA AND DISPLAYING THE COMMANDS AS ENTERED AND ALSO THE RESULTANT
OUTPUT AS REQUESTED BY THE COMMAND. THE OTHER TWO ROUTINES WILL CONTROL
THE STORAGE AND RETRIEVAL OF DATA ON THE SYSTHE{4 'BULK' STORAGE DEVICE.
THE REQUIREMENTS FOR THESE 1/0 ROUTINES, AS FAR AS TH!S MONITOR PROGRAM
IS CONCERNED, ARE PRESENTED BELOW.

OPERATOR INPUT

THE OPERATOR INPUT ROUTINE WHEN CALLED MUST INPUT A SINGLE CHARAC-
TER FROM A DEVICE, SUCH AS A KEYBOARD, AND RETURN TO THE OPERATING PRO-
GRAM WITH THE ASCII1 CODE FOR THE INPUTTED CHARACTER IN THE ACCUMULATOR
REGISTER OF THE CPU. THIS ROUTINE, CREATED BY THE USER, 1S FREE TO USE
CPU REGISTERS "A'" THRU "E" FOR ITS PROCESSING. IF REGISTERS "H" AND "L"“
MUST BE USED (TO POINT TO A CONVERSION TABLE, FOR EXAMPLE) THEIR CON-
TENTS MUST BE SAVED AND THEN RESTORED TO THEIR ORIGINAL VALUE PRIOR TO
RETURNING TO THE CALLING PROGRAM. THE OPERATOR INPUT ROUTINE IS REFER-
RED TO IN THE MONITOR PROGRAM BY THE LABEL "RCV." THERE ARE TWO POINTS
IN THIS MONITOR PROGRAM WHERE "CAL RCV"' IS USED TO SIGNIFY A CALL TO THE
"OPERATOR INPUT" SUBROUTINE. ONE IS AT THE INSTRUCTION LABELED "IN2" IN
THE "INPUT" ROUTINE (TO BE PRESENTED LATER). THE OTHER LOCATION WHICH
CALLS THIS ROUTINE IS THE LOCATION LABELED "LPIN'" IN THE "INSPCL" SUB-
ROUTINE.

AN ADDITIONAL FUNCTION WHICH THE USER SHOULD PROVIDE IN THE "OPER-
ATOR INPUT" SUBROUTINE IS THE CAPABILITY TO '"ECHO"™ THE CHARACTER RECEI-
VED FROM THE INPUT DEVICE TO THE DISPLAY DEVICE. THAT IS, WHEN A CHAR-
ACTER IS ENTERED ON THE KEYBOARD IT IS GENERALLY DESIRED TO HAVE THAT
CHARACTER DISPLAYED FOR THE OPERATOR TO VERIFY THE ENTRY. FOR EXAMPLE,
IF THE OPERATOR INPUT IS COMING FROM AN ELECTRONIC KEYBOARD WHICH IS
COMPLETELY SEPARATE FROM THE DISPLAY DEVICE, IT WOULD BE REQUIRED TO
HAVE THE "RCV" ROUTINE OUTPUT THE CHARACTER CODE TO THE DISPLAY DEVICE
A5 EACH CHARACTER IS RECEIVED. OR», ONE MIGHT HAVE A SYSTEM IN WHICH THE
INPUT DEVICE IS COORDINATED WITH THE DISPLAY DEVICE, SUCH AS A TELETYPE
MACHINE OR TELEVISION-TYPE-WRITER, WHICH MAY BE COUPLED WITH A HARDWARE
INTERFACE TO AUTOMATICALLY ECHO THE KEYBOARD INPUT TO THE DISPLAY DE-
VICE. 1IN THIS CASE, THE "RCV" SUBROUTINE WOULD HAVE TO ENABLE THE IN-
TERFACE TO ECHO THE CHARACTERS WHEN ENTERED.

DISPLAY OUTPUT

THE DISPLAY OUTPUT ROUTINE IS DISTINCT FROM THE '"ECHO™ ROUTINE DES-
CRIBED IN THE OPERATOR INPUT ROUTINE ABOVE (ALTHOUGH., IN MANY CASES. THE
“ECHO"™ FUNCTION OF THE "RCV" SUBROUTINE MAY SIMPLY BE OBTAINED BY CALL-
ING THIS DISPLAY OUTPUT ROUTINE AS IT 1S DEFINED HERE!) THE DISPLAY
OUTPUT ROUTINE WHEN CALLED BY THE MONITOR PROGRAM MUST OUTPUT THE ASCII
ENCODED CHARACTER CONTAINED IN THE ACCUMULATOR AT THE TIME THE ROUTINE
IS CALLED TO THE DISPLAY DEVICE. THE ROUTINE IS FREE TO USE CPU REGIS-
TERS "B" THRU "E" FOR PROCESSING. THE CALLING ROUTINE EXPECTS THE AC-
CUMULATOR AND REGISTERS 'H" AND "L TO CONTAIN THE ORGINAL INFORMATION
WHEN THE SUBROUTINE 1S EXITED. THE DISPLAY OUTPUT SUBROUTINE 1S REFER-
ENCED IN THE MONITOR PROGRAM BY A "CAL PRINT" INSTRUCTION. THERE ARE
FIVE ROUTINES WHICH USE THE '"CAL PRINT" COMMAND. THE "ERROUR" ROUTINE
USES THE "PRINT" SUBROUTINE TO OUTPUT ERROR MESSAGES TO THE OPERATOR.
THE DISPLAY OUTPUT ROUTINE IS ALSO CALLED BY THE SUBROUTINES LABELED
“"MSG'" (TO PRINT VARIOUS MESSAGES)>», "OCTOUT"™ (FOR PRINTING 3 DIGIT UCTAL
NUMBERS)» 'COLON' (TO PRINT A :) AND "SPAC" (TO PRINT A SPACE).

BULK STORAGE INPUT

THE BULK STORAGE INPUT ROUTINE WHEN CALLED MUST INPUT DATA FROM THE
BULK STORAGE DEVICE. THE FORMAT FOR READING THE DATA AND DETERMINING
WHERE THE DATA 1S TO BE STORED IS EINTIRELY LEFT UP TO THE USER PROVIDED
BULK INPUT ROUTINE. THE ONLY FUNCTION OF THE MONITOR PROGRAM FOR THIS
COMMAND IS TO ALLOW THE INITIATION OF A BULK INPUT VIA THE KEYBOARD AND
TO RETURN TO THE MONITOR PROGRAM UPUN COMPLETION OF THE INPUT SEQUENCE.
THEREFOREs THE BULK STORAGE INPUT ROUTINE IS FREE TO USE ALL THE CPU RE-
GISTERS WHILE PERFORMING ITS DATA INPUT. THE BULK STORAGE INPUT ROUTINE
IS REFERENCED BY THE INSTRUCTION "CAL READ" WHICH IS LOCATED IN THE BULK
READ ROUTINE OF THE MONITOR PROGRAM.

BULK STORAGE O0UTPUT

THE BULK STORAGE OUTPUT ROUTINE WHEN CALLED MUST OUTPUT THE DATA
INDICATED TO THE BULK STORAGE DEVICE. THE DATA TO BE STORED 1S DELINE-
ATED BY REGISTERS "L AND "H'" FOR THE LOW AND PAGE ADDRESS, RESPECTIVE-
LY, FOR THE START ADDRESS AND REGISTERS "E" AND "D" FOR THE LOW AND PAGE
ADDRESS, RESPECTIVELY, FOR THE ENDING ADDRESS OF THE BLOCK OF DATA TO BE
OUTPUT. AS WITH THE BULK INPUT ROUTINE, THE ACTUAL FORMAT AND PROCEDURE
FOR OUTPUTTING THE DATA IS ENTIRELY CONTROLLED BY THIS ROUTINE. THE MON-
ITOR PROGRAM SIMPLY SETS UP THE REGISTERS DESIGNATING THE LIMITS OF THE
BLOCK TO BE OUTPUT. THIS BULK STORAGE OUTPUT ROUTINE IS CALLED BY THE
BULK WRITE ROUTINE BY THE INSTRUCTION "CAL PUNCH."™

1/0 INTEGRITY CONSIDERATIONS

THE OPTION OF PERFORMING ERROR CHECKS ON THE TRANSMISSION OF DATA
TO AND FROM THE PERIPHERAL DEVICES IS LEFT TO THE USER. THIS IS DONE
BECAUSE THERE ARE A VARIETY OF ERROR CHECKING TECHNIQUES POSSIBLE, DEPEN-
DING ON THE TYPE OF DEVICE BEING USED IN THE SYSTEM. FOR EXAMPLE, A
USER WITH A PAPER TAPE READER SYSTEM MAY ELECT TO PROVIDE FOR PARITY

CHECKING TECHNIQUES. SUCH TECHNIQUES MAY BE INPLEMENTED USING "EVEN" OR
"ODD" PARITY CONVENTIONS DEPENDING ON THE TYPE OF DEVICE, UR EVEN THE
USER'S PREFERENCE. ANOTHER TYPE OF I/0 DEVICE, SUCH AS A COMMERCIAL
MAGNETIC TAPE, OR DISC UNIT, MAY HAVE AUTOMATIC "BLOCK" ERROR CHECKING
CAPABILITIES, IN WHICH CASE THE USER WOULD WANT TO HAVE THE APPROPRIATE
I/0 ROUTINE TEST FOR ERROR CONDITIONS AND TAKE APPROPROATE ACTION. THE
USER MAY ELECT., IF ERROR CHECKING CAPABILITIES ARE IMPLEMENTED, TO ADD
ADDITIONAL ROUTINES THAT PRESENT ERROR MESSAGES TO THE OPERATOR. OR THAT
DIRECT THE OPERATION OF "“ERROR CORRECTING" TECHNIQUES. IN ANY EVENT,
SUCH TECHNIQUES ARE OUTSIDE THE SCOPE IF THIS PARTICULAR PUBLICATION AND
WILL BE LEFT TO THE USER TO IMPLEMENT AS DESIRED.

MEMORY UTILIZATION OF THE MONITOR PROGRAM

THE MONITOR PROGRAM PRESENTED IN THIS MANUAL MAKES OPTIMUM USE OF
THE MEMORY BY UTILIZING EFFECTIVE PROGRAMMING TECHNIQUES WHICH TAKE AD-
VANTAGE OF THE '8008"' INSTRUCTION SET. THE ACTUAL AMOUNT OF MEMORY USED
BY THE MONITOR WILL UARY DEPENDING ON THE NUMBER OF COMMANDS ONE INCLU-
DES IN ONE'S VERSION AND ON THE AMOUNT OF PROGRAMMING REQUIRED TO CON-
TROL THE PERIPHERAL DEVICES. THE MEMORY USAGE FOR THE VERSION PRESENTED
IN THIS MANUAL 1S AS FOLLOWS.

THE OPERATING PORTION OF THE PROGRAM RESIDES IN PAGES 14 THROUGH
PART OF PAGE 17« THE USER PROVIDED I/0 ROUTINES MAY BE PLACED ON THE
REMAINDER OF PAGE 17, OR, IF MORE ROOM IS REQUIRED., THE USER MAY PUT
THE I1/0 ROUTINES WHEREVER THEY WILL BE MOST CONVIENENT (FOR EXAMPLE
THE BULK STORAGE 1/0 ROUTINES MAY ALREADY RESIDE IN MEMORY ON A "PROM"™).
PORTIONS OF PAGE 00 ARE USED AS A "SCRATCH PAD" AREA FOR THE STORAGE OF
POINTERS» COUNTERS AND TEMPORARY DATA BY THE MONITOR PROGRAM. THERE IS
ALSO A SECTION ON PAGE 00 WHICH CONTAINS "CANNED" MESSAGES AND THE LAST
40 OCTAL LOCATIONS ARE USED AS THE INPUT BUFFER FOR STORING TdE COM-
MANDS AND DATA ENTERED ON THE KEYBOARD INPUT DEVICE. ONE OF THE RESTART
LOCATIONS (LOCATION 070> 1S USED BY THE BREAKPOINT ROUTINE TO ALLOW A
SINGLE RESTART INSTRUCTION TO BE USED TO SET A BREAKPOINT IN A PROGRAM
BEING DEBUGGED. THE LOUK-UP TABLE FOR THE CUMMAND ROUTINE HAS BEEN SET
UP ON PAGE 00 TO ALLOW ROOM FOR EXPANSION., AS WILL BE EXPLAINED LATER.

THE LOCATION OF THE OPERATING PORTION OF THE MONITOR PRUGRAM FOR A
SPECIFIC USER'S SYSTEM SHOULD BE IN THE UPPER PUORTIUN OF THE AVAILABLE
MEMORY. THIS ARRANGEMENT HAS BEEN FOUND TO BE MOST ADVANTAGEOUS FOR A
MONITOR PROGRAM, AS IT LEAVES THE LOWER PORTION OF THE MEMORY OPEN TO oL
USED FOR PROGRAM DEVELOPMENT. THE MEMORY MAP FOR THIS MONITOR PRUGRAM
AS ORIGINED IN THIS MANUAL IS PRESENTED ON THE FOLLOWING PAGE. THE EX-
ACT LOCATIONS USED FOR THE TEMPORARY STORAGE ON PAGE 00 WILL BE DETAILED
IN THE ASSEMBLED LISTING.

MONITOR COMMANDS

THE MONITOR PROGRAM IS ESSENTIALLY A COLLECTION OF FUNCTIONS WHICH
ENABLE THE OPERATOR OR PROGRAMMER TO CONTROL THE OVER-ALL OPERATION OF
THE COMPUTER. THESE FUNCTIONS ARE INITIATED BY THE OPERATOR ENTERING
"COMMANDS" ON THE "OPERATOR INPUT DEVICE."™ EACH COMMAND DIRECTS THE
MONITOR PROGRA! TO THE APPROPRIATE ROUTINE TO PERFORM THE FUNCTIUN IN-
DICATED. THE FORMAT FOR ENTERING EACH COMMAND MAY VARY FROM ONE TO AN-

PAGE

00 AVAILABLE SPACE
RESTART " 7" FOR
BREAKPOINT
: S L W W S W
AVAILABLE SPACE
POINTER, COUNTER MONITOP UTILITY
AND TEMPORARY SUBROUTINES
STORAGE AREA
COMMAND
LOOK UP’
TABLE sl
DUMP
INPUT BUFFER
WRITE
AVAILABLE SPACE READ
PAGES 01 BREAKPOINT
THRU
13 GO TO
PAGE
” COMMAND INPUT EXAMINE REGISTERS
ROUTINE
FILL
INPUT ROUTINE
SEARCH
TRANS FER
USER PROVIDED
1/0 DRIVER
ROUTINES

OTHER» DEPENDING ON WHETHER THE COMMAND REQUIRES MEMORY ADDRESSES OR DA-
TA TO BE SPECIFIED. THE FOLLOWING IS5 A SUMMARY OF THE VARIOUS CUMMANDS

PRESENTED IN THIS MONITOR PROGRAM ALONG WITH A BRIEF DESCRIPTION OF THE

OPERATION EACH PERFORMS.

"BREAKPOINT" (B) - USED TO EXAMINE THE OPERATION OF A PROGRAM
IN MEMORY AT THE LOCATION SPECIFIED IN THE
COMMAND. WHEN THE PROGRAM REACHES THE
“BREAKPOINT,»"™ CONTROL RETURNS TO THE MONI-
TOR PROGRAM AND THE CONTENTS OF THE SPEC-
IFIED CPU REGISTERS AND FLAG STATUS ARE
SAVED. TWO TYPES OF BREAKPOINTS ARE POSS-
IBLE. A TYPE "1" BREAKPOINT SAVES THE
VALUES OF CPU REGISTERS A, B AND C AND THE
FLAG STATUS. A TYPE "2" BREAKPOINT SAVES
THE VALUES OF CPU REGISTERS D» E» H AND L
AND THE FLAG STATUS.

"MEMORY DUMP"™ (D) - OUTPUTS THE CONTENTS UF THE MEMURY LUCA-
TIONS SPECIFIED TO THE DISPLAY DEVICE.

"MEMORY FILL"

lIGO TO'I

"MEMORY MODI FY"

"BULK READ"

l'S EARCH'I

"TRANSFER"

“"BULK WRITE"

“"EXAMINE REG'S"™

(F) -

(G) -

(M) -

(R) -

(s) -

(T) -

(w)y -

Xy -

FILLS THE MEMORY LOCATIUNS SPECIFIED WITH
THE DATA INDICATED IN THE COMMAND.

STARTS EXECUTION OF A PROGRAM BY JUMPING
TO THE ADDRESS SPECIFIED IN THE COMMAND.
TWO TYPES OF GO TO COMMANDS ARE POSSIBLE.
A TYPE 1" GO TO COMMAND WILL SET THE CON-
TENTS OF CPU REGISTERS A» B AND C WITH
PRE-DETERMINED VALUES BEFORE JUMPING TO
THE PROGRAM. A TYPE "2" GO TO COMMAND
WILL SET UP REGISTERS D, E, H AND L.

DISPLAYS THE CONTENTS OF THE MEMORY LOGCA-
TION SPECIFIED. THE OPERATOR MAY THEN
CHANGE THE CONTENTS BY ENTERING THE DESIR-
ED VALUE, AFTER WHICH THE NEXT LOCATION
WILL BE DISPLAYED, OR CONTINUE ON TO DIS-
PLAY THE NEXT LOCATION WITHOUT CHANGING
THE PREVIOUS ONE, OR RETURN TO THE COMMAND
MODE.

CALLS THE USER PROVIDED BULK STORAGE INPUT
ROUTINE TO READ DATA IN FROM THE BULK STO-
AGE DEVICE.

SEARCHES THE MEMORY LOCATIONS SPECIFIED
FOR THE 8 BIT DATA PATTERN ENTERED IN THE
COMMAND AND PRINTS THE MEMORY ADDRESSES OF
EACH LOCATION THAT MATCHES.

TRANSFERS THE CONTENTS OF THE SECTIUN OF

MEMORY SPECIFIED TO THE SECTION OF MEMORY
INDICATED BY THE THIRD ADDRESS SPECIFIED

IN THE COMMAND.

CALLS THE USER PROVIDED BULK STORAGE OUT-
PUT ROUTINE TO WRITE A SPECIFIED BLOCK OF
MEMORY OUT TO THE BULK STORAGE DEVICE.

DISPLAYS THE CONTENTS OF THE SPECIFIED
“"VIRTUAL" CPU REGISTER OR FLAG STATUS.

THE "VIRTUAL'" CPU REGISTERS AND FLAG STA-
TUS 1S THEIR ACTUAL CONTENTS AT THE TIME A
“BREAKPOINT" IS ENCOUNTERED., OR, AT THE
TIME A "GO TO"™ IS ISSUED. THE VALUE OF
THE "“VIRTUAL" CPU REGISTERS (BUT NOT THE
FLAG STATUS) MAY BE ALTERED BY ThIS COM-
MAND.

EACH OF THE COMMANDS ARE ENTERED BY THE OPERATOR ENTERING THE LET-
TER ILLUSTRATED IN THE PARENTHESIS FOLLOWED BY WHATEVER DATA IS REQUIRED
TO DEFINE THE ACTION TO BE TAKEN. MOST OF THE COMMANDS REQUIRE THE SPE-
CIFICATION IF EITHER COMMAND TYPE. MEMORY ADDRESS (UR ADDRESSES), OR DA-
TA, OR A COMBINATION OF THESE TO DEFINE THE EXACT OPERATION OF THE COM-
MAND. THE FORMAT FOR ENTERING EACH COMMAND IS SUMMARIZED ON THE FOLLOW-

ING PAGE.

COMMAND COMMAND FORMAT

BREAKPOINT (TYPE 1) Bl HHH LLL

BREAKPOINT (TYPE 2) B2 HHH LLL

MEMORY DUMP D HHH LLL,MMM NNN
MEMORY FILL F HHH LLL.,MMM NNN.,DDD
GO TO (TYPE 1) Gl HHH LLL

GO TO (TYPE 2) G2 HHH LLL

MEMORY MODIFY M HHH LLL

BULK READ R

SEARCH S HHH LLL,MMM NN, DDD
TRANS FER T HHH LLL,MMM NiNsYYY ZZ22Z
BULK WRITE W HHH LLL,MMM NNN
EXAMINE REGISTER XP

WHERE "HHH LLL", "MMM NNN'", AND "YYY ZZZ'" INDICATE MEMORY ADDRESS'S AF-
FECTED BY THE COMMANDS, "DDD" IS THE DATA VALUL USED IN THE CUMMAND AND
"P" IS THE REGISTER DESIGNATION IN THE EXAMINE REGISTER CUMMAND. "p"
IS REPLACED BY THE LETTERS "A" THRU "E"» "H'" OR "L'" TO INDICATE THE
"VIRTUAL"™ CPU REGISTER TU BE EXAMINED OR THE LETTER "} TO INDICATE THE
FLAG STATUS 1S TUO BE DISPLAYED.

THE MEMORY ADDRESS AND DATA INFURMATION SHOWN ABOVE USES GRUUPS OF
THREE OCTAL DIGITS TO SPECIFY THE COMMAND'S OPERATIUN. EACH GROUP HAS
A POSSIBLE RANGE OF VALUES FROM 000 TO 377. MEMORY ADDRESSES ARE SPEC-
IFIED BY TWO GROUPS, THE FIRST GROUP BEING THE HIGH, OR PAGE, ADDRESS.
WHILE THE SECOND GRUUP DEFINES THE LOW PORTION OF THE ADDRESS. THE DATA
VALUE IS SPECIFIED BY A SINGLE THREE DIGIT GROUPING. THIS NOTATION WAS
CHOSEN BECAUSE IT IS A GENERALLY ACCEPTED FORMAT FUK REPRESENTING 8-BIT
BINARY INFORMATION, WHICH SHOULD BE FAMILIAR TO MUST MICROCOMPUTER us -
ER'Se IT SHOULD BE NOTED THAT WHEN ENTERING A COMMAND, LEADING ZEROS
MAY BE DELETED, HOWEVER, EACH GROUP MUST BE REPRESENTED BY AT LEAST UNE
DIGIT. THAT IS, IF THE MEMORY LOCATION 000 000 IS TO BE MODIFLED, THE
COMMAND MAY BE ENTERED USING ONE OF THE FOLLOWING FORMS.

M 000 000
OR
M OO

THE MUNITOR PROGRAM
GENERAL UTILITY SUBROUTINES

THERE ARE A GROUP OF SUBROUTINES USED BY THE MAJOR ROUTINES OF THE
MONITOR PROGRAM WHICH PERFORM MANY OF THE COMMON TASKS REQUIRED BY THESE
ROUTINES. SUCH SMALL SEQUENCES OF INSTRUCTIONS ARE REFERRED TO AS
"UTILITY"™ SUBROUTINES BECAUSE OF THEIR BROAD, GENERAL USAGE THROUGHOUT
THIS PROGRAM. THESE SUBROUTINES ARE PRESENTED IN THIS SECTION TO POINT
OUT IMPORTANT FACTORS RELATING TO THEIR OPERATION SO THAT THE READER MAY
HAVE A GOOD UNDERSTANDING OF THE SUBROUTINES WHICH FORM THE BASE OF THE
MONITOR PROGRAM. ALTHOUGH THESE SUBROUTINES WERE WRITTEN FOR THE MONI-
TOR PROGRAM» THE READER MAY FIND MANY OF THEM USEFUL 1IN APPLYING THEM
TO OTHER PROGRAMS ONE MAY DEVELOP.

THE FIRST GROUP OF “UTILITY" SUBROUTINES PERFORM THE TYPE OF UPER-
ATIONS FOUND IN ALMOST ANY PROGRAM. THESE OPERATIONS INCLUDE INCREMENT-
ING THE MEMORY POINTER IN REGISTER PAIR 'H"™ AND "L," INCREMENTING A DOU-
BLE PRECISION VALUE STORED IN MEMORY AND SWITCHING THE CONTENTS OF RE-
GISTERS "H" AND "L" WITH THE CONTENTS OF REGISTERS "D" AND "E, " RESPEC-
TIVELY. THESE SUBROUTINES ARE QUITE BASIC BUT ARE NEVER=-THE=~LESS IM=-
PORTANYT FOR MAINTAINING EFFICIENT USE OF MEMORY. AN ADDITIONAL SUBROU-
TINE IS INCLUDED HERE LABELED "SETUP" WHICH SETS5 THE MEMORY POINTER RE-
GISTERS "H" AND "L" TO THE CONTENTS OF MEMORY LOCATIONS 167 AND 166 ON
PAGE 00, RESPECTIVELY. THIS SUBROUTINE IS USED TU SET THE MEMORY POINT-
ER TO THE MEMORY LOCATION CURRENTLY BEING OPERATED ON BY THE COMMAND.

MNEMONIC COMMENTS
INMEM, INL /INCR LO ADDR
RFZ /1F NON ZERO, RET
INH /ELSE, INCR PG ADDR
RET /RET TO CALLING PGM
/
INCR» ADI 001 /INCR CONTENTS OF MEM LOC
LMA /RESTORE MEM CONTENTS
RFC /1IF NO CARRY., RET
INL /ELSE, FETCH NXT LOC
LAM
ADI 001 /INCR MEM CONTENTS
LMA /RESTORE MEM CONTENTS
RET /RET TO CALLING PGM
/
SWITCH, LCH /SWITCH THE PNTR IN
LHD /REG'S H AND L WITH
LDC /THE PNTR IN REG'S D AND E
LCL
LLE
LEC
RET /RET TO CALLING PGM
/
SETUP., LHI 000
LLI 166 /SET PNTR TO 00 166
LCM /FETCH LO ADDR
INL
LHM /FETCH PG ADDR
LLC /SET PNTR TO MEM LOC
RET /RET TO CALLING PGM

THE NEXT GROUP OF SUBRUOUTINES PRESENTED BELOW ARE USED TU UUTPUT
VARIOUS MESSAGES TO THE DISPLAY OUTPUT DEVICE. THREE OF THESE MESSAGE
PRINTOUT ROUTINES OUTPUT A FIXED MESSAGE TO THE PRINTER. THE ROUTINE
LABELED "SPAC"™ OUTPUTS A SPACE CHARACTER (ASCII CODE '240') AND THE ROU-
TINE "COLON" OUTPUTS A COLON (ASCII CODE '272') BY LOADING THE RESPEC-
TIVE CODES IN THE ACCUMULATOR AND CALLING "THE DISPLAY OUTPUT ROUTINE.
"HDLN" SETS UP A POINTER TO THE "CANNED" MESSAGE "“CARRIAGE-RETURN/LINE=
FEED" AND THEN FALLS THROUGH TO THE SUBROUTINE “MSG" TO PRINT THE "CR-
LF'" COMBINATION. THE '"MSG" SUBROUTINE OUTPUTS A STRING OF CHARACTERS
STORED IN MEMORY TO THE DISPLAY DEVICE UNTIL A '"ZERO" BYTE 1S5 ENCOUNTER=-
ED. THE PROGRAM CALLING "MSG" SIMPLY SETS REGISTERS "H" AND "L" TO THE
START ADDRESS OF THE MESSAGE TO BE PRINTED AND CALLS "MSG." THIS SUB-
ROUTINE MAY BE OF USE TO THE READER IN DEVELOPING PROGRAMY WHICH REQUIRE

- 11 -

THE PRINTOUT OF "CANNED MESSAGES."
PUTS THE MEMORY ADDRESS CONTAINED

OCTAL NUMBER.

MNEMONIC

L i S

SPAC, LAI 240
JMP PRINT

/

COLON, LAI 272
JMP PRINT

/

HDLN., LLI 134
LHI 000

/

MSG, LAM
NDA

RTZ

CAL PRINT
CAL INMEM
JMP MSG

/

PRT166. LLI 167
LHI 000
LAM

NDI 077
CAL OCTOUT
CAL SPAC
LLI 166
LAM

CAL OoCTOUT
/

/

oCTtOUT, LLA
RLC

RLC

NDI 003
ORI 260
CAL PRINT
LAL

RRC

RRC

RRC

NDI 007
ORI 260
CAL PRINT
LAL

NDI 007
ORI £60
JMP PRINT

COMMENTS

/SET ASCII CODE FOR SPACE
/PRINT SPACE AND RET

/SET ASCII CODE FOR :
/PRINT COLON AND RET

/SET PNTR TO C/R, L/F MSG
/FALL THRU TO PRINT MSG

/FETCH CHAR TO PRINT
/END OF MSG CHAR?

/YES, RET TO CALLING PGM
/N0, PRINT CHAR

/INCR MSG PNTR
/CONTINUE PRINT OUT

/SET PNTR TO PG ADDR
/0F LO ADDR STORED
/FETCH PG ADDR

/PRINT PAGE ADDR

/PRINT A SPACE

/SET PNTR TO LO ADDR
/FETCH LO ADDR

/PRINT LO ADDR

/FALL THRU TO PRINT SPACE

/SAVE OCTAL NUMBER TO PRINT
/POSITION HUNDRED'S DIGIT

/MASK OFF OTHER BITS
/FORM ASCII CODE
/PRINT DIGIT

/FETCH OCTAL NUMBER
/POSITION TEN'S DIGIT

/7MASK OFF OTHER DIGITS
/FORM ASCII CODE
/PRINT DIGIT

/FETCH OCTAL NUMBER
/7MASK OFF OTHER DIGITS
/FORM ASCII CODE
/PRINT DIGIT AND RET

- 12 -

THE SUBROUTINE LABELED "PRT166" OUT-
IN LOCATIONS 166 AND 167 ON PAGE 00.
LOCATION 167, WHICH CONTAINS THE HIGH PORTION OF THE ADDRESS, 1S PRINYED
FIRST FOLLOWED BY A SPACE AND THEN THE LOW PORTION, CONTAINED IN LOCA~-
TION 166. THIS IS USED BY SEVERAL ROUTINE
"DUMP'" AND “SEARCH' ROUTINES, TO PRIN
THIS ROUTINE CALLS THE SUBROUTINE
"OCTOUT'" SEPARATES
THE ASCII CODE FOR THE DIGIT AND C
PRINT IT. THE FINAL SUBROUTINE.
OF THE MEMORY LOCATION INDICATED
ON PAGE 00. THIS ROUTINE USES THE SUBROUTINE
POINTER AND THEN CALLS

Ss SUCH AS THE *""MODI FY., "

T THE AFFECTIVE MEMORY ADDRESSES.
"OCTOUT" TO PRINT EACH THREE DIGIT ~
EACH DIGIT FROM THE &-BIT BYTEs FORMS
ALLS THE DISPLAY OUTPUT ROUTINE TO
LABELED "MEMPRT." PRINTS THE CONTENTS
BY THE POINTER AT LOCATION 166 AND 167
“"SETUP" TO SET THE MEMORY
"OCTOUT'" TO PRINT THE MEMORY CONTENTS.

MNEMONIC

COMMENTS

MEMPRT. CAL SETUP /SET PNTR TO MEM LOC

LAM /FETCH CURRENT MEM CONTENTS
JMP 0OCTOUT /PRINT CONTENTS AND RET

/

THE READER SHOULD NUW UNDERSTAND THAT THE MUONITOR PROGRAM IS CON-
TROLLED BY THE OPERATOR ENTERING COMMANDS ON THE OPERATOR INPUT DEVICE.
ONCE THE COMMAND IS ENTERED AND RECOGNIZEDs THE COMPUTER JUMPS TO THE °
MAJOR ROUTINE TO PERFORM THE DESIGNATED FUNCTION. WHEN THE MAJOR ROU-
TINE IS ENTERED, IT MAY BE NECESSARY TO RETRIEVE MORE INFURMATIUN FROM
THE INPUT BUFFER IN ORDER TO PROCESS THE CUOMMAND. THE ADDITIONAL DATA
1S ALMOST ALWAYS IN THE FORM OF OCTAL DIGITS WHICH SPECIFY MEMORY AD-
DRESSES OR DATA. THIS INFORMATION IS STORED IN THE INPUT BUFFER AS A
STRING OF ASCI1 CHARACTERS AND MUST BE TRANSLATED INTO ITS EQUIVALENT
BINARY VALUE(S) BEFURE THE MAJOR ROUTINE CAN USE IT. SINCE THIS FUNC-
TION IS A COMMON PROCESS THE FOLLUWING ASClI TUO UCTAL AND OCTAL TO BI=-
NARY CONVERSIUON SUBROUTINES ARE USED TO PERFORM THE TRANSLATION. THE
SUBROUTINE "OCTNM'" READS IN A MEMORY ADDRESS, CONVERTS IT TO THE BINARY
VALUE AND STORES IT IN LOCATIONS 166 AND 167 ON PAGE 00O« IF A SECOND
ADDRESS FOLLOWS THE FIRST IN THE INPUT BUFFER, THE SECOND ADDRESS WILL
BE CONVERTED TO BINARY AND STORED IN LOCATIONS 170 AND 171 ON PAGE 00.
IF THERE IS NO SECOND ADDRESS, THE FIRST ADDRESS WILL BE STORED AGAIN'IN
LOCATIONS 170 AND 171« THE TWO ADDRESSES THUS STORED ARE THEN CHECKED
AGAINST EACH UTHER TO DETERMINE THAT THE FIRST IS LESS THAN UR EQUAL TO
THE SECOND. IF NOT» AN ERROR MESSAGE IS PRINTED AND CONTROL RETURNS TO
THE COMMAND MODE. ALSO», AS THE CONVERSION IS BEING PERFORMED, THE INPUT
IS CHECKED FOR PUSSIBLE ERRORS», SUCH AS INVALID OCTAL NUMBERS (I.Ee« 8,9)
OR INVALID ENTRIES (l.E. ONLY ONE THREE DIGIT GROUP DEFINING AN AD=-
DRESS). IF SUCH ERROHS ARE FOUND., AN ERROR MESSAGE IS PRINTED AND CON~-
TROL RETURNS TO THE COMMAND MODE. THE ACTUAL ASCII TO OCTAL ('"DCDNM'")
AND OCTAL TO BINARY ("OCT") ROUTINES ARE IN THE FORM OF SUBROUTINES TO
ALLOW THEM TO BE CALLED SEPARATELY WHEN REQUIRED.

MNEMONIC COMMENTS
OCTNM., LEL /SAVE INP BFR PNTR
CAL OCTPR /CONVERT 1ST OCTAL PAIR
LLI 166 /SLET PNTR TO LO ADDR STRAGE
LMB /SAVE LO HALF OF LO ADDR
INL
LMC /SAVE PG HALF OF LO ADDR
LLE /RESTORE INP BFR PNTR
LAM /FETCH NXT CHAR
Crl 254 /CHAR = COMMA?
JFZ SGL /NO» ONLY ONE ENTRY
INL /YES, INCR INP BFR PNTR
LEL /SAVE INP BFR PNTR
CAL O0CTPR /CONVERT 2ND OCTAL PAIR

SGL, LLI 170
LMB
INL
LMC
LAC

/SET PNTR TO HI ADDR STRAGE
/SAVE LO HALF OF HI ADDR

/SAVE PG HALF OF HI ADDR

MN EMONIC

L Rl —

LLI 167
CPM

JTC ERR
RFZ

INL

LAM

LLI 166
CcrM

JTC ERR
RET

/

OCTPR» CAL DCDNM

LCB

INE

/

/

DCDNM., LLI 150
LMH

INL

LMH

INL

LMH

LLE

LOOP., CAL FNUM
JTS CKLNH
LAM

LDL

NDI 007
LLI 150
LBM

LMA

INL

LAM

LMB

INL

LMA

LLD

INL

JMP LOOP
/

CKLNH», LAL
CPE

JTZ ERR
LEL

CAL OCT
JFS ERR
RET

/

FNUM., LAM
CrPl 260
RTS

sSul 270
ADI 200
RET

/

COMMENTS

/1S HI ADDR < LO ADLCR?

/YES, PRINT ERROR
/1F PG HALF NOT =, PET
/ELSE, CHECK LO HALF

/1S HI ADDR < LO ADDR?

/YES, PRINT ERROR MSG
/NO» RET TO CALLING PGM

/DECODE 1ST OCTAL NUMBER
/SAVE OCTAL NUMBER
/INCR INP BFR PNTR

FALL THRU TO DECOUDE 2ND NMBR

/SET PNTR TO DIGIT STRAGE TBL
/CLEAR TBL BY STORING 000-.

/RESET INP BFR PNTR

/CHECK FOR VALID NUMBER

/1F NOT» CHECK CHAR CNT = 0
/FETCH CHAR

/SAVE INP BFR PNTR

/MASK OFF 260

/STORE OCTAL NUMBER IN
/TABLE AT LOC 150 PG 00
/AND SHIFT OTHER NUMBERS
/UP THRU THE TABLE

/RESTORE AND INCR INP BFR PNTR

/FETCH NXT NUMBER

/1S CHAR CNT = 07

/YES, PRINT ERROR MSG

/N0, SAVE INP BFR PNTR
/FETCH FINAL OCTAL NUMBER
/1F INVALID, PRINT ERR MSG
/ELSE,» RET TO CALLING PGM

/1S CHAR A VALID NUMBER?

/NO., RET WITH S FLAG SET
/CHECK UPPER LIMIT BY
/SETTING S FLAG TO PROPER
/STATE AND RETURN

MNEMONIC COMMENTS

0CT, LLI 152 /SET PNTR TO 3RD DIGIT
LAM

Cpl 004 /1S 3RD DIGIT > 37

RFS /YES, RET WITH S FLAG RESET
NDI 003 /CLEAR CARRY

RRC /POSITION DIGIT

RRC

LBA /SAVE IN REG B

DCL /DECR PNTR

LAM /FETCH NEXT DIGIT

RLC /POSITION DIGIT

RLC

RLC

ADB /ADD TO REG B

DCL : /DECR PNTR

ADM

LBA /SAVE FINAL NUMBER

LAI 200 /SET S FLAG TO INDICATE
NDA /THAT THE NUMBER IS VALID
RET /RET TO CALLING PGM

THE NEXT SUBROUTINE TO BE PRESENTED IS LABELED "CKEND." THIS SUB-
ROUTINE IS UTILIZED BY A NUMBER OF MAJOR ROUTINES WHICH OPERATE ON A
GROUP OF MEMORY LOCATIONS., SUCH AS THE "DUMP.'" "FILL" AND "SEARCH" ROU-
TINESe THE BASIC FUNCTION OF THIS ROUTINE IS TO COMPARE THE VALUES OF
THE POINTERS STORED IN THE DATA AREA UN PAGE 00 AT LOCATIUNS 166 THRU
171 WHICH WERE INITIALLY SET UP BY INPUTTING THE COMMAND. AS EACH LOCaA-
TION IS OPERATED ON, THE TWO POINTERS ARE CHECKED TO DETERMINE IF THEY
ARE EQUAL., INDICATING THE OPERATION IS COMPLETE. IF THEY ARE NOT EQUAL.
THE POINTER AT LOCATIOUN 166 AND 167 IS INCREMENTED AND THE PROCESSING 1S
CONTINUED. WHEN THEY BECOME EQUAL, THE PROGRAM RETURNS TO THE COMMAND
MUDL.

MNEMUNIC CUMMENTS

CKEND», LHI 00O

LLI 171 /SET PNTR TU HI ADDR

LAM /FETCH 2nND HALF

LLI 167 /SET PNTR TO 2ND HALF LU ADDR
crPM /2ND HALFS EQUAL?

JFZ CONT /N0, CUNTINUE PRUCESS

INL

LAM /FETCH 1ST HALF HI ADDR

LLI 166 /SET PNTR TO 1ST HALF LU ADLDR
CPM /1ST HALFS LQUAL?

JTZ INCMD /YES», RET TO CMND MODE

LLI 166 /NO, SET PNTR TO LO ADDR

LAM

JMP INCR /INCR LO ADDR AND RET

THERE ARE SEVERAL ROUTINES IN THE MONITOR PROGRAM WHICH REGUIRE THE
INPUT OF ADDITIONAL INFORMATION BY THE OPERATOR AFTER THE COMMANL HAS
BEEN ENTERED. FOR EXAMPLE, THE MEMORY "MODIFY" ROUTINE DISPLAYS THE
CONTENTS OF A MEMORY LOCATION AND THEN WVAITS FOR THE OPERATUR TO INPUT
EITHER A MODIFICATION TO THE MEMORY CONTENTS OR A COMMAND TO DISPLAY THE
NEXT LOCATION OR RETURN TO THE COMMAND MODE. THE FORMAT FOR THIS EN-
TRY, AS WILL BE DETAILED LATER, IS TERMINATED BY EITHER A SPACE OR A
CARRIAGE RETURN. SINCE THE SPACE IS5 NOT DEFINED AS A TERMINATING CHAR-
ACTER IN THE INPUT ROUTINE, WHICH WILL BE PRESENTED SHORTLY, THE FOLLOW~-
ING INPUT ROUTINE IS USED TO ENTER THE MODIFICATIONS FOR THE "MODIFY"
AND ALSO THE "EXAMINE REGISTER"™ COMMAND. THIS SUBROUTINL IS LABELED
"INSPCL." THIS ROUTINE CALLS THE OPERATOR INPUT ROUTINE TO FETCH THE
CHARACTERS ENTERED AT THE KEYBOARD. WHEN A SPACE IS ENTERED, THE SUBROU-
TINE RETURNS TO THE CALLING PROGRAM WITH THE MODIFICATION STORED IN THE
INPUT BUFFER ON PAGE 00. IF WO MODIFICATION HAS BEEN ENTERED, THE
MEMORY POINTER (REG'S H & L) WILL INDICATE THE START ADDRESS OF THE IN-
PUT BUFFER. OTHERWISE, IT WILL INDICATE THE LOCATION IN THE INPUT BUFF-
ER WHICH CONTAINS THE TERMINATING "“SPACE" CHARACTER. WHLN A CAPRIAGE
RETURN IS RECEIVED, THE “INSPCL' SUBROUTINE RETURNS TO THE COMMAND MODE.

MNEMONIC COMMENTS
INSPCL, LLI 340 /SET PNTR TO S.A. OF INP BFR
LPIN, CAL RCV /INP CHAR
LMA /STORE CHAR IN INP BFR
CPI 240 /CHAR = SPACE?
RTZ /YES, RET TO CALLING PGM
CPI 215 /N0, CHAR = C/R?
JTZ INCMD /YES, RET TO COMMAND MODE
INL /NO, INCR INP BFR PNTR
JTZ ERR /INP BFR FULL? YES, ERROR
JMP LPIN /NO, INP NXT CHAR

THE SUBROUTINE LABELED "ADRDTA" 1S USED BY SEVERAL OF THE ROUTIWNES
WHICH REQUIRE THE SPECIFICATION OF A PAIR OF MEMORY ALCDRESSES FOLLOWED
BY A DATA BYTE, SUCH AS THE "FILL" AND "SEARCH'" ROUTINES. THIS SUBROU-
TINE CALLS "OCTNM'" TO FETCH THE ADDRESSES FROM THE INPUT BUFFER AND
STORES THEM IN BINARY FORM IN THE DATA STORAGE AREA ON PAGE 00 AND THEN
CALLS "DCDNM"™ TO FETCH THE DATA BYTL WHICH IS RETURNED IN REGISTER B.

MNEMONIC COMMENTS
ADRDTA., LLI 342 /SET PNTR TO ADDR INP
CAL OCTNM /INP START AND END ADDR
INE /INCR TO DATA POSITION
JMP DCDNM /FETCH DATA FM INP BFR

MAJUR RUUTINES FUR THE MUNITOR PRUGRAM
"COMMAND" INPUT ROUTINE

THIS SECTIUN DESCRIBES THE MAJUR UPERATING RUUTINES USED IN THE MUN-
ITOR PROGRAM PRESENTED HEREIN. THE FIRST SUCH ROUTINE IN THIS CATEGORY
1S DESIGNATED THE "COMMAND INPUT ROUTINE." THE COMMAND INPUT ROUTINE
IS SET UP WITH A VERY GENERAL FURMAT WHIUH MAY BE APPLIED TO OTHER PRO-
GRAMS THAT REQUIRE A CUOMMAND "LOOK UP" UOPERATION. ESSENTIALLY, THE COM-
MAND INPUT ROUTINE ACCEPTS A CUMMAND INPUT FROM THE OPERATUR INPUT DE-
VICE AND DIRECTS THE COMPUTER TU THE START ADDRESS OF THE ROUTINE WHICH
PERFORMS THE ASSOCIATED UPERATION. THE COMMAND INPUT ROUTINE IS EASILY
EXPANDABLE TU ACCOMODATE THE ADDIYION OF UTHER FUNCTIUNS THE USER MAY
DESIRE TO INCLUDE IN THE MUNITUR PRUOGRAM. THL BASIC OPERATING PURTION
UF THIS ROUTINE IS THE SAME REGARDLESS OF THE NUMBER UF COMMANDS THERE
ARE IN THE PRUGRAMe TO CHANGE THE NUMBER UF COMMANDS AVAILABLE, ONE
MERELY ADDS THE INFURMATION RLEQUIRED TU THE CUMMAND "LOOK UP TABLE" AND
INCREASES THE COMMAND COUNTER TO INDICATE THE TUTAL NUMBER OF CUMMANDS.

THE FLOW CHART FOR THE COMMAND INPUT RUUTINE IS ILLUSTRATED BELOW.

AS THE FLOW CHART INDICATES, THE BASIC CONCEPT OF THIS ROUTINE IS QUITEL
SIMPLE AND STRAIGHT=FUORWARDSs)

START

INPUT
COMMAND

PRINT JUMP TO
€—— ERROR gggﬁg”f COMMAND
MSG ' ROUTINE

FLUW CHART - CUMMAND INPUT ROUTINE

THE COMMAND INPUT ROUTINE STARTS BY DISPLAYING A "“CUMMAND MODE"
SYMBOL ON THE DISPLAY DEVICE. THIS SYMBOL (DEFINED AS A ">'" MARK) INDI=-
CATES TO THE OPERATUR THAT THE MONITOR PROGRAM IS CURRENTLY IN THE COM-
MAND MODEes THE OUPERATOR INPUT ROUTINE (TO BE DESCRIBED NEXT) IS THEN
CALLED TO 'INPUT THE COMMAND FROM THE OPERATOR INPUT DEVICE. AFTER THE
OPERATOR ENTERS THE COMMAND, THE COMMAND LOOK UP TABLE 1S YEARCHED FOR
A MATCH WITH THE FIRST CHARACTER IN THE COMMAND NOW STURED IN THE INPUT
BUFFERe THIS CHARACTER IS ASSUMED TO BE ONE OF THE COMMAND IDENTIFICA=

- 17 =

TION LETTERS» AS DESCRIBED PREVIOUSLY. THE LOOK UP TABLL IS SEARCHED BY
COMPARING THE CHARACTER ENTERED TO EVERY THIRD BYTE OF THE COMMAND “LOOK
UP'" TABLE. THE FORMAT FOR THE “LOOK UP" TABLE 15 ILLUSTRATED BELOW.

ASCII CODE FOR A COMMAND CHARACTER
LOWV ADDR OF ASSOC COMMAND ROUTINE

PAGE ADDR OF ASSOC COMMAND ROUTINE
ASCI11 CODE FOR A COMMAND CHARACTER
LOW ADDR OF ASSOC CUMMAND ROUTINE

PAGE ADDR OF ASSOC COMMAND ROUTINE
ASCII1 CODE FUOR A COMMAND CHARACTER

BYTE N XXX
BYTE N+1 YYY
BYTE N+2 ZzZ
BYTE N+3 MMM
BYTE N+4 NNN
BYTE N+5 000
BYTE N+6 AAA

REPEAT SEQUENCE TO END OF COMMAND LOOK UP TABLE

1F A MATCH 15 FOUND BETWEEN THE CHARACTER ENTERED AND AN ENTRY IN THE
COMMAND LOOK UP TABLE, THE ADDRESS IN THE SUCCEEDING TWO BYTLS OF THE
COMMAND LOOK UP TABLE ARE OBTAINED AND TRANS FERRED TO TWO0 SPECIAL LOCA-
TIONS ON PAGE 00« THESE LOCATIONS FURM THE SECOND AND THIRD BYTES OF A
"JUMP" INSTRUCTIUON WHICH IS THEN EXECUTED TO JUMP TO THE COMMAND ROUTINE
AS SPECIFIED IN THE CUMMAND JUST RECEIVED. Ik, HUWEVER, THERE IS NO
MATCH FOUND IN THE LOOK UP TABLE, THIS IS ASSUMED TU BE AN ERRUR CONDI =
TiON AND AN ERROR MESSAGE IS OUTPUT TU THL DISPLAY DEVICEe. THE PROGRAM
THEN RETURNS TU THE START OF THE COMMAND INPUT KOUTINE TO RECEIVE A NEW
COMMAND ENTRY.

THE LISTING FOR THE CUMMAND "LUUK UP" TABLE FUOLLOWED BY THE COMMAND
INPUT ROUTINE FOR THIS MUNITOR PRUGRAM IS PRESLNTED BELOWe THE CUMMAND
"LOOK UP" TABLE RESIDES ON PAGE 00 STARTING AT LOCATION 210. THIS LOCA-
TION ALLUWS EXPANSION OF THE LOUK UP TABLE BY SIMPLY ADDING THE ASCII
CODE FUR THAE IDENTIFYING CHARACTER FUR THE CUMMAND TO BE AUDED. FOLLUWED
BY THE LOW AND PAGE PORTION OF THL START ADDRESS OF THE NEW CUMMAND, AS
EXPLAINELD ABOVEe THEN SIMPLY INCREMENT THE "IMMEDIATE" PURTION OF THE
7'TH INSTRUCTION (LDI 011) IN THE COMMAND INPUT ROUTINE. THE ACTUAL OP-
PERATING PORTION OF THE CUOMMAND INPUT RUUTINE AND. THUS», THE MONITOR
PROGRAM ITSELF, STARTS AT THE INSTRUCTIUN LABELED “INCMD."

MNEMONIC CUOMMENTS

L —— e e -

/COMMAND LUOOK UP TABLE

/

315 /MODIFY

150

015

304 /DUMP

275

015

327 /BULK WRITE
343

015

322 /BULK READ

371

015

302 /BREAKPOINT
377

015

MNEMONIC COMMENTS

330 /EXAMINE REGISTERS

306 /FILL MEM

323 /S EARCH

324 /TRANS FER

/COMMMAND INPUT ROUTINE
/
ORG 014 000

INCMD, LHI 000 /SET PNTR TO HEADING MSG

LLI 130

CAL MSG /PRINT C/R» L/F, >

CAL CDIN /INPUT COMMAND FM KYBD
LLI 340

LAM /FETCH COMMAND CHAR

LDI 012 /SET CMND NMBR CNTR

LLI 210 /SET CMND TABLE PNTR
CKCMD, CPM /15 CMND CHAR FOUND IN TBL?
JTZ FOUND /YES, PROCESS COMMAND
INL /NO>ADVANCE CMND TBL PNTR
INL

INL

DCD /15 LAST CHND CHECKED?
JFZ CKCMD /NO, CHECK NEXT

ERR» CAL HDLN /YESs» PRINT C/R» L/F
LAI 311 /I1LLEGAL ENTRY CODE
CAL PRINT /PRINT ERROR MSG

JMP INCMD /INP NEXT COMMAND

/

FOUND, INL /ADV CMND TBL PNTR

LDM /FETCH CMND LO ADDR

INL

LCM /FETCH CMND PG ADDR

LLI 156 /SET PNTR TO JMP INSTR.
LHI 000

LMD /LOAD LO ADDR OF CMND
INL

LMC /LOAD PG ADDR OF CMND
LLE

JMP 155 000 /JUMP TO CMND ROUTINE

A FLOW CHART OF THE ENTIRE MONITUR PRUGRAM IN THI1S MANUAL IS PRE=
SENTED ON THE FOLLUWING PAGE. IT CAN ACTUALLY BE THOUGHT OF AS A MUORE
DETAILED VERSION OF THE COMMAND INPUT ROUTINE FLOW CHART» SINCE IT DE=-
FINES EACH COMMAND THAT IS SEARCHED FOR IN THE COMMAND INPUT ROUTINE.
THE READER MAY DESIRE TO REFER TU THIS FLOW CHART FROM TIME-TO-TIME TU
SEE HOW VARIOUS FUNCTIONS OF THE PROGRAM RELATE TU EACH OTHER.

- 1 =

N

7

¥

INPUT
COMMAND

YES
PRINT MEM
> CONTENTS

SPECIFIED

MODIFY?

PRINT MEMORY PRINT ADDR OF

CONTENTS NXT MEM LOC

STORE NEW
MEM CONTENTS

CALL USER'S ROUTINE
TO STORE SPECIFIED
DATA ON BULK DEVICE

i&——————lb /

CALL USER'S ROUTINE
TO READ DATA FROM
BULK DEVICE

BRKPT
RECVD

SAVE REG'S

AND FLACS
SET BRKPT AT RESTORE
LOCATION MEM
SPECIFIED e, . |
JUMP TO CONTENTS
ADDRESS SET CPU
SPECIFIED REG'S \l/
>

DI SPLAY VIRTUAL
REGISTER VALUEL

FILL BLOCK OF

STORE NEW VALUE

MEM WITH DATA
SPECIFIED

FOR VIRTUAL PREG

—

SEARCH MEM FOR | o/ pRINT ADDR'S
DATA VALI'E THAT MATCH

TRANSFER BLOCK PRINT
OF MEMORY TO ERROR
NEV LOC IN MEM MSG ? |

INPUT ROUTINE

THE INPUT ROUTINE IN THIS MONITOR PROGRAM IS USED TO INPUT COMMANDS
FROM THE OPERATOR INPUT DEVICE. THE ROUTINE ACCEPTS INPUTS FROM AN EX-
TERNAL DEVICE BY CALLING THE "RCV'" SUBROUTINE AND STORES THE CHARACTERS
IN THE INPUT BUFFER RESIDING ON PAGE 00 UNTIL A TERMINATING CHARACTER IS
RECEIVED. THE ROUTINE ALLOWS THE CORRECTION OF INDIVIDUAL CHARACTERS
ENTERED AND THE CAPABILITY TO ABORT THE CURRENT INPUT AND RETURN TO THE
COMMAND MODE. ' '

THE FLOW CHART FOR THE INPUT ROUTINE IS PRESENTED ON THE FOLLOWING
PAGE_- THE READER MAY REFER TO THIS DURING THE FOLLOWING D!SCUSSION.

THE FIRST OPERATION PERFORMED BY THIS ROUTINE IS TO “CLEAR OUT"
THE INPUT BUFFER AREA. THIS IS ACCOMPLISHED BY FILLING THE INPUT BUFFER
AREA WITH THE ASCII CODE FOR A SPACE, '240' OCTAL. THE START ADDRESS
OF THE INPUT BUFFER IS THEN SET UP TO BEGIN STORING CHARACTERS AS THEY
ARE ENTERED VIA THE "RCV" ROUTINE. AS EACH CHARACTER 1S ENTERED, IT IS
RETURNED TO THE INPUT ROUTINE IN THE ACCUMULATOR. THE CHARACTER IS THEN
TESTED TO DETERMINE IF IT IS ONE OF THE "CONTROLY CHARACTERS.

THE FIRST CONTROL CHARACTER TESTED FOR IS THE "CONTROL/D.,'" ASCII
CODE 204 OCTAL. THIS IS GENERALLY ENTERED BY SIMULTANEOUSLY DEPRESSING
THE "CONTROL' KEY AND THE "D" ON AN ASCII ENCODED KEYBOARD. RECEIPT OF
"CONTROL D" INDICATES THE OPERATOR WISHES TO ABORT THE CURRENT INPUT AND
START A NEW COMMAND INPUT. '

IF THE CHARACTER IS NOT A "CONTROL/D," THE ROUTINE TESTS FOR ONE
OF TWO POSSIBLE "TERMINATING" CHARACTERS. THESE CHARACTERS ARE A CARRI-
AGE RETURN, ASCII CODE 215 OCTAL» AND A "“CONTROL/L.,'" ASCII CODE 214 OCT-
AL. THE REASON FOR PROVIDING TWO TERMINATING CHARACTERS IS TO ALLOW THE
OPTION OF EITHER CAUSING THE DISPLAY DEVICE TO PERFORM A CARRIAGE RE-
TURN WHEN THE TERMINATING CHARACTER IS ENTERED, OR, TO MAINTAIN THE POS-
ITION OF THE DISPLAY DEVICE AT THE END OF THE CURRENT LINE OF INPUT, AS
IS THE CASE WITH THE FIRST COMMAND INPUT FOR THE "MODIFY'" ROUTINE AND
AFTER ENTERING THE "EXAMINE REGISTER'" COMMAND.)) '

THE FINAL CONTROL CHARACTER TESTED FOR BY THE INPUT ROUTINE IS THE
ASCII1 CODE 377 OCTAL, WHICH 1S ASSIGNED TO THE "RUBOUT"™ OR "DELETE"
FUNCTION. RECEIPT OF THIS CHARACTER INDICATES TO THE INPUT ROUTINE THAT
THE PREVIOUS CHARACTER ENTERED BY THE OPERATOR IS TO BE DELETED FROM THE
INPUT BUFFER. THIS IS ACCOMPLISHED BY BACKING UP THE INPUT BUFFER POIN-
TER ONE LOCATION AND INSERTING THE CODE FOR A "SPACE" TO EFFECTIVELY "E-
RACE"” ONE CHARACTER ENTRY FROM THE INPUT BUFFER. AN OPERATOR MAY ERACE
MORE THAN ONE CHARACTER BY USING THE "RUBOUT'" FUNCTION SEVERAL TIMES IN
SUCCESSION. ' b ‘ '

IF NONE OF THE PREVIOUSLY MENTIONED "CONTROL' CHARACTERS ARE FOUND
BY THE INPUT ROUTINE, THE CODE FOR THE CHARACTER ENTERED WILL BE STORED
IN THE INPUT BUFFER AND THE INPUT BUFFER POINTER WILL BE ADVANCED. THIS
PROCESS WILL CONTINUE AS LONG AS CHARACTERS ARE ENTERED FROM THE OPERA-
TOR INPUT DEVICE. HOWEVER, ONCE THE INPUT BUFFER IS FILLED, NO FURTHER
STORAGE WILL TAKE PLACE, PREVENTING THE OPERATOR FROM INADVERTANTLY EN-
TERING TOO MANY CHARACTERS AND OVERFLOWING ONTO PAGE Ol. THE INPUT BUF-
FER IS CAPABLE OF HOLDING 32 CHARACTERS WHICH IS LONGER THAN ANY OF THE
INPUTS REQUIRED BY THIS MONITOR PROGRAM. '

THE LISTING FOR THE INPUT ROUTINE FOLLOWS THE FLOWCHART. THE START
OF THIS ROUTINE 1S AT THE INSTRUCTION LABELED "CDIN."

- 21 -

FILL INPUT BUFFER
WITH SPACES

INPUT
CHAR

YES

[

RETURN TO
COMMAND MODE

YES
TERMINATOR

[

CHAR ?

RETURN TO
CALLING PGM

RUBOUT?

IS INPUT
BUFFER
FULL 7

BACK UP INPUT
BUFFER PNTR AND
STORE A SPACE

STORE CHAR IN
INPUT BUFFER

INPUT ROUTINE FLOW CHART

- 22 -

MNEMONIC

CDIN., LLI 340
SP1, LMI 240
INL

COMMENTS

- o a Em we ay n——

/SET PNTR TO START OF INP BFR
/FILL INP BFR WITH SPACES
/INCR INP BFR PNTR

JFZ SP1 /DONE? NO, STORE MORE SPACES
LLI 340 /SET INP BFR PNTR

IN2, CAL RCV /INP CHAR FM INP DEVICE

CPI 204 /CHAR = CNT'L D?

JTZ INCMD /YES, RET TO COMMAND MODE
CPl 215 /CHAR = CAR RET?

RTZ /YES, RET TO CALLING PGM

CpPl 214 /CHAR = CNT'L L?

RTZ /YES, RET TO CALLING PGM

CPI 377 /CHAR = RUBOUT?

JTZ BDCR /YES, DELETE CHAR FM INP BFR
INL /1S INP BFR FULL?

DCL

JTZ IN2 /YES, DON'T STORE CHAR

LMA /NO», STORE CHARACTER

INL /INCR INP BFR PNTR

JMP IN2 /INP NEXT CHAR

/

BDCR» LAI 340
CrPL

/SET ACC TO INP BFR S.A.
/ANY CHARACTERS YET?

JTZ IN2 /NO, CONTINUE INPUT

DCL /YES, BACK UP INP BFR PNTR
LMI 240 /STORE SPACE OVER LAST CHAR
JMP IN2 /CONTINUE INPUT

/

IT SHOULD BE EASY TO SEE THAT THE READER MAY ELECT TO ASSIGN DIFFER-
ENT CHARACTERS TO OPERATE AS "CONTROL' CHARACTERS IN THE INPUT ROUTINE.
THIS 1S READILY ACCOMPLISHED BY CHANGING THE IMMEDIATE PORTION OF THE =
“CPI" INSTRUCTIONS IN THE INPUT ROUTINE. FOR EXAMPLE, IF THE USER DE-
SIRES TO HAVE THE CODE FOR 'CONTROL 0" (217 OCTAL) SERVE AS THE CONTROL
CHARACTER FOR THE "RUBOUT" FUNCTION INSTEAD OF 377 OCTAL. THE USER SIMP-
LY SUBSTITUTES *"217'" FOR "377" IN THE "CP1"™ INSTRUCTION USED TO TEST FOR
THE "RUBOUT." '

ADDITIONALLY, IF THE USER DESIRES TO ADD OTHER TYPES OF "CONTROL"
FUNCTIONS TO THE INPUT ROUTINE, IT COULD BE READILY DONE BY ADDING "CPI"™
INSTRUCTIONS FOLLOWED BY APPROPRIATE CONDITIONAL "JUMPS'" TO USER PROVID-
ED ROUTINES TO PERFORM THE DESIRED OPERATION.)

THE "MODIFY'" ROUTINE

THE "MODIFY" ROUTINE IS USED TO DISPLAY AND, 1F DESIRED, MODIFY THE
CONTENTS OF MEMORY LOCATIONS FOR THE PURPOSE OF LOADING PROGRAMS USING
THE KEYBOARD AS THE ENTRY DEVICE, OR CHANGING THE INSTRUCTIONS IN A PRO-
GRAM OR EXAMINING AND REVISING DATA STORED IN MEMORY. THIS ROUTINE
DISPLAYS ONE LOCATION AT A TIME, ALLOWING THE OPERATOR TO ENTER CHANGES
OR CONTINUE TO DISPLAY THE NEXT LOCATION OR TERMINATE THE OPERATION.

THE "MODIFY" ROUTINE PERFORMS IN THE FOLLOWING MANNER.)

FIRST, THE ADDRESS ENTERED IN THE COMMAND 1S CONVERTED AND STORED
IN THE DATA AREA AT LOCATION 166 AND 167 ON PAGE 00. THE "MODIFY" ROU-

23

TINE THEN PRINTS THE CONTENTS OF THE DESIGNATED MEMORY LOCATION AND
CALLS THE "INSPCL"™ SUBROUTINE TO ALLOW THE OPERATOR TO ENTER THE MODIFI-
CATION. IF A "MOD"™ 1S5 ENTERED, THE ""DCDNM" SUBROUTINE IS CALLED TO DE-
CODE THE NUMBER FROM THE INPUT BUFFER WHICH IS THEN STORED AS THE NEW
CONTENTS OF THE SPECIFI ED MEMORY LOCATION. WHEN THIS 1S COMPLETE, OR IF
NO MODIFICATION WAS ENTERED, THE ADDRESS STORED FOR THIS COMMAND WILL BE
INCREMENTED AND THIS NEW ADDRESS WILL BE PRINTED ON A NEW LINE ON THE
DISPLAY DEVICE. THE PROGRAM THEN LOOPS BACK TO PRINT AND MODIFY THE
CONTENTS OF THIS LOCATION. THE LOOP IS TERMINATED BY THE OPERATUR EN-
TERING A CARRIAGE RETURN OR AN INVALID OCTAL NUMBER FOR THE MODIFICA-
TION.

THE LISTING FOR THIS 'MODIFY"™ ROUTINE IS PRESENTED BELOW AND THE
FLOW CHART OF ITS OPERATION FOLLOWS ON THE NEXT PAGE.

MNEMONIC COMMENTS
MODIFY, LLI 342 /SET INP BFR PNTR
CAL OCTNM /FETCH ADDR TO MODIFY
CAL SPAC /PRINT SPACE
MOD1, CAL MEMPRT /PRINT CONTENTS OF MEM LOC
CAL COLON /PRINT COLON
CAL INSPCL /INP MODIFICATION
LAI 340 /WAS MOD ENTERED?
CPL
JTZ NXLOC /NO, SET UP NXT LOC
LEA /YES, SAVE INP PNTR
CAL DCDNM /CONVERT TO OCTAL NUMBER
LAB /SAVE OCTAL NUMBER
LLI 166 /SET PNTR -TO MEM ADDR STRAGE
LEM /FETCH MEM PNTR
INL
LDM
CAL SWITCH /SET PNTR TO MEM LOC
LMA /LOAD MEM WITH NEW VALUE
NXLOC., LHI 000 /SET PNTR TO PG 00
LLI 166 /SET PNTR TO MEM ADDR STRAGE
LAM /FETCH LO HALF
CAL INCR /INCR MEM ADDR
CAL MCONT /PRINT NXT ADDR TO MODIFY
JMP MODI
/
MCONT, CAL HDLN /PRINT C/Rs, L/F
JMP PRTI66 /PRINT ADDR TO MODIFY AND RET
/

THE "DUMP" ROUTINE

THE MEMORY ''DUMP" ROUTINE ENABLES THE OPERATOR TO EXAMINE A LARGE
BLOCK OF MEMORY LOCATIONS WITH A SINGLE COMMAND ENTRY, AS OPPOSED TO
HAVING TO ENTER A CHARACTER IN BETWEEN THE COMPUTER DISPLAYING EACH LO-
CATION, AS REQUIRED BY THE "MODI FY" ROUTINE. THIS ROUTINE WILL DISPLAY
A5 MANY LOCATIONS AS DEFINED BY THE START AND END ADDRESSES SPECIFIED IN
THE COMMAND. ’ '

= B -

COMMAND NO

~o

UALii;:///

YES

PRINT ADDR OF
NXT MEM LOC

PRINT MEMORY
CONTENTS

INP CHANGE
FM KYBD

YES
FINISHED?

PRINT
ERROR
MSG

WAS
CHANGE

NO

ENTERED
?

NO

CHANGE

W

RETURN TO
COMMAND MODE

VALID?

STORE NEW
MEM CONTENTS

|

MEMORY

"MODIFY'" ROUTINE FLOW CHART

AFTER CONVERTING AND STORING THE ADDRESSES SPECIFIED IN THE COMMAND
BY CALLING THE "OCTNM" SUBROUTINE, THE "DUMP' ROUTINE PRINTS THE ADDRESS
OF THE FIRST LOCATION TO BE DISPLAYED. A COUNTER IS THEN SET UP WHICH
INDICATES THE NUMBER OF LOCATIONS TO BE PRINTED ON THE CURRENT LINE.
THIS COUNTER IS SET FOR 20 OCTAL LOCATIONS PER LINE IN THIS PROGRAM AND
IS TEMPORARILY STORED ON PAGE 00. THE CONTENTS OF THE MEMORY LOCATIONS
ARE THEN PRINTED UNTIL EITHER THE LOCATION PER LINE COUNTER REACHES ZERO
OR THE LAST LOCATION SPECIFIED HAS BEEN PRINTED. WHEN THE L/L COUNTER
REACHES ZERO, THE L/L COUNTER IS SET TO 20 AGAIN AND A NEW LINE IS
STARTED WITH THE ADDRESS OF THE NEXT LOCATION PRINTED FIRST FOLLOWED BY
THE CONTENTS OF THE NEXT 20 OCTAL LOCATIONS. THIS ROUTINE RETURNS TO
THE COMMAND MODE WHEN THE LAST LOCATION SPECIFIED IN THE COMMAND HAS
BEEN PRINTED.

THE DETAILED LISTING FOR THE "DUMP"™ ROUTINE IS GIVEN BELOW WITH THE

FLOW CHART PRESENTED ON THE FOLLOWING PAGE.

MNEMONIC COMMENTS
MDUMP., LLI 342 /SET PNTR TO INP BFR
CAL OCTNM /FETCH MEM DUMP LIMITS
CAL HDLN /PRINT C/R» L/F
MDMP1l., CAL MCONT /PRINT ADDR OF IST LOC
CAL SPAC /PRINT SPACE
MDMP2, LLI 164 /SET PNTR TO TEMP STRAGE
LMI 020 /SAVE LOC PER LINE CNTR
OUTAGN, CAL MEMPRT /PRINT MEM CONTENTS
CAL CKEND /CHECK FOR LAST LOC PRTD
CAL SPAC /PRINT SPACE
LLI 164 /SET PNTR TO L/L CNTR
LBM /FETCH CNTR
DCB /DECR CNTR
LMB /SAVE CNTRe. CNTR = 07
JTZ MDMPI /YES, START NEW LINE
JMP OUTAGN /NO, PRINT MORE CONTENTS

THE "BULK WRITE"™ ROUTINE

THE "BULK WRITE'" ROUTINE PRESENTED IN THIS MONITOR PROGRAM SIMPLY
PROVIDES A SET UP FUNCTION FOR THE USER PROVIDED BULK WRITE OUTPUT ROU-
TINE. THE PURPOSE OF THIS FUNCTION IS TO PROVIDE A MEANS OF STORING THE
CONTENTS OF MEMORY (PROGRAMS OR BLOCKS OF DATA) ON A BULK STORAGE DEVICE
VIA A COMMAND FROM THE MONITOR PROGRAM. THE USER'S BULK WRITE ROUTINE
IS CALLED BY THIS ROUTINE WITH THE START AND END ADDRESSES OF THE MEMORY
LOCATIONS, AS SPECIFIED IN THE COMMAND, STORED IN REGISTERS H AND L FOR
THE START LOCATION AND REGISTERS D AND E FOR THE ENDING LOCATION. THIS
IS DONE TO MAKE THE INFORMATION READILY AVAILABLE TO THE USER'S BULK
WRITE ROUTINE. THE ADDRESSES ARE ALSO CONTAINED IN THE DATA AREA ON
PAGE 00, LOCATIONS 166 THRU 171+ THE SHORT LISTING FOR THIS ROUTINE IS
GIVEN NEXT FOLLOWED BY SOME SUGGESTIONS FOR THE USER'S BULK WRITE 0OUT-
PUT ROUTINE. . '

-.26_

NO

COMMAND

VALID ?

NO

PRINT
ERROR
MSG
FETCH START
& END ADDR
PRINT ADDR
OF 1ST LOC
OF LINE
SET LOC/LINE Y
COUNTER
PRINT MEM
CONTENTS
LAST LOC ¥ES 4
PRINTED?
W

RETURN TO
COMMAND MODE

MEMORY "DUMP'" ROUTINE FLOW CHART

- 27 =

MNEMONIC COMMENTS

- Ll

WRITE, LLI 342 /SET PNTR TO INP BFR

CAL OCTNM /FETCH START AND END ALDR
LLI 166 /SET REG'S H AND L WITH
LCM /THE START ADDR AND

INL /JREG'S D AND E WITH

LBM /THE END ADDR OF THE

INL /BLOCK OF MEM TO BE

LEM /WRITTEN TO THE BULK

INL /STORAGE DEVICE.

LDM

LHB

LLC

CAL PUNCH /GO0 TO USER BULK WRITE RTN
JMP INCMD /RET TO COMMAND MODE

NOTES AND SUGGESTIONS FOR THE USER PROVIDED BULK STORAGE RUUTIWNES

WHEN CREATING A BULK STORAGE OUTPUT ROUTINE, ONE SHOULD KEEP SEVEP-
AL FACTORS IN MIND. FIRST, THE DEVICE BEING USED TO STORE THE DATA WILL
HAVE TO BE CONSIDERED WHEN DEFINING THE FORMAT FOR STORING THE LATA.
FOR EXAMPLE, 1F A PAPER TAPE SYSTEM IS USED, THE OUTPUT ROUTINE SAUULD
PRECEED THE DATA WITH A SEQUENCE OF "LEADER/TRAILER" CODE, TO GIVE THE
READER A PLACE TO START WHEN READING THE TAPE BACK, FOLLOWED BY ADDRESS-
ING INFORMATION AND THEN THE DATA FROM THE SPECIFIED MEMORY LOCATIONS.
THE SEQUENCE CAN BE TERMINATED BY EITHER LEADER/TRAILER OR AN "END-QF-
DATA" CODE AND THEN LEADER/TRAILER. THE LEADER/TRAILER CODEL SHOULD BE
A CODE WHICH IS UNIQUE TO THE OTHER DATA CODES TRANSMITTED AND SHOULD
PROVIDE ENOUGH LEADER AND TRAILER TO ALLOW EASE OF HANDLING. THE AD-
DRESSING INFORMATION CAN BE BOTH THE START AND END ADDRESSES OR ONLY THE
START ADDRESS WITH THE "END-OF-DATA"™ CODE OR TRAILER SIGNALING THE END
OF THE DATA ON THE TAPE. A SIMILAR FORMAT MAY BE USED FOR A MAGNETIC
TAPE SYSTEM.

ANOTHER FACTOR TO CONSIDER IS WHETHER ADDITIONAL INFORMATION IS
NEEDED TO EFFECTIVELY USE THE STORAGE DEVICE. FOR EXAMPLE, A DISC UNIT
MAY REQUIRE THE SPECIFICATION OF TRACK AND/OR SECTOR NUMBER TU STOUORE THE
DATA. OR, THERE MAY BE SEVERAL DEVICES ON THE SYSTEM WHICH CAN BE USED
FOR STORING THE DATA. THIS INFORMATION CAN EASILY BE DEFINED AT THE
TIME THE COMMAND IS ENTERED, SINCE THE COMMAND IN STILL AVAILABLE IN THE
INPUT BUFFER AREA WHEN THE BULK STORAGE ROUTINES ARE CALLED. SUPPOSE
THERE ARE TWO TAPE UNITS ASSOCIATED WITH THE COMPUTER SYSTEM. ONE WILL
BE REFERRED TO AS UNIT A" AND THE OTHER AS UNIT "B." UNE COULD SELECT
EITHER TAPE UNIT "A' OR "“B'" AT THE TIME THE READ OR WRITE COMMAND IS EiN-
TERED BY INCLUDING A LETTER AT THE END OF THE COMMAND WHICH DESIGNATES
THE TAPE UNIT TO BE USED. THE FORMAT FOR THE COMMAND MIGHT LOOK LIKE
THE FOLLOWING: '

W HHH LLL,XXX YYY,A OR R, B

FOR THESE COMMANDS, THE BULK WRITE ROUTINE WOULD WRITE TO TAPE UWIT "A"
AND THE BULK READ WOULD CALL UPON TAPE UNIT "B'" TO RECEIVE THE DATA.

THE USER PROVIDED BULK STORAGE ROUTINES WOULD SIMPLY HAVE TO LOOK IN THE
INPUT BUFFER AREA FOR THE UNIT DESIGNATION TO DETERMINE WHICH IS TO BE
USED.

ANOTHER POSSIBILITY WOULD BE TO INCLUDE A "DISPLACEMENT" ADDRESS IN
THE BULK READ COMMAND. THAT IS, WHEN THE ADDRESS INFORMATION 1S READ 1IN
FROM THE STORAGE DEVICE, THE "DISPLACEMENT" ADDRESS WOULD BE "ADDED" TO
THE ADDRESS RECEIVED. THIS NEW ADDRESS WOULD BE USED AS THE POINTER IN-
DICATING WHERE TO STORE THE DATA AS IT 1S RECELVED. THUS, DATA THAT WAS
WRITTEN TO THE BULK STORAGE FROM PAGE 01 COULD BE READ BACK AND STORED
IN PAGE 03, FOR EXAMPLE, BY SPECIFYING A "DISPLACEMENT" ADDRESS OF 002
000.

ABOVE ALL, THE IMPORTANT FACTOR IN WRITING THE BULK STORAGE ROUTINES
IS THAT THE DATA WRITTEN BY THE BULK WRITE ROUTINE MUST BE IN A FORMAT
THAT CAN BE READ IN BY THE ROUTINE CALLED BY THE BULK READ ROUTINE, DIS-
CUSSED NEXT.

THE "BULK READ"™ ROUTINE

THE "BULK READ'" ROUTINE PRESENTED HERE SIMPLY CALLS THE USER PROVI-
DED BULK STORAGE READ ROUTINE TO READ IN THE DATA AVAILABLE AT THE SY-
STEM BULK STORAGE DEVICE. THE ONLY REAL FUNCTION IT PERFORMS IS THAT OF
PROVIDING A MEANS OF ACCESSING THE BULK INPUT DEVICE BY A COMMANL FROM
THE KEYBOARD AND ALLOVING A RETURN TO THE MONITOR WHEN THE OPERATION 1s
COMPLETE.

MNEMONIC COMMENTS

T o e n n — — w—— —— - -

RDBULK., CAL READ /GO0 TO USER BULK READ RTN
JMP INCMD /RET TO COMMAND MOUDE

THE ROUTINES PRESENTED TO THIS POINT REQUIRE ONLY 1/2 K 0F MEMORY
FOR THE OPERATING PORTION, NOT INCLUDING THE USER'S I/0 ROUTINES AND
OMITTING THE "ADRDTA" SUBROUTINE WHICH HAS WOT BEEv CALLED AS YET. ThE
USER WITH A LIMITED AMOUNT OF MEMORY MAY DESIRE TO END THE MONITOR PRO-
GRAM HERE, SINCE THE ROUTINES INCLUDED ARE SUFFICIENT TO BE USED AS a
SMALL SYSTEM MONITOR. FOR THOSE WITH AN ABUNDANCE OF MEMORY, THE FOL-
LOWVING ROUTINES WILL BE FOUND TO BE VERY HELPFUL IN PROGRAM DEVELOPMENT
AND GENEPAL SYSTEM OPERATION. .

THE "BREAKPOINT' ROUTINE

ONE OF THE MOST DIFFICULT TASKS IN OPERATING A COMPUTER SYSTEM IS
THAT OF DEBUGGING PROGRAMS. FINDING OUT EXACTLY WHAT IS HAPPENING TO
THIS REGISTER OR THAT MEMORY LOCATION WHEN A NEW PROGRAM IS BEING TRILED
OUT CAN BE VERY TIME CONSUMING IF ONE DOES NOT HAVE THE PROPER TOOLS TO
ALD IN THE PROCESS. ONE "TOOL" THAT CAN BE VERY EFFECTIVE 1S A “"BREAK~-
POINT" PROGRAM. A "BREAKPOINT" CAN BE SET AT A PARTICULAR POINT IN A
PROGRAM WHICH, WHEN ENCOUNTERED, WILL STOP EXECUTION OF THE PROGRAM,
RETURN TO THE MONITOR AND SAVE THE CONTENTS OF THE CPU REGISTERS AND
FLAG STATUS AT THE TIME THE BREAKPOINT WAS REACHED. THE PROGRAMMER MAY
THEN EXAMINE THE CPU REGISTER'S CONTENTS AND THE CPU FLAG STATUS AND
ALSO THE CONTENTS OF MEMORY LOCATIONS, WHICH WILL CONTALN THEIR VALUES
AT THE TIME THE BREAKPOINT WAS ENCOUNTERED. THE BREAKPOINT ROUTINE PRE-
SENTED HERFE PERFORMS THIS FUNCTION.)

- 29 -

THIS BREAKPOINT ROUTINE IS WRITTEN TO STORE THE CPU REGISTERS IN
TWO SEPARATE GROUPS. THE REASON BEING THAT THE 8008 INSTRUCTION SET
DOES NOT PROVIDE FOR THE STORAGE OF REGISTERS IN MEMORY UNLESS REGISTERS
H AND L HAVE BEEN SET TO POINT TO THE STORAGE LOCATION. THEREFORE, AT
LEAST TWO REGISTER VALUES MUST BE SACRIFICED WHEN A BREAKPOINT IS EN-
COUNTERED. THIS ROUTINE ALLOWS THE SPECIFICATION OF TWO TYPES OF BREAK-
POINTS. A "TYPE 1" BREAKPOINT WILL SAVE THE VALUES OF REGISTERS A, B
AND C AND A "TYPE 2" BREAKPOINT WILL SAVE THE VALUES OF REGISTERS D, E.
H AND L.

AS NOTED IN THE FLOW CHART ON THE FOLLOWING PAGE, THE BREAKPOINT
ROUTINE 1S ACTUALLY MADE UP OF TWO SEPARATE ROUTINES. THE FIRST ROU-
TINE SETS UP THE BREAKPOINT BY STORING A "RESTART 7" INSTRUCTION AT THE
LOCATION SPECIFIED IN THE COMMAND AND SAVING THE CONTENTS OF THAT LOCA-
TION SO THAT IT WILL BE RESTORED BACK TO ITS ORIGINAL VALUE AFTER THE’
BREAKPOINT IS PERFORMED. THE "TYPE"™ OF BREAKPOINT (1 OR 2) IS THEN DE-
TERMINED FROM THE COMMAND AND THE START ADDRESS FOR THAT TYPE (THE AD-
DRESS OF "BRKI"™ FOR A TYPE "1" BREAKPOINT., '"BRK2" FOR A TYPE "2'" BREAK-
POINT) IS STORED AS THE SECOND AND THIRD BYTES OF A JUMP INSTRUCTION AT
THE "RESTART 7" LOCATION, PAGE 00 LOCATION 070. IT IS IMPORTANT TO NOTE
THAT SHOULD THE BREAKPOINT ROUTINE BE ORIGINED IN A DIFFERENT LOCATION
THAN THE ASSEMBLED VERSION PRESENTED IN THIS MANUAL, THE FOUR INSTRUC-
TIONS WHICH HAVE THE COMMEINTS STARTING WITH FOUR ASTERISK'S (*xxx) MUST
HAVE THE IMMEDIATE PORTION OF THE INSTRUCTION CHANGED TO INDICATE THE
NEW LOW ADDRESS AND PAGE ADDRESS OF THE INSTRUCTIONS LABELED "BRKI'" AND
"BRK2.'" THIS FIRST ROUTINE IS LABELED “BREAK."

THE SECOND ROUTINE SHOWN ON THE FLOW CHART IS THE ROUTINE WHICH IS
EINTERED AT THE TIME THE BREAKPOINT IS REACHED. IF A TYPE "1" BREAKPOINT
WAS SET., THE CONTENTS OF REGISTER'S A, B AND C WILL BE STORED IN THE
"VIRTUAL'" CPU REGISTER TABLE (PAGE 00 LOCATION 200 THRU 206). FOR A
TYPE "2" BREAKPOINT, THE CONTENTS OF REGISTER'S D» E» H AND L WILL BE
STORED. THE EXPERIENCED PROGRAMMER WILL OBSERVE THAT IN STORING THESE
REGISTERS, ONLY INSTRUCTIONS WHICH DO NOT AFFECT THE CONDITION OF THE
FLAG STATUS OF THE CPU ARE USED. THUS, ONCE THE REGISTER VALUES ARE
SAFELY STORED IN THE “VIRTUAL'" TPU REGISTER TABLE, THE CONDITION OF THE
FLAG STATUS MAY BE TESTED AND A SPECIAL BYTE IS FORMED AND STORED AT
PAGE 00 LOCATION 207 WHICH INDICATES WHICH FLAGS WERE SET AT THE TIME
THE BREAKPOINT WAS REACHED. THE FOLLOWING BITS WILL BE SET TO A '"I" FOR
A TRUE CONDITION OF THE RESPECTIVE FLAGS. BIT O INDICATES THE CONDITION
OF THE CARRY FLAG, BIT 3 INDICATES THE CONDITION OF THE ZERO FLAG, BIT 6
INDICATES THE CONDITION OF THE PARITY FLAG AND BIT 7 INDICATES THE CON-
DITION OF THE SIGN FLAG. THE FINAL STEP IN THE BREAKPOINT PROCESS, BE-
FORE RETURNING TO THE COMMAND MODE, IS TO RESTORE THE INSTRUCTION AT THE
BREAKPOINT LOCATION TO ITS ORIGINAL CONTENTS.

THE LISTINGS FOR THE BREAKPOINT ROUTINES ARE PRESENTED NEXT.

MNEMONIC COMMENTS
BREAK, CAL ANLYZ /SET UP ADDRESS OF BP
LLE
LHD
JTZ Bl /DETERMINE IF Bl OR B2
CPI 262
JFZ ERR /ERROR IF NEITHER
/

- 30 -

COMMAND NO

VALID ?

PRINT
ERROR
MSG

FETCH MEM ADDR
FM COMMAND

SET UP 1S BRKPT
TYPE 2 =
ARRDS TYPE 1 2 RETURN TO

COMMAND MODE

SET UP
TYPE 1
BRKPT

SAVE REG'S SAVE REG'S
A, B & C D, E» H & L

[>~ ~ e
- T~

SAVE
FLAG
STATUS

l

RESTORE
MEM
CONTENTS

{

RETURN TO
COMMAND MODE

THE "BREAKPOINT" ROUTINE FLOW CHART

31

MNEMONIC

B2, CAL SETBK
LMI 176

LMI 016
JMP FINBK

Bl, CAL SETBK
LMI 112
INL

LMI 016
FINBK., INL
LME

INL

LMD

INL

LMA

JMP INCMD
/

ANLYZ, LLI 343
CAL OCTNM
LLI 341
LAM

LLI 166
LEM

INL

LDM

LLI 156
LME

INL

LMD

CPI 261
RET

/

SETBK, LAM
LMI 075
LEL

LDH

LHI 000
LLI 070
LMI 104
INL

RET

/

BRK1., LHI 000
LLI 200
LMA

LLI 201
LMB

LLI 202
BRKCOM., LMC
FLAGT. LAH
LBA

LCA

JFC NOC
LAI 00!
NOC., JFz NOZ
LBI 010

COMMENTS

/SET UP BP RST COMMAND
/*%%% STORE BP2 FND LA

/¥x*x STORE BP2 FND PG
/TO REST OF BP SET up RTN

/SET UP BP RST COMMAND
/*%%% STORE BP1 FND LA

/**%%¥ STORE BPl FND PG
/STORE BP ORIG LOW ADDR
/STORE BP ORIG PG ADDR
/STORE ORIG BP INSTRUCTION
/SET PNTR TO BUFF SA
/FETCH ADDR INTO 166, 167
/RESTORE BUFF SA

/GET BP 1 OR 2 COMMAND
/GET BP LOW ADDR

/INTO "E"

/AND BP PAGE
/PNTR TO JUMP COMMAND

/SET UP JUMP ADDRESS
/DETERMINE IF CMND 1 OR 2
/SAVE ORIG CONTENTS OF Bp
/INSERT BP RESTART INSTR
/CHANGE POINTERS

/SET PAGE 00

/SET PNTR TO RST 1 LOC
/STORE JUMP INSTRUCTION

/SET PAGE 00
/CPU REGISTER STORAGE LOCS
/SAVE ACCUMULATOR

/AND CPU REGS B & C

/WITHOUT DISTURBING FLAGS
/SET UP TEMP REGS

/TEST FOR CARRY FLAG

/SET 1 IN "A"™ IF CARRY TRUE
/TEST FOR ZERO FLAG

/SET 1 IN "B™ IF ZERO TRUE

- 32 -

MNEMONIC COMMENTS

e L - —— -

NOZ, JFP NOP /TEST FOR PARITY FLAG

LCI 100 /SET 1 IN "C" IF PARITY "T"
NOP.» JFS NOS /TEST FOR SIGN FLAG

ADI 200 /SET MSB IF SIGN TRUE
NOS, ADB

ADC /FORM FLAG STATUS BYTE
LL1I 207

LMA /STORE FLAG STATUS

LLI 073 /PNTR TO ORIG BP LOW ADDR
LEM /GET ORIG LOC OF BP

INL

LDM /AND ORIG PG OF BP

INL

LAM /AND ORIG BP INSTRUCTION
LLE /SET UP ORIGINAL

LHD /BREAK POINT POINTERS

LMA /JRESTORE ORIG BKPNT INSTR
JMP INCMD /BACK TO MONITOR

/

BRK2, LBH /SAVE ORIG VALUE OF H &« L
LCL

LHI 000 /SET PNTR TO PAGE 00

LLI 203 /CPU REGISTER STORAGE LOCS
LMD /SAVE REGS D AND E

LLI 204 /AS WELL AS ORIG H AND L
LME

LLI 205 /WITHOUT DISTURBING FLAGS
LMB

LLI 206

JMP BRKCOM /TO REST OF BREAKPT RTN

THE "GO TO'" ROUTINE

THE "GO TO" ROUTINE PROVIDES A MEANS OF INITIATING EXECUTION OF A
PROGRAM IN MEMORY BY DIRECTING THE MONITOR TO JUMP TO A SPECIFIED AD-
DRESS. AFTER FETCHING THE ADDRESS FROM THE COMMAND, THE "GO TO" ROUTINE
DETERMINES WHICH "TYPE" OF GO TO IS REQUESTED. THAT IS, THE "GO TO"
FUNCTION ALLOWS THE SETTING OF A GROUP OF CPU REGISTERS BEFORE JUMPING
TO THE PROGRAM. THE TW0 GROUPS ARE THE SAME AS THOSE FOR THE BREAKPOINT
ROUTINE. A TYPE "1™ "GO TO'"™ WILL SET THE VALUES OF REGISTERS A, B AND C
FROM THE "“VIRTUAL'"™ CPU REGISTER TABLE WHILE A TYPE "2" "GO TO' WILL SET
THE VALUES OF REGISTERS D, E, H AND L. THE VALUES IN THE "VIRTUAL"™ CPU
REGISTER TABLE ARE SET UP BY EITHER THE "BREAKPOINT” ROUTINE OR BY THE
“EXAMINE REGISTER" ROUTINE TO BE PRESENTED NEXT. THE "GO TO" ROUTINE
STARTS AT THE LOCATION LABELED "“GOTO." THE LISTING AND FLOW CHART ARE
PRESENTED ON THE NEXT PAGE. THE READER WILL NOTE THAT THE "ANLYZ" SUB-
ROUTINE OF THE BREAKPOINT ROUTINE 1S5 ALSO USED BY "GO TO"™ TO FETCH THE
START OF EXECUTION ADDRESS AND FORM THE JUMP INSTRUCTION WHICH 1S THE
FINAL STEP IN THE "GO TO" ROUTINE.

- 33 -

MNEMONIC COMMENTS

- e i

GOTO» CAL ANLYZ /SET UP ADDR OF GOTO
JTZ GO1 /TO SET UP CPU REGS A,B»C
CPI 262

JFZ ERR /ERROR IF NOT Gl OR G2

/

G02, LLI 203 /SET UP CPU REGS D,E,H & L
LDM

INL

LEM

GOCOM., INL

LBM

INL

LCM

LLE

LHB

JMP 155 000

/

GOl1, LLI 200 /SET UP CPU REGS A,B.C

LAM

JMP GOCOM

NO
COMMAND

VALID ?

..

v

PRINT
ERROR
SET UP JUMP MSG
INSTRUCTION l,
YES RETURN TO
TYPE 1?2 COMMAND MODE
SET UP REG'S NO
A, B & C

SET UP REG'S
D E» H & L

al

JUMP TO
ADDR IN
COMMAND

THE "GO TO" ROUTINE FLOW CHART

- 34 =

THE "“"EXAMINE REGISTER"™ ROUTINE

THE “EXAMINE REGISTER"™ ROUTINE ALLOWS ONE TO EXAMINE THE CONTENTS
OF THE "VIRTUAL"™ CPU REGISTERS AND THE FLAG STATUS WHICH ARE STORED IN A
TABLE ON PAGE 00 AT LOCATIONS 200 THRU 207. THE CONTENTS OF REGISTERS
A THRU E ARE STORED IN LOCATIONS 200 THRU 204 RESPECTIVELY, REGISTER H
IN 205, REGISTER L IN 206 AND THE FLAG STATUS BYTE IN 207. THE CONTENTS
OF THE “VIRTUAL" REGISTERS MAY BE MODIFIED BY ENTERING THE REVISION AF-
TER THE CURRENT VALUE IS PRINTED. HOWEVER, THE FLAG STATUS 1S DISPLAYED
SOLELY TO ALLOW EXAMINATION OF THE STATE OF THE FLAGS AT THE TIME THLE
LAST BREAKPOINT WAS EXECUTED. '

THIS ROUTINE STARTS BY FETCHING THE REGISTER DESIGNATION FROM THE
INPUT BUFFER AND DETERMINING WHICH IS SPEGCIFIED. 1IF A "VIRTUAL" CPU RE-
GISTER IS SPECIFIED, A POINTER IS FORMED TO INDICATE WHICH LOCATION IN
THE TABLE IS TO BE DISPLAYED. THE CURRENT VALUE 1S PRINTED, FOLLOWED BY
A COLON, AND THEN THE "INSPCL" SUBROUTINE IS CALLED TO INPUT ANY CHANGES
THE OPERATOR MAY DESIRE TO MAKE TO THE VALUE STORED FOR THAT REGISTER.
IF NO MODIFICATION IS ENTERED, THE ROUTINE SIMPLY RETURNS TO THE COMMAND
MODE AND THE ORIGINAL CONTENT IS MAINTAINED. IF A MODIFICATION IS EN-
TERED, THE “DCDNM'" SUBROUTINE CONVERTS THE INPUT TO BINARY FORM AND THE
NEW VALUE 1S STORED IN THE TABLE. IF THE FLAG STATUS 1S REQURSTLD, THE
VALUE CURRENTLY STORED AT LOCATION 207 ON PAGE 00 WILL BE PRINTED AND
THE ROUTINE AUTOMATICALLY RETURNS TO THE COMMAND MODE. IF THE REGISTER
DESIGNATION IS NOT VALID, THE ILLEGAL ENTRY ERROR MESSAGE IS DISPLAYED.

THE DETAILED LISTING FOR THE "EXAMINE REGISTER" ROUTINE IS PRESENT-
ED BELOW AND THE FLOW CHART IS ON THE FOLLOWING PAGE.

MNEMONIC COMMENTS
XREG» LLI 341 /SET INP BFR PNTR
LAM /FETCH REG LETTER
RGAGN., CPI 301 /1S REG VALID?
JTC ERR /N0, PRINT ERROR
CPI 306 /YES, 1S REG A THRU E?
JFC FHL /N0, TRY H, L OR F
Sul 101 /SET UP REG TBL PNTR
XCOM, LLI 164 /SAVE TBL PNTR IN TEMP STRAGE
LMA
LLA /SET PNTR TO REG TBL LOC
CAL SPAC /PRINT SPACE
LAM /FETCH CURRENT REG VALUE
CAL ocCTOUT /PRINT CURRENT REG VALUE
CAL COLON /PRINT COLON
CAL INSPCL /INP MODIFICATION
LEI 340 /SET INP BFR PNTR
LAL
CPE /WAS MOD ENTERED?
JTZ INCMD /NO, RET TO COMMAND MODE
CAL DCDNM /YES, DECODE OCTAL NUMBER
LLI 164 /SET PNTR TO TEMP STRAGE
LLM /FETCH REG TBL PNTR
LMB /STORE NEW REG VALUE
JMP INCMD /RET TO COMMAND MODE

- 35 =

REGISTER
VALID?

FLAG
STATUS 7

NO

DISPLAY VIRTUAL
REGISTER VALUE

DI SPLAY FLAG
STATUS BYTE

INP CHANGE
FM KYBD

WAS
CHANGE

NO

ENTERED
?

CHANGE NQ

VALID?

STORE NEW VALUE
FOR VIRTUAL REG

PRINT
ERROR
MSG

K

RETURN TO
COMMAND MODE

THE "EXAMINE REGISTER"

...36—.

ROUTINE FLOW CHART

MNEMONIC COMMENTS

/

FHL, CPIl 310 /15 REG = H?

JFZ LORF /NO, TRY L OR F

LAI 205 /YES» SET REG TBL PNTR
JMP XCOM /INP MOD TO REG VALUE
/

LORF, CPI 314 /1S REG = L?

JFZ F /NO, TRY F

LAI 206 /YES, SET REG TBL PNTR
JMP XCOM /INP MOD TO REG VALUE
/

F» CPI 306 /15 REG = F, FOR FLAGS?
JFZ ERR /N0, PRINT ERROR

CAL SPAC /PRINT SPACE

LLI 207 /SET REG TBL PNTR

LAM /FETCH FLAG WORD

CAL oOCTOUT /PRINT FLAG WORD

JMP INCMD /RET TO COMMAND MODE

THE THREE ROUTINES JUST PRESENTED ARE ALL INTER-RELATED IN ONE WAY
OR ANOTHER. THE "EXAMINE REGISTER" ROUTINE SETS UP THE VALUES TO BE
LOADED IN THE CPU REGISTERS AT THE TIME THE "GO TO“ OPERATION IS PER-
FORMED. THE "GO TO™ ROUTINE MAY START THE EXECUTION OF A PROGRAM WHICH
WILL EVENTUALLY REACH A "BREAKPOINT" WHICH RETURNS TO THE “BREAKPOINT"
ROUTINE TO STORE THE CPU REGISTER VALUES AND THE FLAG STATUS, WHICH, IN
TURN MAY BE EXAMINED BY THE "EXAMINE REGISTER™ ROUTINE. THIS COORDINA-
TION BETWEEN THESE ROUTINES MAKES THE INCLUSION OF THESE ROUTINES, AS A
GROUP, A CONVENIENT POINT TO COMPLETE ONE'S MONITOR PROGRAM. THE OPERA-
TING PORTION OF THE MONITOR PROGRAM PRESERTED TO THIS POINT OCCUPIES
SLIGHTLY MORE THAN 3/4 K BYTES OF MEMORY. S0, IF ONE FEELS THAT THE
ROUTINES PRESENTED THUS FAR WILL BE SUFFICIENT FOR ONE'S MONITOR PRO-
GRAM> THE PROGRAM CAN BE ENDED HERE AND USED TO GIVE THE OPERATOR THE
NECESSARY BASICS FOR A GOOD "OPERATING SYSTEM" AND "PROGRAM DEBUGGING"
MONITOR PROGRAM. THE FOLLOWING ROUTINES ARE PRESENTED TO GIVE THE READ-
ER AN IDEA FOR OTHER TYPES OF "CONVENIENCE" ROUTINES THAT MAY BE ADDED.

THE “FILL" ROUTINE

THE MEMORY "FILL"™ ROUTINE IS USED TO FILL A BLOCK OF MEMORY WITH
A SPECIFIC 8 BIT DATA VALUE. THIS ROUTINE 1S USEFUL IN “ZEROING"™ A
BLOCK OF MEMORY BEFORE EXECUTING A PROGRAM T0 DETERMINE WHETHER THAT
PROGRAM 1S WRITING INTO THE SECTION OF MEMORY "ZEROED"™ OUT OR NOT. AS
THE READER WILL SEE FROM THE LISTING, THIS PROGRAM MAKES VERY EFFECTIVE
USE OF SUBROUTINES TO PERFORM ITS FUNCTION. THE "ADRDTA"™ SUBROUTINE
FETCHES THE PERTAINENT INFORMATION FROM THE INPUT BUFFER. THE "SETUP"
SUBROUTINE SETS THE MEMORY POINTER TO THE MEMORY LOCATION TO RECEIVE THE
DATA BYTE, AND THE “CKEND" SUBROUTINE DETERMINES WHEN THE FINAL LOCATION
HAS BEEN LOADED. S

THE PROGRAM LISTING AND FLOW CHART FOR THE "FILL"™ ROUTINE IS PRE-
SENTED ON THE NEXT PAGE. ’

- 37 -

MNEMONIC

- e

FILL, CAL ADRDTA
FL1, CAL SETUP
LMB

CAL CKEND

JMP FLI1

COMMENTS

—— - -

/INP ADDR AND DATA
/SET UP MEM PNTR

/FILL MEM LOC WITH
/DONE? YES, RET TO

FM BFR

DATA
CMND MODE

CONTINUE WITH FILL

NO

COMMAND

y

VALID ?

YES

FETCH START
AND END ADDR
AND DATA

i

INCR MEM
PNTR

al

LOAD MEMORY
WITH DATA

NO

FINISHED?

YES

PRINT
ERROR
MSG

RETURN TO
COMMAND MODE

THE MEMORY “FILL'" ROUTINE FLOW CHART

- 38 -

THE "SEARCH" ROUTINE

THE MEMORY "SEARCH" ROUTINE IS USED TO SEARCH THE CONTENTS OF A

SPECIFIED BLOCK OF MEMORY FOR AN 8 BIT
MAND. EACH TIME IT FINDS A BYTE WHICH
OF THE MATCHING BYTE 1S PRINTED ON THE
CHES THE ADDRESS BLOCK AND SEARCH DATA
THE "ADRDTA™ SUBROUTINE. THE BLOCK OF
EACH LOCATION IN THE BLDCK TO THE DATA

DATA PATTERN ENTERED IN THE COM-
MATCHES THE PATTERN, THE ADDRESS
DISPLAY DEVICE. THE ROUTINE FET-
FROM THE INPUT BUFFER BY CALLING
DATA 1S5 SEARCHED BY COMPARING’
PATTERN ENTERED AND, IF A MATCH

1S FOUND, THE "MCONT" SUBROUTINE, WHICH PRINTS A CARRIAGE RETURN, LINE
FEED FOLLOWED BY THE MEMORY ADDRESS STORED AT LOCATION 166 ON PAGE 00,
IS CALLED TO PRINT THE MEMORY ADDRESS WHICH CONTAINS THE MATCH. THE
PROCESS CONTINUES UNTIL THE LAST LOCATION SPECIFLED IN THE COMMAND IS
SEARCHED. ONCE AGAIN THE EFFECTIVENESS OF GOOD GENERAL SUBROUTINES IS
EVIDENCED BY THE BREVITY OF THIS ROUTINE. THE DETAILED LISTING IS ~
SHOWN BELOW AND THE FLOW CHART ON THE NEXT PAGE.) i ' i

MNEMONIC COMMENTS
SEARCH, CAL ADRDTA /INP ADDR AND DATA FM BFR
LLI 165 /SET PNTR TO SAVE DATA
LMB /SAVE SEARCH DATA IN MEM
SH1, LL1 165 /SET PNTR TO SRCH DATA
LaM /FETCH SEARCH DATA
CAL SETUP /FETCH CONTENTS OF MEM
cPM /DATA EQUAL SRCH DATA?
CTZ MCONT /YES, PRINT ADDR =
CAL CKEND /DONE? YES, RET TO CMND MODE
JMP SHI /NO, CONTINUE SEARCH

THE "“TRANSFER" ROUTINE

THE "TRANSFER" ROUTINE ALLOWS THE OPERATOR TO TRANSFER A BLOCK OF
MEMORY FROM ONE SECTION OF MEMORY TO ANOTHER, BY SIMPLY SPECIFYING THE
START AND END ADDRESS OF THE BLOCK TO BE MOVED, FOLLOWED BY THE START
ADDRESS OF THE SECTION TO RECEIVE THE MEMORY CONTENTS IN THE COMMAND.
THE "TRANSFER" ROUTINE THEN SETS UP A "FROM" POINTER AND A *TO"™ POINTER
WHICH ARE USED TO TRANSFER THE THE DATA "FROM" THE ORIGINAL LOCATION -
"TO" THE NEW LOCATION. THIS ROUTINE USES A SUBROUTINE CALLED "SWAP"™ NOT
ONLY DURING THE ACTUAL TRANSFER OF THE DATA BUT ALSO TO TEMPORARILY SAVE
THE ADDRESSES AS THEY ARE READ IN FROM THE INPUT BUFFER. THIS COMMAND
CAN BE USEFUL IN SAVING A BLOCK OF DATA IN ONE SECTION UF MEMORY BEFORE
USING THE ORIGINAL DATA AREA AGAIN. AFTER THE SECOND USAGE, THE TWO
BLOCKS WILL BE AVAILABLE FOR EXAMINATION AND/OR COMPARISION. ANOTHER
POSSIBLE APPLICATION IS TO RE-ORIGIN A PROGRAM FROM ONE AREA OF MEMORY
TO ANOTHER. OF COURSE, THE JUMP AND CALL INSTRUCTIONS WOULD HAVE TO BE
CHANGED TO INDICATE THE NEW ADDRESSES, BUT THIS CAN BE ASSISTED BY USING
THE "SEARCH" ROUTINE TO LOCATE THE JUMP AND CALL INSTRUCTIONS WITHIN THE
PROGRAM. THIS METHOD OF MOVING PROGRAMS CAN BE EFFECTIVE FOR PROGRAMS’
WHICH ARE NOT TOO LONG, AS OPPOSED TO RE-ASSEMBLING THE PROGRAM. '

THE FLOW CHART AND LISTING FOR THE "TRANSFER" ROUTINE ARE PRESENTED
FOLLOWING THE “SEARCH" ROUT!NE FLOW CHART. ')

- 39 =

YES

COMMAND

NO

VALID ?

FETCH START
ADDR AND
DATA

PRINT
ERROR
MSG

T

SEARCH MEM FOR
DATA PATTERN
SPECIFIED

[

PRINT
MEM ADDR

MATCH?

INCR MEM
PNTR

RETURN TO
COMMAND MODE

THE "SEARCH'" ROUTINE FLOW CHART

- 40 =

COMMAND
VALID ?

NO

SET UP "TO' AND
'FROM' PNTRS
MOVE DATA
'FROM' 'TO'
INCR '"TO' AND
*FROM' PNTRS

NO

TRANSFER

L

MNEMONIC

TRNSFR, LLI 342
CAL OCTNM

LLI 166

LBE

LEI 172

LDH

SVUSA, CAL SWAP
LALI 172

CPL

JFZ SVSA

THE MEMORY "TRANSFER"

/SET PNTR TO ADDR INP
7 FETCH
/SET PNTR TO ADDR INP

COMPLETE?

PRINT
ERROR
MSG

RETURN TO

COMMAND MODE

COMMENTS

e

*FROM" ADDR

/SAVE INP BFR PNT

/SAVE fFROMf IN TEMP STRGE

/MOVE ADDR TO TEMP STRGE
/1S XFR COMPLETE?

/N0,

CONTINUE MOVE

ROUTINE FLOW CHART

MNEMONIC COMMENTS

Rl T —— et S pp——

INB

LLB /RESTORE INP BFR PNTR
CAL OCTNM /INP 'TO' ADDR

LLI 176 /SET PNTR TO SAVE TO' ADDR
LMB /SAVE LO ADDR

INL

LMC /SAVE PG ADDR

LLI 172 /SET PNTR TO TEMP STRGE
LEI 166 /SET TO MOVE 'FROM' BACK
LDH))

TFl, CAL SWAP /XFR 'FROM'

LAl 176 ' i

CPL /XFR COMPLETE?

JFZ TFI1 /NO, CONTINUE

LEM /FETCH 'TO' PNTR

INL) ’

LDM

TF2, CAL SETUP /SET '"FROM' PNTR

CAL SwAP /SWAP MEM CONTENTS

CAL CKEND /DONE? YES, RET TO CMND MODE
JMP TF2 /N0, CONTINUE XFR

/

SWAP, LAM /FETCH BYTE TO XFR

CAL INMEM /INCR "FROM' PNTR

CAL SWITCH /CHANGE PNTRS

LMA /STORE BYTE IN NEw LOC
CAL INMHEM /INCR 'TO' PNTR

JMP SWITCH /CHANGE PNTRS AND RET

PUTTING IT ALL TOGETHER - THE ASSEMBLED MONITOR PROGRAM

AND AFTER ALL 1S SAID AND DONE, HERE IT IS! THE MONITOR PROGRAM
PRESENTED IN ITS FINAL ASSEMBLED FORM. THE ROUTINES DISCUSSED ARE NOV
LISTED WITH THEIR ADDRESSES AND MACHINE CODE TO PROVIDE THE READER WITH
A MONITOR PROGRAM THAT SIMPLY REQUIRES THE ADDITION OF THE I1/0 DRIVERS
(DETAILED PREVIOUSLY) TO TURN DNE S COMPUTER SYSTEM INTO A HIGHLY FUNC-
TIONAL “OPERATING SYSTEM!"

THE FIRST PART OF THE LISTING SHOWS THE LOCATIONS ON PAGE 00 WHICH
ARE USED BY THE MONITOR FOR STORING POINTERS, COUNTERS, TEMPORARY DATA.
THE COMMAND LOOK UP TABLE AND THE INPUT BUFFER. THE READER WILL NOTE
THAT SEVEN OF THE EIGHT RESTART LOCATIONS ARE AUAILABLE FOR THE USER S
PROGRAMS.

THE OPERATING PORTION OF THE MONITOR PROGRAM HAS BEEN ORIGINED ON
PAGES 14 THROUGH THE FIRST HALF OF PAGE 17, WITH THE EXPECTED STARTING
LOCATIONS OF THE USER PROVIDED I/0 DRIVERS ON THE SECOND HALF OF PAGL
17. THE READER MAY DESIRE TO RE-ORIGIN THE OPERATING PURTION TO THE
UPPER SECTION OF THE MEMORY AVAILABLE IN ONE'S SYSTEM.

THE START OF EXECUTION ADDRESS FOR THE MONITOR PROGRAM, AS LISTED.,
IS AT PAGE 14 LOCATION 000.

- 42 -

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
G600
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
0oo
000
000
000
000
000
000

000
070
070
073
074
075
076
076
076
076
076
076
130
131
132
133
134
135
136
137
137
137
137
150
150
151
152
153
154
155
155
155
155
160
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177
200
200
201
202
203
204
205
206
207

104 000 000

000
000
000

000
000
000
000

. 000

104

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

000
000
000
000
000
000
000
000

000 000

ORG 000 070

/

JMP 000 000 /JUMP INSTRUCTION FUR BRKPT
000 /BRKPT LOCATION - LOW ADDR
000 /BRKPT LOCATION - PG ADDR
000 /0RIG. BRKPT INSTRUCTION

/

/LOC. 076 THRU 127 AVAILABLE FOR USER

/!

/MONITOR MESSAGE TABLE

/

ORG 000 130

215 /CAR. RET.

212 /LINE FEED |

276 /> 1

000

215 /CAR. RET.

212 /LINE FEED

000

/

/LOC. 13§ THRU 147 AVAILABLE FOR USER
/
ORG 000 150

/
000 /DIGIT STORAGE

000 /FOR OCTAL NUMBER

000 /SUBROUTINE

000 /AVAILABLE

000 /AVAILABLE

/

/COMMAND AND GO TO JUMP INSTRUCTION

/

JMP 000 00O /CMND RTiN FILLS IN ADDR

/

000 /AVAILABLE

000 /AVAILABLE

000 /AVAILABLE

000 /AVAILABLE

000 /TEMP STORAGE

000 /TEMP STORAGE

000 /LOW ADDRESS - LOW PORTION
000 /LOW ADLCRESS - PAGE PORTION
000 /HIGH ADDRLESS - LOW PORTION
000 /HI1GH ADDRESS - PAGE PORTION
000 /TEMP STUORAGE)
000 /TEMP STORAGE

000 /TEMP STORAGE

000 /TEMP STORAGE

000 /TEMP STORAGE

000 /TEMP STORAGE

/

000 /VIRTUAL CPU REG "A“™

000 /VIRTUAL CPU REG "B"

000 /VIRTUAL CPU REG "C"

000 /VIRTUAL CPU REG "D"

000 /VIRTUAL CPU REG "E"

000 /VIRTUAL CPU REG "H"

000 /VIRTUAL CPU REG "L*™

000 /FLAG STATUS BYTE

- 43 -

000
000
000
000
000
000
000
000
000
000
000
000
Goo
000
000
000
000
000
000
000
ooo
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
Ol4
Ol4
014
0l4
Ola
0l4
Ol4g
014
Ol4
0l4
Ol4
014
Ol4
0l4
0la

210
210
210
211
212
213
2l4
215
216
217
220
221
222
223
224
225
226
227
230
231
232
233
234
235
236
237
240
241
242
243
244
245
246
246
246
246
246
246
246
246
246
246
246
246
246
000
ooz
004
007
ol2
0l4
015
o017
o2l
022
02s
026
027
030
031

315
150

304
275

015"

327
343
015
322
371

02

377
015
307
220
0L6
330
257

016 /

306

005

oL7’

323
oz2z2

07 7€

324
061
%

056
066
106
106
066
307
036
066
277
150
060
060
060
031
110

000
130 ;
155 0l4.
066 014
340

ol12
210

047 Ol4/

021 Ol4

/COMMAND LOOK UP TABLEL

/

315 /MODI FY
150

015

304 / DUMP

‘275

015

327 /BULK WRITE
343

015

322 /BULK READ
371

015

302 /BREAKPOINT
377)
0l5

307 /G0 TO

220 '

016

330 /EXAMINE REGISTERS
257

016

306 /FILL MEM
005)

017

323 / SEARCH

o2z

017

324 /TRANSFER
06l

017

/

/LOC. 246 THRU 337 AVAILABLE FOR
/USER OR TO EXPAND COMMAND TABLE

/
/LOC. 340 THRU 377 - INPUT BUFFER
/ ' 72

/PAGES 0! THRU A3 AVAILABLE
/FOR USER'S PROGRAMS

f)

/

/COMMMAND INPUT ROUTINE

/

ORG Ol4 000

INCMD, LHI 000 /SET PNTR TO HEADING MSG

-LLI 130

CAL MSG /PRINT C/R, L/F, >

CAL CDIN /INPUT COMMAND FM KYBD
LL1 340

LAM /FETCH COMMAND CHAR

LDI 012 /SET CMND NMBR CNTR

LLI 210 /SET CMND TABLE PNTR
CKCMD, CPM /15 CMND CHAR FOUND IN TBL?
JTZ FOUND /YES, PROCESS COMMAND

INL /NO,ADVANCE CMND TBL PNTR
INL

INL

_DCD /1S LAST CMND CHECKED?
JFZ CKCMD /NO, CHECK NEXT

014
014
Ol4
0l4
0l4
ol4
Ol4
0l4
Ol4
014
Ol4
014
Ol4
Ol4
Ol4g
0l4
0l4
Ol4
Ol4
0l4
Ol4
Ol4g
0l4a
Ol4
Ol4
0l4g
0l4
Ol4
Ol4
Ol4
Ol4
Ol4
Ol4
0l4
0l4
014
Ol4
Ol4
Ol4
Ol4g
0l4
Ol4
0l4
Ol4
Ol4
Ol4
Ol4
0l4
0l4
Ol4
Ol4
Olg
0l4
Ol4
0l4
0l4
Ol4
0l4
014
Ol4

034
037
04l

044
047
047
050
051

052
053
055
057
060
06l

062
063
066
066
070
072
073
076
100
103
105
110
112
113
115
116
120
123
124
125
130
131

132
135
135
137
140
143
la4
146
151

151

153
155
155
156
157
160
163
166
171

171

172
173
174
175

106
006
106
104

060
337
060
327
066
056
373
060
372
364
104

066
076
060
110
066
106
074
150
074
053
074
053
074
150
060
061

150
370
060
104

006
276
150
06l

076
104

066
056

307
240
053
106
106
104

060
013
050
007

151 014
311

000 014

156
000

155 000

340
240

070 014

340
799" 047
204

000 014

215
2l4

377

135 014

100

100
340
100

240

130

171
155

'INZ2.,

“JMP

ERR.

CAL PRINT
JMP INCMD
/

FOUND.,
LDM
INL
LCM
LLI
LHI
LMD
INL
LMC
LLE

156
000

INL

CAL HDLN
™ LAL 311
J99 037

JMP 155 000

/
CDIN.,
SPl.
INL
JFZ SPI
LLI 340

204
INCMD
218

CPI
JTZ
CPI
RTZ
CPI
RTZ
CPI
JTZ
INL
DCL
JTZ
LMA
INL
JMP INZ2
/
BDCR.»
CPL
JTZ
DCL
LMI
JMP
/
HDLN., LLI
LHI 000

/ .
MSG.

214

377
BDCR

IN2

IN2

240
IN2

LAM

. NDA

. RTZ
oxq 7
o014’

0147

CAL
CAL

PRINT
INMEM
MSG
/
INMEM.
RFZ

INH

RET

/

INL

LLI 340
LMI 240

CAL_RCV

LAI 340

134

- 45 =

/YES», PRINT C/R, L/F
/ILLEGAL ENTRY CODE
/PRINT ERROR MSG
/INP NEXT COMMAND

/ADV CMND TBL PNTR
/FETCH CMND LO ADDR

/FETCH CMND PG ADDR
/SET PNTR TU JMP INSTR.

/LOAD LO ADDR OF CMND
/LOAD PG ADDR OF CMND
/JUMP TO CMND ROUTINE

/SET PNTR TO START OF INWNP BFR
/FILL INP BFR WITH SPACES
/INCR INP BFR PNTR

/DONE? NO, STUORE MORE SPACES
/SET INP BFR PNTR

/1NP CHAR FM INP DEVICE
/CHAR = CNT'L D?

/YES, RET TO CUMMANU MOLE
/CHAR = CAR RET?

/YES, RLT TU CALLING PGH
/CHAR = CNT'L L?

/YES, RET TO CALLING PGM
/CHAR = RUBOUT?

/YES, DELETE CHAR FM INP BFR
/15 INP BFR FULL?

/YES, DON'T STORE CHAR
/NO, STORE CHARACTER
/INCR INP BFR PNTR
/INP NEXT CHAR

/SET ACC TO INP BFR S.A.
/ANY CHARACTERS YET?

/NO, CONTINUE INPUT

/YES, BACK UP INP BFR PNTR
/STORE SPACE OVER LAST CHAR
/CONTINUE INPUT

/SET PNTR TO C/Rs L/F MSG
/FALL THRU TO PRINT MSG

/FETCH CHAR TO PRINT
/END OF MSG CHAR?

/YES, RET TO CALLING PGM
/N0, PRINT CHAR

/INCR MSG PNTR
/CONTINUE PRINT QUT

/INCR LO ADDR

/1F NON ZERO, RET
/LELSE, INCR PG ADDR
/RET TO CALLING PGM

) 0l4
Ol4
0l4
014
Ol4
014
Ol4
014
Ola
014
014
014
014
0la
0la
014
0l4
0la
014
0l4a
014
0l4
014
0l4
014
0l4
014
0l4
014
014
014
014
0l4
0l4
0la
0l4
Ol4
014
0l4
ola4
014
0l4
014
0l4
0l4
Ol4
0l4
Ol4
0l4
014
0l4
Ol4
0l4
014
014
0l4
0l4
014
0l4

175
175
176
201
203
204
205
206
207
210
212
215
216
217
222
224
225
226
227
230
232
233
236
237
240
241
243
244
247
250
250
253
254
255
255
255
257
260
261
262
263
264
265
270
273
274
275
277
301
302
303
304
305
306
307
310
311
312
315

346
106
066
371

060
372
364
307
074
110
060
346
106
066
371

060
372
302
066
2717
140
013
060
307
066
277
140
007

106
321
040

066
375
060
375
060
375
364
106
160
307
336
044
066
317
370
060
307
371
060
370
363
060
104

250 047

166

254

250 0)a’

170

167

034 0Y4 '

166

034 014

255 014

150

332 014
315 014

007
150

265 014

/
OCTNM. LEL

“CAL OCTPR

LL1 166
LMB
INL
LMC
LLE
LAM
CP1 254

222 04T °JFZ SGL

INL
LEL

‘CAL OCTPR

SGL, LLI 170
LMB

INL

LMC

LAC

LLI 167

CrPM

‘JTC ERR

RFZ
INL

LAM

LLI 166

CPM

JTC ERR

RET

/

OCTPR» CAL DCDNM
LCB

INE

/

/ ,
DCDNM, LLI 150
LMH

INL

LMH

INL

LMH

LLE

LOOP, CAL FNUM
JTS CKLNH

LAM

LDL

NDI 007

LLI 150

LBM

LMA

INL

LAM

LMB

INL

LMA

LLD

INL

JMP LOOP

/

- 46 -

/SAVE INP BFR PNTR

/CONVERT 1ST OCTAL PAIR
/SET PNTR TO LO ADDR STRAGE
/SAVE LO HALF OF LO ADDR

/SAVE PG HALF OF LO ADDR
/JRESTORE INP BFR PNTR
/FETCH NXT CHAR

/CHAR = COMMA?

/N0, ONLY ONE ENTRY

/YES, INCR INP BFR PNTR
/SAVE INP VFR PNTR

/CONVERT 2ND OCTAL PAIR
/SET PNTR TO HI ADDR STRAGE
/SAVE LO HALF OF HI ADDR

/SAVE PG HALF OF HI ADDR
/1S5S HI AUDR < LO ADDR?

/YES, PRINT ERROR
/1F PG HALF NOT =, RET
/ELSE, CHECK LQ HALF

/15 HI ADDR < LO ADDR?

/YES, PRINT ERROR MSG
/NO, RET TOU CALLING PGM

/DECODE 1ST OCTAL NUMBER
/SAVE OCTAL NUMBER
/INCR INP BFR PNTR

FALL THRU TO DECODE 2ND NMBR

/SET PNTR TO DIGIT STRAGE TBL
/CLEAR TBL BY STORING 000«

/RESET INP BFR PNTR

/CHECK FOR VALID NUMBER
/1F NOT, CHECK CHAR CNT = 0
/ FETCH CHAR

/SAVE INP BFR PNTR

/MASK OFF 260

/STORE OCTAL NUMBER IN
/TABLE AT LOC 150 PG 00
/AND SHIFT OTHER NUMBERS
/UP THRU THE TABLE

/RESTORE AND INCR INP BFR PNTR

/FETCH NXT NUMBER

/5 014

Ol4
Ol4
0l4
0l4
014
Ola
0l4
0l4
014
014
0l4
014
Ol4
0l4
014
Ola
014
Ol4
014
Ola
014
014
0l4
Ol4
014
014
Ol4
0l4
014
014
Ol4
Ol4
014
0l4
014
014
014
014
014
015
015
015
01s
015
015
015
015
015
015
015
015
015
015
015
015
015
015
015

315
316
317
322
323
326
331

332
332
333
335
336
340
342
343
343
345
346
347
350
351

353
354
355
355
357
360
Je62
363
365
366
367
370
371

372
373
374
375
376
377
000
00l

003
004
005
005
006
007
010
011

o12
013
Ol4
014
015
016
017
o021

023

306
274

150 034 0147°
LEL

346

106 355 0)4""
120 034 014"

007

307
074 260
063
024 270
004 200
007

004 001
370
003
060
307
004 o001
370
007

066 152
307
074 004
023
044 003
o12
o12
310
061
307
oo2
002
ooz
201
06l
207
310
006 200
240
007

325
353
332
326
364
342
007

360
002
ooz
044 003
064 260

CKLNH., LAL
CPE
JTZ ERR

CAL OCT
JFS ERR
RET

/

FNUM., LAM
CPl 260
RTS

Sul 270
ADI 200
RET

/

INCR» ADI 001

LMA
RFC

INL
LAM
ADI 001
LMA
RET

/

0CT» LLI 152

LAM

CPI 004
RFS

NDI 003
RRC

RRC

LBA

DCL
LAM

RLC

RLC

RLC

ADB

DCL

ADM

LBA

LAl 200
NDA

RET

/

SWITCH, LCH

LHD
LDC
LCL
LLE
LEC
RET
/

0CTOUT» LLA

RLC
RLC
NDI 003
ORI 260

106 300 017 7/CAL PRINT

/3°

7 1.

- 47 -

/1S CHAR CNT = 07?

/YES» PRINT ERROR MSG

/N0, SAVE INP BFR PNTR
/FETCH FINAL OCTAL NUMBER
/1F INVALID, PRINT ERR MSG
/ELSE, RET TO CALLING PGM

/15 CHAR A VALID NUMBER?

/NO, RET WITH S FLAG SET
/CHECK UPPER LIMIT BY
/SETTING S FLAG TO PROPER
/STATE AND RETURN

/INCR CONTENTS OF MEM LOC
/RESTORE MEM CONTENTS
/1F NO CARRY. RET

/ELSE, FETCH NXT LOC

/INCR MEM CONTENTS
/RESTORE MEYM CONTENTS
/RET TO CALLING PGM

/SET PNTR TO 3RD DIGIT

/1S5 3RD DIGIT > 37

/YES, RET WITH S FLAG RESET
/CLEAR CARRY

/POSITION DIGIT

/SAVE IN REG B
/DECR PNTR

/FETCH NEXT DIGIT
/POSITION DIGIT

/ADD TO REG B
/DECR PNTR

/SAVE FINAL NUMBER

/SET S FLAG TO INDICATE
/THAT THE NUMBER IS VALID
/RET TO CALLING PGM

/SWITCH THE PNTR IN
/REG'S H AND L WITH
/THE PNTR IN REG'S D AND E

/RET TO CALLING PGM

/SAVE OCTAL NUMBER TU PRINT
/POSITION HUNDRED'S DIGIT

/MASK OFF OTHER BITS
/FORM ASCI1I CODE
/PRINT DIGIT

7

11
Y

015
015
015
015
015
015
015
015
015
C15
015
015
015
015
015
015
015
015
015
015
015
015
0l5
015
015
015
0ls
015
015
015
015
015
015
015
015
015
015
015
015
015
015
015
015
015
015
015
0ls
015
015
015
0ls
015
015
015
0l5
01sS
015
015
015
015

026
027
030
031

032
034
036
041

042
044
046
051
051

053
056
056
060
oez2
063
065
070
073
075
076
101

101

101

103
106
106
110
112
113
114
115
116
117
117
121

123
124
126
127
132
133
134
136
137
142
laq
145
150
150
152
155
160
163
166
171

173

306
o012
o12
ol12
044
064

106 -

306
044
064
104

006
104

066
056
307
044
106
106
066
307
106

006

104 -

056
066
327
060
357
362
007

056
066
307
066
277
110
060
307
066
277
150
066
307
104

066
106
106
106
106
106
006
276

007
260

130
007

260

360
130

272
ik

167
000

077
Ol4
101

166

Ol4

240

(20

000
166

000
171

167

142

166

000
166

343

342
175
101
266
051
241
340

LAL

RRC

RRC

RRC

NDI
fP/ORI

0 /74 CAL
}/[1-1 LAL
NDI

ORl

07 #JMP
e /

COLON.
0V77#JMP PRINT
7 1/

PRTI 66,

LHI 000

LAM

, NDI 077
015’7 cAL 0CTOUT
0157/ CAL SPAC

LLI 166

- LAM
01577 CAL

/

/

SPAC.,

007
260
PRINT

007
260
PRINT

LLI

OCTOUT

ity

SETUP.

LLI 166

LCM

INL

LHM

LEC

RET

/

CKEND.

LLI 171

LAM

Lil

CPM
oXs?Y JFZ

INL

LAM

LLI

- CPM

oyﬁadez INCMD

CONT.

_Lanm
Oy4’ JMP INCR
s

167

CONT

166

. MODIFY,
0Y4 CAL OCTNM
01577 CAL SPAC

0)57"MODl, CAL MEMPRT

03577 CAL COLON

015 7/CAL INSPCL

’ LAI 340
CPL

Lal 272

167

LAI 240
-o;vg/ng,PaLgl-fm

LHI 000

LHI 000

LLI 166

LLI 342

- 48 -

/FETCH OCTAL NUMBER
/POSITION TEN'S DIGIT

/MASK OFF OTHER DIGITS
/FORM ASCII CODE
/PRINT DIGIT

/FETCH OCTAL NUMBER
/MASK OFF OTHER LCIGITS
/FORM ASCII CODE
/PRINT DIGIT AND RET

/SET ASCII CODE FOUR :
/PRINT COLUN AND RET

/SET PNTR TO PG ADDR
/0F LO ALDR STORED
/FETCH PG ADDR

/PRINT PAGE ADLER

/PRINT A SPACE

/SET PNTR TO LO ADDR
/FETCH LO ADDR

/PRINT LO ADDR

/FALL THRU TO PRINT SPACEL

/SET ASCII1 CULDE FOR SPACEL
/PRINT SPACE AND RET

/SET PNTR TO 00 leé6

/FETCH LO ALDR

/FETCH PG ALDR
/SET PNTR TO MEM LOC
/RET TO CALLING PGM

/SET PNTR TO HI ADDR

/FETCH 2ND HALF

/SET PNTR TO 2ND HALF LO ADDR
/2ND HALFS EGUAL?

/NO, CONTINUE PROCESS

/FETCH 1ST HALF HI ALDR

/SET PNTR TU 1ST HALF LO ADLR
/1S 15T HALFS ERQUAL?

/YES, RET TO CMND MODE

/NO, SET PNTR TO LO ALDR
/INCR LO ADDR

/SET INP BFR PNTR

/FETCH ADDR TO MODIFY
/PRINT SPACE

/PRINT CONTENTS OF MEM LOC
/PRINT COLON

/INP MODIFICATION

/WAS MOD ENTERED?

015
015
015
015
015
015
015
015
015
015
015
01s

| 015

015
015
015
015
015
015
015
015
0ls
015
015
015
015
015
015
015
015
015
015
015
015
015
015
015
015
015
015
015
015
015
015
015
015
015
015
015
015
015
0l5
015
015
015
015
015
015
015

174
177
200
203
204
206
207
210

211

214
215
217
22l

222
225
230
233
233
236
241

241

243
246
247
251

252
254
257
260
263
266
266
271

272
275
275
277
302
305
310
313
315
317
322
325
330
332
333
334
335
340
343
343
345
350
352
353
354
355

150
340
106
301
066
347
060
337
106
370
056
066
307
106
106
104

106
104

066
106
370
074
053
074
150
060
150
104

106
307
104

066
106
106
106
106
ceeé
076
106
106
106
066
317
011

371

150
104

066
106
066
3217
060
317
060

215 0}5 JTZ NXLOC
255 0/47 CAL DCDNM
LAB
166 LLI 166
L EM
INL
, LDM
005 0}5”’CAL SWITCH
LMA
000 NXLOC, LHI 000
166 LLI 166
343 0}477 CAL INCR
233 01577 CAL MCONT
160 01577 JMP MODI
/
151 0147° MCONT, CAL HDLN
056 0157/ JMP PRT166
7/
340 , INSPCL, LLI 340
268 0177°LPIN, CAL RCYV K
e LMA
240 CPI 240
RTZ
215 _CPI 215
000 014’7 JTZ INCMD
__INL
034 014 JTZ ERR
243 0157/ JMP LPIN
/
106 015°" MEMPRT» CAL SETUP
LAM
014 0157 JMP OCTOUT
e
342 MDUMP, LLI 342
175 014 CAL OCTNM
151 0l4 CAL HDLN
233 015" MDMPl, CAL MCONT
101 015" CAL SPAC
164 MDMP2, LLI 164
020 S LMI 020
266 015 OUTAGN, CAL MEMPRT
117 015 CAL CKEND
101 0157 CAL SPAC
164 LLI 164
LBM
DCB
JLMB
305 015 ,JTZ MDMPI
317 015’7 JMP OUTAGN
/
342 WRITE, LLI 342
175 OL475 CAL OCTNM
166 LLI 166
LCM
INL
LBM
INL

- 49 -

/NOU.»
/YES.,

SET UP NXT LOC
SAVE INP PNTR

/CONVERT TO OCTAL NUMBER
/SAVE OCTAL NUMBER

/SET PNTR TO

MEM ADDR STRAGE

/FETCH MEM PNTR

/SET PNTR
/LOAD MEM
/SET PNTR
/SET PNTR
/FETCH LO

TO MEM LOC

WITH NEW VALUE

TO PG 00

TO MEM ADDR STR&GE
HALF

/INCR MEM ADDR
/PRINT NXT ADDR TO MODIFY

/PRINT C/Rs L/F

/PRINT ADDR TO MODIFY AND RET
/SET PNTR TO SeA. OF INP BFR
/INP CHAR

/STORE CHAR IN INP BFR
/CHAR = SPACE?

/YES, RET TO CALLING PGM
/N0, CHAR = C/R?

/YES, RET TO COMMAND MODE
/NO, INCR INP BFR PNTR

/INP BFR FULL? YLS, ERROR
/NO, INP NXT CHAR

/SET PNTR TO MEM LOC
/FETCH CURRENT MEM CONTLENTS
/PRINT CONTENTS AND RET

/SET PNTR TO INP BFR
/FETCH MEM DUMP LIMITS
/PRINT C/Rs L/F

/PRINT ADDR OF 1ST LOC
/PRINT SPACE

/SET PNTR TO TEMP STRAGE
/SAVE LOC PER LINE CNTR
/PRINT MEM CONTENTS
/CHECK FOR LAST LOC PRTD
/PRINT SPACE

/SET PNTR TO L/L CNTR
/FETCH CNTR

/DECR CNTR

/SAVE CNTRe CNTR = 07?
/YES, START NEW LINE
/NO, PRINT MORE GCONTENTS

/SET PNTR TO INP BFR
/FETCH START AND END ADDR
/SET REG'S H AND L WITH
/THE START ADDR AND
/REG'S D AND E WITH

/THE END ADDR OF THE
/BLOCK OF MEM TO BE

1/ 015 356 347 L EM JWRITTEN TO THE BULK

015 357 060 INL /STORAGE DEVICE.
015 360 337 LDM *

015 361 351 LHB

015 362 362 pLLC

015 363 106- aﬂe-0177 CAL PUNCH/‘ /G0 TO USER BULK WRITE RTN
015 366 104 000 Ol4 JMP INCHMD /RET TO COMMAND MODE

015 371 s /
015 371 106 240 0777 RDBULK, CAL READX /GO TO USER BULK READ RTN
015 374 104 000 0L&7*JMP INCMNW ———"" /RET TO COMMAND MODE

015 377 /

015 377 106 0S0 0L67° BREAK, CAL ANLYZ /SET UP ADDRESS OF BP
016 002 364 LLE

016 003 353 ~ _LHD

016 004 150 027 0¥6'°JTZ Bl /DETERMINE IF Bl OR B2
016 007 074 262 __CP1 262 ' '

016 011 110 034 014’°JFZ ERR /ERROR IF NEITHER

016 0l4 N '

016 014 106 075 0)67°B2, CAL SETBK /SET UP BP RST COMMAND
016 017 076 176 LMI 176 /*xx* STORE BP2 FND LA
016 021 060 INL

016 022 076 016 LMI 016 /*%%% STORE BP2 FND PG
016 024 104 037 0L67° JMP FINBK /TO REST OF BP SET UP RTN
016 027

016 027 106 075 016 Bl. CAL SETBK /SET UP BP RST COMMAND
016 032 076 112 LML 112 /*xx% STORE BPl FND LA
016 034 060 INL

016 035 076 016 LMI 016 /*xx% STORE BP1 FND PG
016 037 060 FINBK, INL

016 040 374 LME /STORE BP ORIG LOW ADDR
016 04l 060 INL

016 042 373 LMD /STORE BP ORIG PG ADDR
016 043 060 INL)

016 D44 370 ~ LMA /STORE ORIG BP INSTRUCTION
0l6 045 104 000 OW¥4'~ JMP INCMD 1
016 050 /

016 050 066 343 ANLYZ, LLI 343 /SET PNTR TO BUFF SA

016 052 106 175 01473 CAL OCTNM /FETCH ADDR INTO 166, 167
016 055 066 34l - LLI 34l /RESTORE BUFF SA

016 057 307 LAM /GET BP 1 OR 2 COMMAND
016 060 066 166 LLI 166 /GET BP LOW ADDR

016 062 347 LEM /INTO "“E" '

016 063 060 INL

016 064 337 LDM /AND BP PAGE

016 065 066 156 LLI 156 /PNTR TO JUMP COMMAND

016 067 374 LME '

016 070 060 INL /SET UP JUMP ADDRESS

016 071 373 LMD

016 072 074 261 CPI 261 /DETERMINE IF CMND | OR 2
0l6 074 007 RET '

016 075 /

016 075 307 SETBK, LAM /SAVE ORIG CONTENTS OF BP
016 076 076 075 LMI 075 /INSERT BP RESTART INSTR
016 100 346 LEL /CHANGE POINTERS

016 101 335 LDH ')

016 102 056 000 LHI 000 /SET PAGE 00

016 104 066 070 LLLI 070 /SET PNTR TO RST 1 LOC
016 106 076 104 LMI 104 /STORE JUMP INSTRUCTION
016 110 060 INL ' :

016 111 007 RET

- 50 -

0le6
ol16
0lé6
0le
0leé
016
016
016
016
0l6
016
Oleé
016
ole
Ole6
0lé
Oleé
016
0oleé6
oleé
016
Ole
Ole
0le
Ole
0le6
0l6
0le6
016
Oleé6
oleé
O0le6
0leé
o0leé6
ol6
0le6
016
Oleé
Ole
0l 6
0l6
Ole
Ole
016
ol16
0le6
ole6
0leé
olé
016
0l6
016
016
016
016
oleé
Ole
Ole6
016

112
112
114
116
117
121

122
124
125
126
127
130
133
135
140
142
145
147
152
154
155
156
160
161

163
lé4
165
166
167
170
171

172
173
176
176
177
200
202
204
205
207
210
212
213
215
220
220
223
226
230
233
233
235
236
237
240
241

242
243

056
066
370

066
371

066
372
305
310
320
100
006
110
016
130

026
120
004
201

202
066
370
066
347
060
337
060
307
364
353
370
104

315
326
056
066
373
066
374
066
371

066
104

106
150
074
110

066
337
060
347
060
317
060
327

000
200

201

202

135
001
142
o010
147
100
154
200

207

073

000

000
203

204
205

206
124

050
251
262
034

203

/
BRK1, LHI 000
LLI 200
LMA
LLI 201
LMB
LLI 202
BRKCOM, LM
FLAGT, LAH
LBA
LCA
016'° JFC NOG
LAl o001
0167"NOCs JFZ NOZ
. LBI 010
0167° NOZ, JFP NOP
LCI 100
016" NOP, JFS NOS
' ADI 200
NOS, ADB
ADC
LLI 207
LMA
LLI 073
LEM
INL
LDM
INL
LAM
LLE
LHD
. LMA
047> JMP INCMD
/
BRK2, LBH
LCL
LHI 000
LLl 203
LMD
LLI 204
LME "
LLI 205
LMB
~ LLI 206
016 JMP BRKCOM
o,
OF6 GOTO, CAL ANLYZ
0y6'°JTZ GOI
CPI 262
01473JFZ ERR
; /
G02, LLI 203
LDM
INL
L EM
GOCOM, INL
LBM
INL
LCM

C

= 5l

/SET PAGE 00
/CPU REGISTER STORAGE LOCS
/SAVE ACCUMULATOR

/AND CPU REGS B & C

/WITHOUT DISTURBING FLAGS
/SET UP TEMP REGS

/TEST FOR CARRY FLAG

/SET 1 IN "A"™ IF CARRY TRUE
/TEST FOR ZERO FLAG

/SET 1 IN "B"™ 1F ZERO TRUE

/TEST FOR PARITY FLAG

/SET 1 IN "C™ IF PARITY "T"
/TEST FOR SIGN FLAG)

/SET MSB IF SIGN TRUE

/FORM FLAG STATUS BYTE
/STORE FLAG STATUS

/PNTR TO ORIG BP LOW ADDR
/GET ORIG LO; OF BP

/AND ORIG PG OF BP

/AND ORIG BP INSTRUCTION
/SET UP ORIGINAL “u o]
/BREAK POINT POINTERS
/RESTORE ORIG BKPNT INSTR
/BACK TO MON;TOR '
/SAVE ORIG VALUE Of H & L
/SET PNTR TO PAGE 00

/CPU REGISTER STORAGE LOCS
/SAVE REGS D AND E

/AS WELL AS ORIG H AND L

/WITHOUT DISTURBING FLAGS

/TO REST OF BREAKPT RTN

/SET UP ADDR OF GOTO
/TO SET UP CPU REGS AsB.C

/ERROR IF NOT Gl OR G2

/SET UP CPU REGS DsEsH & L

' 016

0le6
Ole6
0le
oleé
016
0l6
0lé6
O0lé
Oleé
016
016
0leé
0leé
Oleé
016
0lé6
0leé
0leé
016
0le
0le
Ole6
016
0l6
0lé6
016
016
0leé
0lé6
016
Ole
0leé
Ole
ole6
0le
Oleé
Cle
ole
Ole
oleé
016
Ole
0leé
016
O0le
0le
0le6
Oleé

> 017

017

017
' 017

017
017
017
017

244
245
246
251

251

253
254
257
257
26l

262
264
267
271

274
276
300
301

302
305
306
311

314
317
3zl

322
323
326
331

333
334
335
340
340
342
345
347
352
352
354
357
361

364
364
366
371

374
376
377
ooz
005
005
olo0
013
Ol4
017
022

362
351
104

066
307
104

066
307
074
140
074
100
024
066
370
360
106
307
106
106
106
046
306
274
150
106
066
367
371
104

074
110
006
104

074
110
006
104

074
110
106
066
307
106
104

106
106
371
106
104

155

200

240

341

301
034
306
340
101
164

101

014
051
241
340

000
255
164

000

310
352
205
276

314
364
206
276

306
034
101

207

0l4
000

050
106

117
010

LLC
LHB
JMP 155 000
o
GOl.,
LAM
0161° JMP GOCOM
/
XREG.
LAM
RGAGN.
01477 JTC ERR
_CPI 306
0167” JFC FHL
SuUl 101
XCOM, LLI 164
LMA
4 LLA
0)5Y cal
LAM
o015’ caL
0)51 cAL
0157" caL
LEI
LAL
~ CPE
oL4a” gtz
0t417% CAL
LLI
LLM
. _ LMB
ova'’ gMp
/
. FHL., CPI 310
01677 JFZ LORF
- LAI 205
0167° JMP XCOM
‘ /
. LORF.,
0V6'” JFZ F
_LAI 206
016'7JMP XCOM
/
273 F‘
o014’ ,uFz
0157 caL
LLT
_; LAM
015 caL
0147 JMP
o/

000

LLI 200

LLI 34l

CPI 301

SPAC

OCTOUT
COLON
INSPCL
340

INCMD
DCDNM
164

INCHMD

CPLl 314

CPI 306
ERR
SPAC
207

oCcToUuT
INCMD

017' FILL, CAL ADRDTA

0157 FL1, CAL SETUP
_yLMB

015’" CAL CKEND
0177, JMP FL1

/

- 52 =

/SET UP CPU REGS A,E,C

/SET INP BFR PNTR

/FETCH REG LETTER

/1S REG VALID?

/NO, PRINT ERROR

/YES, 1S5 REG A THRU E?

/NO, TRY H, L OR F

/SET UP REG TbL PNTR

/SAVE TBL PNTR IN TEMP STRAGE

/SET PNTR TO REG Tbi LOC
/PRINT SPACE

/FETCH CURRENT REG VALUE
/PRINT CURRENT RLG VALUEL
/PRINT COLON

/INP MODIFICATION

/SET INP BFR PNTR

/WAS MOD ENTERED?
/N0, RET TU COMMAND MODE
/YES, DECODE OCTAL KNUMBER
/SET PNTR TO TEMP STRAGE
/FETCH REG TBL PNTR
/STORE NEW REG VALUEL
/RET TO COMMAND MODE

/15 REG = H?

/N0, TRY L OR F

/YES, SET REG TBL PNTR
/INP MOD TO REG VALUE

/15 REG = L7?

/NO, TRY F

/YES, SET REG TBL PNTR
/INP MOD TO REG VALUE

/15 REG = F, FOR FLAGS?
/NO, PRINT ERROR
/PRINT SPACE

/SET REG TBL PNTR
/FETCH FLAG WURD
/PRINT FLAG WORD

/RET TO COMMAND MODE

/INP ADDR AND DATA FM BFR
/SET UP MEM PNTR

/FILL MEM LOC WITH DATA
/DONE? YES, RET TO CMND MODE
/NO, CONTINUE WITH FILL

1

<017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017
017

oz22
o022
025
027
030
032
033
036
037
042
045
050
050
052
055
056
06l
06l
063
0eé
070
071
073
074
077
101
102
105
106
107
112
114
115
116
117
121
123
124
127
131
132
135
136
137
140
143
146
151
154
154
155
160
163
lé64
167
172

106
066
371

066
307
106
2717
152
106
104

066
106
040
104

066
106
066
314
046
335
106
006
276
110
010
36l
106
066
371
060
372
066
046
335
106
006
276
110
347
060
337
106
106
106
104

307
106
106
370
106
104

050
165

165
106
233
117
030

342
175

255
342
175
166
172

154
172

074

175
176

172
166

154
176

124

106
154
117
140

171
005

171
005

/
Oygﬂ'SEARCH; CAL ADRDTA /INP ADDR AND DATA FM BFR

LLI 165
LMB
SHI1.
, , LAM
015" caL

., CPM
0V5 6 CTZ
015’ CAL
0177 JMP

/

SETUP

MCONT
CKEND
SH1

LLI 165

. ADRDTA, LLI 342

" CAL 0CTNM
~INE
0147 JMP DCDNM
: /
TRNSFR.
CAL OCTNM
LLI 166
LBE
LEI
LDH
0177 SVSA,
LAI 172
~ CPL
0177 JFZ SVSA
' INB
_LLB
014" CAL OCTNM
LLI 176
LMB
INL
LMC
LLI
LEI
LDH
TFl.,
LAI 176
CPL
0y7'“ JFZ TFI
L EM
INL
S | LDM

opa’

014"

172

172
166

0)7‘

LLI 342

CAL SWAP

CAL SVWAP

0}5, TF2, CAL SETUP

017'° CAL SWAP
03571 CAL CKEND
0177-JMP TF2

/
. SWAP, LAM
0)4'" CAL INMHIM
0157 CAL SWITCH
~_ LMA
0)4”™ CAL INMEM
015714 JMP SWITCH

/

53

/SET PNTR TO SAVE DATA

/SAVE SEARCH DATA IN MEM
/SET PNTR TO SRCH DATA
/FETCH SEARCH DATA

/FETCH CONTENTS OF HMEM

/DATA EQUAL SRCH DATA

/YES, PRINT ADDR

/DONE? YES, RET TO CMND MODE
/NO, CONTINUE SEARCH

/SET PNTR TO ADDR INP
/INP START AND EvD ADDR
/INCR TO DATA PUSITION
/FETCH DATA FM INP EFR

/SET PNTR TO ADDR IWP
/FETCH 'FROM' ALDR

/SET PNTR TU ADDR INWP
/SAVE INP BFR PNT

/SAVE 'FROM' IN TEHMP STKRGE

/MOVE ADDR TO TEMP STRGE
/15 XFR COMPLELTE?

/N0, CONTINUE MOVEL
/RESTORE INP BFR PNTR

/INP '"TO' ADDR

/SET PNTR TO SAVE 'TO' ADLR
/SAVE LO ALDLE 5 “u

/SAVE PG ADDR
/SET PNTR TO TEMF STRGE
/SET TO MOVE 'FROM' BACK

/XFR 'FROM'

/XFR COMPLETE?
/N0, CONTINUE
/FETCH 'TO" PNTR

/SET 'FRONM' PNTR

/SWAP MEM CONTENTS

/DONE? YES, RET TO CMND MODE
/N0, CONTINUE XFR '

/FETCH BYTE TO XFR
/INCR 'FROM®' PNTR
/CHANGE PNTRS

/STORE BYTE IN NEW LOC
/INCR 'TO' PNTR
/CHANGE PNTRS AND RET

7 1~
76 00

0172680~ RCV. /USER DEFINLD INPUT RUUTINE
/FOR OPERATOR INPUT LCEVICE

. |]
| = Y OM 2

017 240 (Rom) READ, [20s0 ¢rony -,,-) /USER DEFINED INPUT ROUTINE
;/;2— /FUR BULK STORAGE DEVICE

7 [P /

L17-300 PRINT. ZUSER DEFINED OUTPUT ROUTINE

/FOR DISPLAY DEVICE
Tb / .
~-017 340 PUNCH;-'»" T /USERE DLRFINED QUTPUT ROUTINE

/FOR BULK STORAGE DEVICE

OPERATING THE MONITOR PRUGRAM

AS A REVIEW OF THE MONITOR PROGRAM FUNCTIONS AND, ALSOU, TO SERVE AS
AN OPERATOR'S GUIDE, THE OPERATION OF EACH OF THE MONITOR COMMANDS WILL
NOW BE DESCRIBED.

THE “MODIFY*" COMMAND

THE "MODIFY'" COMMAND IS INITIATED BY TYPING IN THE '"M" COMMAND FOL-
LOWED BY THE ADDRESS TO BE MODIFIED, IN THE FOLLOWING FURMAT:

M HHH LLL (CTRL/L)

WHERE "HHH" IS THE PAGE ADDRESS AND "LLL'" IS THE LOW ADDRESS (IN OCTAL)
OF THE RAM MEMORY ADDRESS WHERE ONE DESIRES TO BEGIN EXAMINING AND/OR
MODIFYING THE CONTENTS OF MEMORY LOCATIONS. THE OPERATOR SHOULD NOTE
THAT A SPACE SHOULD BE INSERTED BETWEEN THE "M*" AND THE PAGE ADDRESS AS
WELL AS BETWEEN THE PAGE ADDRESS AND THE LOW ADDRESS WHEN ENTERING THE
COMMAND STRING.

WHEN THE OPERATOR DEPRESSES THE "CTRL/L" COMBINATION TO EXECUTE THE
'M" COMMAND, THE FOLLOWING WILL OCCUR. THE OUTPUT DLEVICE WILL DISPLAY
THE FOLLOWING INFORMATION:

HHH LLL XXX:

THE "XXX'" 1S THE CURRENT CONTENTS OF THE MEMORY LOCATIUN SPECIFIED. THE
PROGRAM WILL THEN WAIT FOR THE OPERATOR TO SELECT EITHER A "MODIFY" OP-
TION, OR TAKE THE OPTION OF NOT MODIFYING THE CURRENT LOCATION BEING
DISPLAYED BUT CONTINUE TO DISPLAY THE NEXT LOCATIOW. OR TERMINATE THL
'M' SEQUENCE. TO ELECT TO MODIFY THE CONTENTS OF THE MEAMURY LOCATION
BEING DISPLAYED, THE OPERATOR SIMPLY TYPES IN THE DESIRED OCTAL CONTENTS
IMMEDIATELY FOLLOWING THE ":* SIGN AND THEN DEPRESSES THE '"SPACE" BAR.
THE NUMBER INTERED WILL BECOME THE NEW VALUE FUR THE MEMORY LUCATION AND
THE PROGRAM WILL PROCEED TO DISPLAY THE ADDRESS AND CONTENTS OF THE WEXT
SEQUENTIAL MEMORY LOCATION.

IF THE OPERATOR DOES NOT WISH TO MODIFY THE CONTENTS OF A LOCATION.
BUT DOES DESIRE TO EXAMINE THE CONTENTS OF THE NEXT MEMURY LOCATIOWN.
THEN IT IS ONLY NECESSARY TO DEPRESS THE "SPACE" BAR. THE PROGRAM WILL
PROCEED TO DISPLAY THE MEMORY ADDRESS AND CONTENTS OF THE NEXT MEMORY
LOCATION.

5‘“

IF THE OPERATOR DESIRES TO TERMINATE THE "“MODIFY" PROCESS, THEN THE
"CARRIAGE RETURN" IS ENTERED AND THE PROGRAM WILL RETURN TO THE MONITOUR
COMMAND MODE AND DISPLAY THE '">'" MONITOR "READY" CHARACTER.)

IT IS IMPORTANT TO NOTE THAT WHEN ELECTING TO MODIFY A MEMORY LOcCA-
TION, THE "SPACE" CHARACTER MUST BE ENTERED AFTER ENTERING THE O0CTAL
NUMBER THAT IS TO BE THE NEW VALUE IN THE MEMORY LOCATION! THIS WILL
CAUSE THE NEW VALUE TO BE PLACED IN THE MEMORY LOCATION AND AUTOMATICAL-
LY CAUSE THE NEXT LOCATION IN MEMORY TO BE DISPLAYED. HITTING THE
“C/R" IMMEDIATELY AFTER INTERING A NEW VALUE FOR A MEMORY LOCATION WILL
CAUSE THE PROGRAM TO RETURN TO THE MONITOR AND WILL N O T RESULT IN
THE VALUE BEING PLACED IN MEMORY! THIS FORMAT ALLOWS THE OPERATOUR TO E-
LECT NOT TO CHANGE A MEMORY LOCATION EVEN AFTER HAVING TYPED IN A VALUL.
1F, HOWEVER, THE RULE IS NOT REMEMBERED, THE OPERATOR MEY INADVERTENTLY’
FAIL TO INSERT THE DESIRED CHANGES.

CORRECTING ERRORS WHEN IN THE MONITOR COMMANWND MODE

IF THE OPERATOR MAKES A TYPING MISTAKE WHILE ENTERING A COMMAND
SEQUENCE TO THE MONITOR, THE CURRENT COMMAND CAN BE ERASED BY ENTERING
THE CHARACTER '"CONTROL/D." THIS WILL CAUSE THE PROGRAM TO GO BACK TO
THE INITIAL “READY" CONDITION (">" DISPLAYED) TO AWAIT A NEW ENTRY. IF
ONLY ONE OR TWO CHARACTERS ARE ENTERED IN ERROR, THE "RUBOUT®" CHARACTER
MAY BE ENTERED TO DELETE ONE CHARACTER TO THE LEFT FOR EACH RUBOUT EN-
TERED.

SHOULD THE OPERATOR INADVERTENTLY ENTER AN INVALID COMMAND OR ComM-
MAND SEQUENCE, THE PROGRAM WILL CAUSE THE LETTER "I" (ILLIGAL COMMAND)
TO BE PRINTED. ’ '

THE MEM0RY "DUMP'"™ COMMAND

THE MONITOR MEMORY "“DUMP'" COMMAND IS INITIATED BY TYPING LN THE "D"
COMMAND IN THE FOLLOWING FORMAT: '

D HHH LLL,MMM NNN (CTRL/L)

WHERE "HHH" AND "LLL" SIGNIFIES THE STARTING ADDRESS (OCTAL) AND “MMM'
AND "NNN' INDICATE THE ENDING ADDRESS OF THE BLOCK OF MEMORY THAT ONE
DESIRES TO HAVE DISPLAYED. WHEN THE "CTRL/L"™ (OR, "C/R" MAY BE USED) IS
INTERED» THE PROGRAM WILL PROCEED TO DISPLAY THE CONTENTS OF THE MEMORY
LOCATIONS SPECIFIED. THE OUTPUT FORMAT WILL BE THE FOLLOWING:

HHH LLL XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX AXR
HHH+020 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX KXX XXX XXX
HHH+040 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX

EACH LINE PRINTED STARTS WITH THE ADDRESS OF THE FIRST LOCATION DISPLA-
ED FOLLOWED BY THE CONTENTS OF THE NEXT 20 (OCTAL) LOCATIONS IN MEMORY.
THE PROCESS CONTINUES UNTIL THE LAST LOCATION SPECIFIED IN THE COMMAND
HAS BEEN PRINTED.

- 55 =

THE "WRITE" COMMAND

THE "“WRITE" COMMAND IS INITIATED BY THL OPERATUR ENTERING THE “uw"
COMMAND IN THE FOLLOWING FORMAT:

W HHH LLL., MMM NNN (CTRL/L)

WHERE "HHH'" AND "LLL"™ INDICATE THE START ADDRESS AND "MMM"™ AND "NNN' IN-
DICATE THE ENDING ADDRESS OF THE BLOCK TO BLE WRITTEN TO THE BULK STORAGE
DEVICE. NATURALLY, THE OPERATOR MUST MAKE WHATEVER PREPARATIONS ARE NE-
CESSARY FOR THE BULK STORAGE DEVICE TO RECEIVE THE DATA BEFURE THE COM-
MAND IS ISSUED (BY ENTERING THE "CTRL/L" (OR "C/R"™)). AT THE CONCLUSION
OF THE DATA TRANSFER., IT IS ASSUMED THAT THE BULK STURAGE OUTPUT ROUTINE
WILL RETURN TO THE MONITOR COMMAND MODE.

THE "READ"™ COMMAND

THE "READ'" COMMAND IS INITIATED BY THE OPERATOR ENTERING THE "R"
COMMAND IN THE FOLLOWING FORMAT:

R (CTRL/L)

THE ISSUANCE OF THIS COMMAND CALLS THE BULK STORAGE INPUT ROUTINE TO BE-
GIN READING IN THE DATA FROM THE BULK STORAGE DEVICE. ADDRESSING INFOR-
MATION IS ASSUMED TO BE EITHER SET UP BY THE BULK STORAGE INPUT ROUTINE
OR RECEIVED FROM THE DATA AS IT IS READ IN. THE OPERATOR MUST SET UP
THE BULK STORAGE DEVICE PRIOR TO ENTERING THIS COMMAND OR AS IS REQUIRED
BY THE BULK INPUT ROUTINE. k

THE "BREAKPOINT" COMMAND

THE MONITOR "BREAKPOINT" COMMANDS ARE INITIATED BY TYPING IN ONE
OF THE FOLLOWING COMMANDS: ' .

B! HHH LLL (CTRL/L)
OR
B2 HHH LLL (CTRL/L)

WHERE "HHH LLL" DESIGNATES THE MEMORY ADDRESS AT WHICH THE BREAKPOINT IS5
TO BE INSERTED.

NOTICE

IN CASES WHERE A BREAKPOINT IS TO BE INSERTED IN A MULTI-BYTE
INSTRUCTION, SUCH AS "IMMEDIATE,* “JUMP™ OR "CALL" INSTRUC-
TIONS, THE ADDRESS INDICATED MUST BE THE ADDRESS OF THE FIRST
BYTE IN THE INSTRUCTION!

THE TWO TYPES OF BREAKPOINT INSTRUCTIONS, "BIl' AND "B2" REFER TU THE
OPTION OF HAVING THE STATUS OF THE "A,"™ “B"™ AND "C" CPU REGISTERS (Bl)
OR THE *"D,'" "E,'" "H'" AND "L" CPU REGISTERS (B2) SAVED IN THE VIRTUAL CPU
REGISTER LOCATIONS, ALONG WITH THE FLAG STATUS, AT THE TIME THE BREAK-
POINT 1S ENCOUNTERED. THUS, THE OPERATOR MAY INSERT A BREAKPOINT IN A

- 56 =

PROGRAM BEING TESTED TO ASCERTAIN WHETHER PRUOGRAM OPERATION IS5 ACTUALLY
REACHING A CERTAIN POINT, OR TO VALIDATE THE STATUS OF THE SELECTED CPU
REGISTERS AT GIVEN POINTS WITHIN A PROGRAM UNDER DEVELOPMENT. WHEN THE
PROGRAM BEING TESTED REACHES THE ADDRESS AT WHICH A BREAKPOINT HAS BEEN
INSERTED, CONTROL WILL REVERT TO THE MUONITUR A N D THE ORIGINAL Iiv-
STRUCTION IN THE PROGRAM WILL BE RESTORED AT THE BREAKPOINT ALDRESS!

CAUTION

WHEN UTILIZING THE BREAKPOINT FACILITY THERE ARE SEVERAL COw-
SIDERATIONS THAT THE OPERATOR MUST KEEP IN MIND:

l. THE PROGRAM BEING TESTED MAY NLEVER REACH THE SELECTED
BREAKPOINT ADDRESS IN WHICH CASE THE OPERATOR iMAY HAVE TU MAN-
UALLY STOP THE PROGRAM AND RESTART THE MUWNITUR PRUGRAM. IF
THIS OCCURS, THE OPERATOR SHOULD USE THE "MODIFY'" FUWCTIUN TO
REMOVE THE "BREAKPOINT" INSTRUCTION FROM THE LOCATION THAT IT
WAS INSERTED (WHICH WILL APPEAR AS AN "075" CODE) AND RESTUREL
THE ORIGINAL INSTRUCTION CODE TO THE PROGRAM UNDER TEST. THE
OPERATOR WOULD MOST LIKELY THEN CONTINUE TO "DEBUG" THE PRO-
GRAM BY SELECTING A BREAKPUINT AT SOME OTHER LOCATION.

2+« ONLY ONE BREAKPOINT SHOULD BE ESTABLISHED AT ONE TIME.
ATTEMPTING TO ESTABLISH MORE THAN ONE BREAKPOINT WILL RESULT

IN THE FIRST BREAKPOINT ENCOUNTERED BEING RESTORED WITH THE IN-
STRUCTION CODE CONTAINED IN THE ORIGINAL PROGRAM AT THE LAST
POINT AT WHICH A BREAKPOINT WAS ESTABLISHED. THlS MIGHT NOT BE
APPROPRIATE. '

3. A TYPE "1" BREAKPOINT SHOULD NOT BE CHANGED TO A TYPL "2"
BREAKPOINT (OR VICE-VERSA) UNTIL THE BREAKPOINT HAS ACTUALLY
BEEN ENCOUNTERED. ATTEMPTING TO DO SO WILL RESULT I AN “Q75"
CODE BEING INCORRECTLY RESTORED TO THE ORIGINAL BREAKPUINT.

IT SHOULD BE APPARENT, THAT IF OUNE DESIRES TO EXaAaMIWNE ALL THE CPU
REGISTERS AT A GIVEN POINT IN A PROGRAM'S UPLRATION, ONE WILL NEED TO
OPERATE THE PRUGRAM TWICE - ONCE WITH A "Bl BREAKPOINT ESTABLISHEL, AwL
ONCE WITH A "B2" BREAKPOINT ESTABLISHED AT THE SAME ADDRESS.

SINCE THE "VIRTUAL" CPU REGISTERS ARE ONLY UPDATED WHEN A BREAK-
POINT IS REACHED (OR WHEN THE OPERATOR SPECIFICALLY SETS ThkM UP)> IT IS
POSSIBLE TO REVIEW THE STATUS OF THE TWO GROUPS 0OF CPU REGISTERS AT SEV-
ERAL DIFFERENT POINTS IN A PRUGRAM. FOR INSTANCE, UNE CUULD SET UP A
"Bl" TYPE BREAKPOINT AT LOCATION "A,'" HAVE THE BREAKPOINT ENCOUWNTERLD
AND THE ASSOCIATED "A.,' "B'" AND "C"™ CPU REGISTERS SAVLD IN THE VIRTUAL
LOCATIONS, THEN INSERT A TYPE "B2" BREAKPOINT AT LOCATION "B.,'" HAVE IT
EINCOUNTERED, AND THEN REVIEW THE STATUS OF THE CPU REGISTERS USING THE
X" TYPE COMMANDS. ONE COULD CONTINUEs SAY, TU INSERT AND ENCOUNTER
MORE TYPE "B2" BREAKPOINTS WHILE STILL SAVING THE ORIGINAL "A," "B" AND
"“C" VALUES FOR REVIEW. (PARTICULARLY VALUABLE FOR THUSE THAT HAVE SHORT
MEMORIES WHEN WORKING ON DEBUGGING A COMPLEX PROGRAM!)

THE "“GU TO'" COMMAND

THE "GO TO'" COMMANDS ARE INITIATED BY TYPING IN ONE OF THE FOL-
LOWING COMMANDS:

Gl HHH LLL (CTRL/L)
OR
G2 HHH LLL (CTRL/L)

WHERE "HHH LLL'" REPRESENTS THE MEMORY ADDRESS AT WHICH PROGRAM OPERA-
TION IS TO COMMENCE WITH THE "A,"™ "B" AND "C" REGISTERS FOR "GIl" OR THE
"D," "E," "H"™ AND "L" REGISTERS FOR "G2" INITIALIZED TO THE VALUES RE-
SIDING IN THE VIRTUAL CPU REGISTER STORAGE LOCATIONS. IN MANY CASES.,
WHERE THE OPERATOR DOES NOT CARE WHAT THE STATUS OF THE CPU REGISTERS
ARE WHEN PROGRAM OPERATION BEGINS, THE SELECTION OF THE "Gl' OR "G2"
TYPE "GO TO" COMMAND IS PURELY ARBITRARY. HOWEVER, WHEN DESIRED, THE
OPERATOR MAY SET UP EITHER GROUP OF CPU REGISTERS TO CONTAIN SPECIFIC
VALUES (USING THE "X'" COMMAND) PRIOR TO EXECUTING THE "GO TO' COMMAND.
THOSE VALUES WILL BE PLACED IN THE CPU REGISTERS WHEN THE *"GU TO" CUil=
MAND IS EXECUTED AND THE PROGRAM WILL THEN JUMP TO COMHEWNCE PROGRAMMED
OPERATION AT THE ADDRESS SPECIFIED IN THE "GO TO" COMMAND. (NOTE THAT
SINCE A BREAKPOINT 1S ENCOUNTERED A F T ER A "GO TO'" COMMAND HAS BEEN
EXECUTEDs SETTING UP THE DESIRED VALUES IN CPU REGISTERS FOR A "GO TO"
COMMAND WILL NOT EFFECT THE BREAKPOINT PROCESS OF "SAVING' THE CONTENTS
OF A GROUP OF CPU REGISTERS WHEN A BREAKPOINT IS5 ENCOUNTERED.)

THE "“EXAMINE REGISTER" COMMAND

THE "EXAMINE REGISTER" COMMANDS ARE INITIATED BY TYPING IN ONE OF
THE FOLLOWING COMMANDS: '

XA (CTRL/L)
XB (CTRL/L)
XC (CTRL/LD
XD (CTRL/LD
XE (CTRL/LD
XH (CTRL/L)D
XL (CTRL/L)
XF (CTRL/L)

WHERE THE LETTER FOLLOWING THE "X'" INDICATES THE "VIRTUAL"™ CPU REGISTER
TO BE DISPLAYED. THE "CTRL/L" MUST BE USED IN THIS COMMAND AS THE TERM-
INATING CHARACTER TO MAINTAIN THE DISPLAY DEVICE AT THE POSITION FOLLOW-
ING THE "XR" COMMAND. THE CONTENTS OF THE SPECIFIED REGISTER WILL BE
DISPLAYED IN THE FOLLOWING FORMAT: '

XR XXX:

FOR ALL BUT THE "“XF" COMMAND, THE OPERATOR THEN HAS THE CHOICE OF MODI-
FYING, OR NOT MODIFYING, THE CONTENTS OF THE VIRTUAL REGISTER. IF IT IS
NOT DESIRED TO MODIFY THE CONTENTS AS DISPLAYED, THE OPERATOR SIMPLY DE-
PRESSES THE SPACE BAR AND THE PROGRAM RETURNS TO THE MONITOR COMMAND
MODE.

IF IT IS DESIRED TO MODIFY THE CONTENTS OF A VIRTUAL REGISTER, THE
OPERATOR TYPES IN THE DESIRED OCTAL VALUE AND DEPRLSSES THE SPACE BAR.

IF THE OPERATOR SHOULD TYPE IN A NEW OCTAL VALUE AND THEN DECIDE
THAT IT 1S NOT DESIRABLE TO CHANGE THE ORIGINAL VALUE, THE OPERATOR MAY
STRIKE THE "C/R™ KEY TO RETURN TO THE COMMAND MODE, IN WHICH CASE THE
ORIGINAL VALUE WILL REMAIN UNCHANGED.

THE "XF" COMMAND CAUSES THE STATUS OF THE CPU FLAGS (AS THEY WERL

- 58 =

JHICH THE LAST BREAKPOINT WAS ENCOUNTERED) TO BE DISPLAYED ACCORDING TO
THE FOLLOWING ARRANGEMENT.

B7 B6 BS B4 B3 B2 Bl BO

THE FOUR FLAGS CONNECTED WITH THE CPU HAVE BEEN A5SIGNED TO THE FULLOW-
ING POSITIONS IN THE EIGHT BIT GROUP.

B7 = SIGN FLAG
B6 = PARITY FLAG
B3 = ZERO FLAG
BO = CARRY FLAG

THE FLAG WAS SET IF THE CORRESPONDING BIT POSITION HAS A VALUE OF "l."
SINCE THE FLAG STATUS 1S DISPLAYED AS AN OCTAL VALUE, THE OPERATOR MUST
INTERPRET THE OCTAL CODE DISPLAYED TO DETERMINE THE SETTING OF EACH CPU
FLAG. FOR INSTANCE, IF THE VALUE "300" WAS DISPLAYED IT WOULD MEAN THE
SIGN AND PARITY FLAGS WERE "SET" AND THE ZERO AND CARRY FLAGS WERE IN
THE CLEARED CONDITION. THE VALUE "Ol1"™ WOULD INDICATE THAT THE SIGN AND
PARITY FLAGS WERE IN THE ZERO STATE (FALSE) WHILE THE ZERO ANL CARRY
FLAGS WERE TRUE (IN THE ONE CONDITION)>. THE VALUE "201"™ WOULD BE INTER-
PRETED TO INDICATE THAT THE SIGN AND CARRY FLAGS WERE SET WHILE THE PAR-
ITY AND ZERO FLAGS WERE NOT. '

THE "FILL"™ COMMAND

THE "FILL'™ COMMAND IS INITIATED BY TYPING IN THE "F'" COMMAND IN THE
FOLLOWING FORMAT:)

F HHH LLL,MMM NNN,DDD (CTRL/L)

WHERE "HHH LLL' IS THE START ADDRESS AND "MMM NNN" IS THE END ADDRESS OF
THE SECTION OF MEMORY THAT IS TO BE FILLED WITH THE DATA BYTE "DDD."
WHEN THE CTRL/L (OR C/R) IS ENTERED, THE PROGRAM WILL PROCEED TO LUAD
THE MEMORY LOCATIONS SPECIFIED WITH THE 8 BIT DATA BYTE ENTERED IN THE
COMMAND. AT THE CONCLUSION, THE PROGRAM RETURNS TO THE MONITOR COMMAND
MODE.

THE "SEARCH"™ COMMAND

THE SEARCH COMMAND IS INITIATED BY TYPING IN THE 'S" COMMAND IN THE
FOLLOWING FORMAT: ')

S HHH LLL,MMM NNN.,DDD (CTRL/L)D

WHERE "HHH LLL' SIGNIFIES THE START ADDRESS AND MMM NNN'" INDICATE THE
ENDING ADDRESS OF THE BLOCK OF MEMORY TO BE SEARCHED FOR THE DATA PAT-
TERN "DDD." WHEN THE OPERATOR ENTERS THE CTRL/L (OR C/R)., THE PROGRAM
BEGINS SEARCHING THE DESIGNATED MEMORY LOCATIONS FOR THE DATA PATTERN
SPECIFIED IN THE COMMAND AND EACH TIME A MATCH IS FOUND, THE ASSOCIATED
MEMORY ADDRESS IS OUTPUT TO THE DISPLAY DEVICE, PRECEEDED BY A C/R.

L/F COMBINATION TO START EACH ADDRESS OUTPUT ON A NEW LINE. THE PROGRAM
RETURNS TO THE COMMAND MODE WHEN THE ENTIRE BLOCK HAS BEEN SEARCHED.

- 59 -

THE "TRANSFER" COMMAND

THE "TRANSFER" COMMAND IS INITIATED BY TYPING IN THE "T'" COMMAND IN
THE FOLLOWING FORMAT!: ’

T HHH LLL,MMM NNN,YYY ZZZ (CTRL/L)

WHERE ""HHH LLL" SPECIFIES THE START ADDRESS AND "MKIM NNN'" THE END AD-
DRESS OF THE BLOCK OF MEMORY THAT IS TO BE TRANSFERED TO THE SECTION OF
MEMORY WHICH STARTS AT LOCATION "YYY ZZZ.'" WHEN THE CTRL/L (OR C/R) IS
ENTERED, THE PROGRAM BEGINS THE TRANSFER BY FETCHING THE CONTENTS OF THE
MEMORY LOCATION "HHH LLL"™ AND STORES THAT VALUE IN THE LOCATION "YYY
ZZZ+" THE CONTENTS OF '"HHH LLL+1"™ IS THEN TRANSFERRED TO "YYY ZZZ+1"
AND SO0 ON, UNTIL THE CONTENTS OF THE LAST LOCATION "MMM NWNN' HAS BEEN
TRANSFERRED. THE PROGRAM THEN RETURNS TO THE COMMAND MODE.

PUTTING THE MONITOR PROGRAM ON "PROMS"

ONCE THE MONITOR PROGRAM PRESENTED IN THIS MANUAL HAS BEEN "CUS-
TOMIZED" TO THE READER'S PARTICULAR SYSTEM, BY MODIFYING OR EXPANDING
THE PROGRAM TO MEET THE REQUIREMENTS OF ONE'S SYSTEM, IT CAN BE EASILY
ADAPTED FOR PERMANENT STORAGE ON “PROMS'" TO ALLOW THE COMPUTER TU BE
"ON-LINE" ONCE THE POWER IS TURNED ON BY SIMPLY JUMPING TO THE START AD-
DRESS OF THE MONITOR PROGRAM. THIS IS MADE POSSIBLE BY HAVING ALL TEM-
PORARY DATA STORED IN THE FIRST 256 LOCATIONS OF RAM MEMORY. IF ONE IS
TO PUT THE MONITOR PROGRAM ON "PROMS"™ THERE ARE SEVERAL FACTS THAT MUST
BE BROUGHT 0OUT. FIRST, THE PROGRAM SHOULD BE LOCATED IN THE UPPER-MOST
SECTION OF MEMORY THAT THE SYSTEM IS CAPABLE OF ADDRESSINGs. NEXT, THE
COMMAND LOOK UP TABLE AND CANNED MESSAGES SHOULD BE MOVED Tu BE INCLUDED
IN THE PROM SECTION OF THE PROGRAM. THIS REQUIRES THAT THE POINTERS TO
THESE TWO AREAS., IN THE "COMMAND INPUT" ROUTINE AND THE "HDLN' SUBROU-
TINE, BE CHANGED TO INDICATE THE NEW START ADDRESSES. ALSU, IN THE COd-
MAND INPUT ROUTINE, WHEN THE START ADDRESS OF THE CTOMMAND TO BE EXECU-
TED IS STORED AT LOCATIONS 156 AND 157, THE PROGRAM SHOULD ALSO STORE
THE "104"™ PORTION OF THE JUMP INSTRUCTION AT LOCATION 155, TO SET UP THE
JUMP INSTRUCTION PROPERLY WHEN THE FIRST COMMAND 1S ENTERED. AND FINAL-
LY, BEFORE PUTTING THE PROGRAM ON "PROMS," MAKE SURE THAT EACH FUNCTION
1S CHECKED OUT T H O R O U G H L Y» THEREBY, DECREASING THE LIKELYHOOD
THAT THE PROMS WILL HAVE TO BE RE~-PROGRAMMED TO CORRECT SOMETHING THAT
WAS OVERLOOKED ON THE INITIAL PROGRAMMING. ‘

HAVING THIS TYPE OF PROGRAM ON PROM HAS SEVERAL IMPORTANT ADVAN-
AGES. AS MENTIONED ABOVE, IT ALLOWS IMMEDIATE "ON-LINE" CAPABILITY.
IT ALSO PREVENTS A PROGRAM BEING DEBUGGED FROM "WIPING IT OUT.," SHOULD
THE NEW PROGRAM HAVE A NEVER-ENDING LOOP IN IT WHICH TRIES TO STORE SOME
DATA IN EVERY MEMORY LOCATION THE COMPUTER CAN ACCESS. FINALLY, THEL
SUBROUTINES OF THE MONITOR PROGRAM WILL ALWAYS BE AVAILABLE FUR OTHER
PROGRAMS TO CALL AS THEY REQUIRE.

THE MONITOR PROGRAM 1S AN EXTREMELY USEFUL TOOL, AS ANYUONE WILL AT-
TEST TO THAT HAS WORKED ON A COMPUTER WITH AND WITHOUT A MONITOR. IT IS
HOPED THAT THIS MONITOR PROGRAM WILL GET THE READER OFF ON THE RIGHT
FOOT TOWARDS TRANSFORMING ONE'S COMPUTER SYSTEM FROM A BOX THAT MLRELY
BLINKS ITS LIGHTS TO A FULLY FUNCTIONAL OPERATING SYSTEM THAT WILL PER-
FORM MANY OF THE TASKS EXPECTED OF IT.

